1
|
Ma M, Hu Y, Shang S, Leng X, Liu X, Liu F, Zhao R, Xiang J, Lin X. Dynamic CT myocardial perfusion combined with coronary CT angiography for detecting hemodynamical significance of coronary artery stenosis: a comparative study. Sci Rep 2024; 14:28153. [PMID: 39548251 PMCID: PMC11568305 DOI: 10.1038/s41598-024-79243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
This study aimed to evaluate the diagnostic performance of combined dynamic stress CT myocardial perfusion imaging (CTP) and coronary CT angiography (CTA) alongside CT-derived fractional flow reserve (CT-FFR) in detecting hemodynamically significant coronary artery disease (CAD). A total of 33 patients (86 vessels) who underwent coronary CTA, dynamic stress CTP, and coronary angiography were included. Vessels exhibiting 30-90% stenosis were subjected to FFR analysis based on coronary angiography (Angio-FFR). Hemodynamic significance, determined by Angio-FFR ≤ 0.80, and imaging findings were evaluated. The evaluation involved a comparison between the combined use of coronary CTA, CTP and CT-FFR, versus the sole use of coronary CTA. Out of 86 coronary vessels, 17 (19.8%) exhibited hemodynamically significant stenosis. The sensitivity, specificity, and accuracy of coronary CTA for detecting ischemia were 94.12%, 34.78%, and 46.51%, respectively. Adding CTP to CTA improved specificity to 88.41%, and accuracy to 87.21%, respectively. The area under the curve (AUC) for the discrimination of functional significant stenosis was 0.798 when using CTA alone, and for CTA plus CTP, it reached 0.910. Furthermore, the combination of CTA, CTP and CT-FFR, showed accuracy of 88.37%, sensitivity of 88.24% and specificity of 88.41% with the AUC of 0.946. The integration of dynamic CTP with CTA significantly enhances the diagnostic accuracy for identifying patients with hemodynamically significant CAD, compared to the use of CTA alone. This study underscores the value of combining CTP, CT-FFR, and CTA in improving diagnostic precision for CAD. The combination of CTP, CT-FFR and CTA offers a multifaceted assessment for patients with CAD by simultaneously providing anatomical detail, functional analysis, and physiological quantification, which facilitating rapid, accurate, and optimal clinical decision-making and significantly enhances patient management.
Collapse
Affiliation(s)
- Mengqing Ma
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yumeng Hu
- ArteryFlow Research and Development Center for Intelligent Diagnosis and Treatment of Cardiovascular and Cerebrovascular Diseases, ArteryFlow Technology Co., Ltd, Hangzhou, China
| | - Shimei Shang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
| | - Xiaochang Leng
- ArteryFlow Research and Development Center for Intelligent Diagnosis and Treatment of Cardiovascular and Cerebrovascular Diseases, ArteryFlow Technology Co., Ltd, Hangzhou, China
| | - Xin Liu
- ArteryFlow Research and Development Center for Intelligent Diagnosis and Treatment of Cardiovascular and Cerebrovascular Diseases, ArteryFlow Technology Co., Ltd, Hangzhou, China
| | - Fei Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ren Zhao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianping Xiang
- ArteryFlow Research and Development Center for Intelligent Diagnosis and Treatment of Cardiovascular and Cerebrovascular Diseases, ArteryFlow Technology Co., Ltd, Hangzhou, China.
| | - Xianhe Lin
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Muscogiuri G, Chiesa M, Baggiano A, Spadafora P, De Santis R, Guglielmo M, Scafuri S, Fusini L, Mushtaq S, Conte E, Annoni A, Formenti A, Mancini ME, Ricci F, Ariano FP, Spiritigliozzi L, Babbaro M, Mollace R, Maragna R, Giacari CM, Andreini D, Guaricci AI, Colombo GI, Rabbat MG, Pepi M, Sardanelli F, Pontone G. Diagnostic performance of deep learning algorithm for analysis of computed tomography myocardial perfusion. Eur J Nucl Med Mol Imaging 2022; 49:3119-3128. [PMID: 35194673 DOI: 10.1007/s00259-022-05732-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/12/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE To evaluate the diagnostic accuracy of a deep learning (DL) algorithm predicting hemodynamically significant coronary artery disease (CAD) by using a rest dataset of myocardial computed tomography perfusion (CTP) as compared to invasive evaluation. METHODS One hundred and twelve consecutive symptomatic patients scheduled for clinically indicated invasive coronary angiography (ICA) underwent CCTA plus static stress CTP and ICA with invasive fractional flow reserve (FFR) for stenoses ranging between 30 and 80%. Subsequently, a DL algorithm for the prediction of significant CAD by using the rest dataset (CTP-DLrest) and stress dataset (CTP-DLstress) was developed. The diagnostic accuracy for identification of significant CAD using CCTA, CCTA + CTP stress, CCTA + CTP-DLrest, and CCTA + CTP-DLstress was measured and compared. The time of analysis for CTP stress, CTP-DLrest, and CTP-DLStress was recorded. RESULTS Patient-specific sensitivity, specificity, NPV, PPV, accuracy, and area under the curve (AUC) of CCTA alone and CCTA + CTPStress were 100%, 33%, 100%, 54%, 63%, 67% and 86%, 89%, 89%, 86%, 88%, 87%, respectively. Patient-specific sensitivity, specificity, NPV, PPV, accuracy, and AUC of CCTA + DLrest and CCTA + DLstress were 100%, 72%, 100%, 74%, 84%, 96% and 93%, 83%, 94%, 81%, 88%, 98%, respectively. All CCTA + CTP stress, CCTA + CTP-DLRest, and CCTA + CTP-DLStress significantly improved detection of hemodynamically significant CAD compared to CCTA alone (p < 0.01). Time of CTP-DL was significantly lower as compared to human analysis (39.2 ± 3.2 vs. 379.6 ± 68.0 s, p < 0.001). CONCLUSION Evaluation of myocardial ischemia using a DL approach on rest CTP datasets is feasible and accurate. This approach may be a useful gatekeeper prior to CTP stress..
Collapse
Affiliation(s)
| | - Mattia Chiesa
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, 20133, Milan, Italy
| | | | - Pierino Spadafora
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Rossella De Santis
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | | | - Laura Fusini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | - Daniele Andreini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| | - Andrea Igoren Guaricci
- Department of Emergency and Organ Transplantation, Institute of Cardiovascular Disease, University Hospital "Policlinico Consorziale" of Bari, Bari, Italy
| | | | - Mark G Rabbat
- Loyola University of Chicago, Chicago, IL, USA.,Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Mauro Pepi
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Francesco Sardanelli
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, 20133, Milan, Italy.,Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | | |
Collapse
|
3
|
Antonopoulos AS, Angelopoulos A, Tsioufis K, Antoniades C, Tousoulis D. Cardiovascular risk stratification by coronary computed tomography angiography imaging: current state-of-the-art. Eur J Prev Cardiol 2022; 29:608-624. [PMID: 33930129 DOI: 10.1093/eurjpc/zwab067] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Current cardiovascular risk stratification by use of clinical risk score systems or plasma biomarkers is good but less than satisfactory in identifying patients at residual risk for coronary events. Recent clinical evidence puts now further emphasis on the role of coronary anatomy assessment by coronary computed tomography angiography (CCTA) for the management of patients with stable ischaemic heart disease. Available computed tomography (CT) technology allows the quantification of plaque burden, identification of high-risk plaques, or the functional assessment of coronary lesions for ischaemia detection and revascularization for refractory angina symptoms. The current CT armamentum is also further enhanced by perivascular Fat Attenuation Index (FAI), a non-invasive metric of coronary inflammation, which allows for the first time the direct quantification of the residual vascular inflammatory burden. Machine learning and radiomic features' extraction and spectral CT for tissue characterization are also expected to maximize the diagnostic and prognostic yield of CCTA. The combination of anatomical, functional, and biological information on coronary circulation by CCTA offers a unique toolkit for the risk stratification of patients, and patient selection for targeted aggressive prevention strategies. We hereby provide a review of the current state-of-the art in the field and discuss how integrating the full capacities of CCTA into clinical care pathways opens new opportunities for the tailored management of coronary artery disease.
Collapse
Affiliation(s)
- Alexios S Antonopoulos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, 114 Vas. Sofias Avenue, 11527, Athens, Greece
- RDM Division of Cardiovascular Medicine, Oxford Academic CT Programme, University of Oxford, John Radcliffe Hospital, Headley Way, OX3 9DU Oxford, UK
| | - Andreas Angelopoulos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, 114 Vas. Sofias Avenue, 11527, Athens, Greece
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, 114 Vas. Sofias Avenue, 11527, Athens, Greece
| | - Charalambos Antoniades
- RDM Division of Cardiovascular Medicine, Oxford Academic CT Programme, University of Oxford, John Radcliffe Hospital, Headley Way, OX3 9DU Oxford, UK
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, 114 Vas. Sofias Avenue, 11527, Athens, Greece
| |
Collapse
|
4
|
Yang N, Li C, Han X, Feng Z, Qiu F, Han J. Associations of MTA1 expression with CT features, pathology and prognosis of elderly patients with non-small cell lung cancer. Oncol Lett 2020; 20:172. [PMID: 32934739 PMCID: PMC7471726 DOI: 10.3892/ol.2020.12034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/30/2020] [Indexed: 11/05/2022] Open
Abstract
Associations of metastasis-associated protein 1 (MTA1) expression with computed tomography (CT) features, pathology and prognosis of elderly patients with non-small cell lung cancer (NSCLC), and its clinical significance were explored. A total of 98 elderly patients with NSCLC were selected and underwent CT examination. The expression of MTA1 in carcinoma tissues and para-carcinoma normal tissues was detected via immunohistochemistry, and its associations with CT features, pathology and prognosis were analyzed. The results manifested that the expression of MTA1 in carcinoma tissues was significantly higher than that in para-carcinoma normal tissues, and it was associated with the degree of differentiation, stage and lymph node metastasis (P<0.05). Besides, the high expression of MTA1 was also related to the spicule sign, pleural indentation and lymph node metastasis (P<0.05) as well as the CT perfusion parameter capillary permeability (PMB) (P<0.05), but not to blood volume (BV), blood flow (BF) or time to peak (TTP). Moreover, the patients with high expression of MTA1 had significantly shorter survival time and a remarkably lower 5-year survival rate than those with low expression of MTA1 (P<0.05). In conclusion, MTA1 plays a certain role in the occurrence and development of NSCLC in elderly patients and has an association with their prognosis, which can provide references for the treatment and prognosis of NSCLC, with important clinical significance.
Collapse
Affiliation(s)
- Ning Yang
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chuanming Li
- Department of Pain Management, Jiading Hospital of Traditional Chinese Medicine, Shanghai 201800, P.R. China
| | - Xiao Han
- Department of Experiment, Tumor Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhihua Feng
- Department of Proctology, Jiading Hospital of Traditional Chinese Medicine, Shanghai 201800, P.R. China
| | - Feng Qiu
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Junqing Han
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
5
|
Tian XW, Ma AL, Zhou RB, Jiang LJ, Hao Y, Zou XG. Advances in Cardiac Computed Tomography Functional Imaging Technology. Cardiology 2020; 145:615-622. [PMID: 32829331 DOI: 10.1159/000505317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/09/2019] [Indexed: 11/19/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death among patients in China, and cardiac computed tomography (CT) is one of the most commonly used examination methods for CVD. Coronary artery CT angiography can be used for the morphologic evaluation of the coronary artery. At present, cardiac CT functional imaging has become an important direction of development of CT. At present, common CT functional imaging technologies include transluminal attenuation gradient, stress dynamic CT myocardial perfusion imaging, and CT-fractional flow reserve. These three imaging modes are introduced and analyzed in this review.
Collapse
Affiliation(s)
- Xu-Wei Tian
- Department of Radiology, Department of Medical Imaging, The First People's Hospital Kashgar Region, Kashgar, China
| | - Ai-Lin Ma
- Department of Radiology, Department of Medical Imaging, The First People's Hospital Kashgar Region, Kashgar, China
| | - Ren-Bing Zhou
- Department of Radiology, Department of Medical Imaging, The First People's Hospital Kashgar Region, Kashgar, China
| | - Liu-Jiang Jiang
- Department of Radiology, Department of Medical Imaging, The First People's Hospital Kashgar Region, Kashgar, China
| | - Yue Hao
- Department of Radiology, Department of Medical Imaging, The First People's Hospital Kashgar Region, Kashgar, China
| | - Xiao-Guang Zou
- Department of Radiology, Department of Medical Imaging, The First People's Hospital Kashgar Region, Kashgar, China,
| |
Collapse
|
6
|
Kara V, Ni H, Perez Alday EA, Zhang H. ECG Imaging to Detect the Site of Ventricular Ischemia Using Torso Electrodes: A Computational Study. Front Physiol 2019; 10:50. [PMID: 30804799 PMCID: PMC6378918 DOI: 10.3389/fphys.2019.00050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/17/2019] [Indexed: 12/02/2022] Open
Abstract
Electrocardiography provides some information useful for ischemic diagnosis. However, more recently there has been substantial growth in the area of ECG imaging, which by solving the inverse problem of electrocardiography aims to produce high-resolution mapping of the electrical and magnetic dynamics of the heart. Most inverse studies use the full resolution of the body surface potential (BSP) to reconstruct the epicardial potentials, however using a limited number of torso electrodes to interpolate the BSP is more clinically relevant and has an important effect on the reconstruction which must be quantified. A circular ischemic lesion on the right ventricle lateral wall 27 mm in radius is reconstructed using three Tikhonov methods along with 6 different electrode configurations ranging from 32 leads to 1,024 leads. The 2nd order Tikhonov solution performed the most accurately (~80% lesion identified) followed by the 1st (~50% lesion identified) and then the 0 order Tikhonov solution performed the worst with a maximum of ~30% lesion identified regardless of how many leads were used. With an increasing number of leads the solution produces less error, and the error becomes more localised around the lesion for all three regularisation methods. In noisy conditions, the relative performance gap of the 1st and 2nd order Tikhonov solutions was reduced, and determining an accurate regularisation parameter became relatively more difficult. Lesions located on the left ventricle walls were also able to be identified but comparatively to the right ventricle lateral wall performed marginally worse with lesions located on the interventricular septum being able to be indicated by the reconstructions but not successfully identified against the error. The quality of reconstruction was found to decrease as the lesion radius decreased, with a lesion radius of <20 mm becoming difficult to correctly identify against the error even when using >512 torso electrodes.
Collapse
Affiliation(s)
- Vinay Kara
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Haibo Ni
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom.,Department of Pharmacology, The University of California, Davis, Davis, CA, United States
| | - Erick Andres Perez Alday
- Division of Cardiovascular Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom.,School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.,China Space Institute of Southern China, Shenzhen, China
| |
Collapse
|
7
|
Ramsey BC, Fentanes E, Choi AD, Branch KR, Thomas DM. Myocardial Assessment with Cardiac CT: Ischemic Heart Disease and Beyond. CURRENT CARDIOVASCULAR IMAGING REPORTS 2018; 11:16. [PMID: 29963220 PMCID: PMC5984644 DOI: 10.1007/s12410-018-9456-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to highlight recent advancements, current trends, and the expanding role for cardiac CT (CCT) in the evaluation of ischemic heart disease, nonischemic cardiomyopathies, and some specific congenital myocardial disease states. RECENT FINDINGS CCT is a highly versatile imaging modality for the assessment of numerous cardiovascular disease states. Coronary CT angiography (CCTA) is now a well-established first-line imaging modality for the exclusion of significant coronary artery disease (CAD); however, CCTA has modest positive predictive value and specificity for diagnosing obstructive CAD in addition to limited capability to evaluate myocardial tissue characteristics. SUMMARY CTP, when combined with CCTA, presents the potential for full functional and anatomic assessment with a single modality. CCT is a useful adjunct in select patients to both TTE and CMR in the evaluation of ventricular volumes and systolic function. Newer applications, such as dynamic CTP and DECT, are promising diagnostic tools offering the possibility of more quantitative assessment of ischemia. The superior spatial resolution and volumetric acquisition of CCT has an important role in the diagnosis of other nonischemic causes of cardiomyopathies.
Collapse
Affiliation(s)
- Bryan C. Ramsey
- Cardiology Division, Department of Medicine, San Antonio Military Medical Center, San Antonio, TX USA
| | - Emilio Fentanes
- Cardiology Division, Department of Medicine, Tripler Army Medical Center, Honolulu, HI USA
| | - Andrew D. Choi
- Division of Cardiology, Department of Radiology, The George Washington University School of Medicine, Washington, DC USA
| | | | - Dustin M. Thomas
- Cardiology Division, Department of Medicine, San Antonio Military Medical Center, San Antonio, TX USA
| |
Collapse
|