1
|
Neagu AN, Josan CL, Jayaweera TM, Morrissiey H, Johnson KR, Darie CC. Bio-Pathological Functions of Posttranslational Modifications of Histological Biomarkers in Breast Cancer. Molecules 2024; 29:4156. [PMID: 39275004 PMCID: PMC11397409 DOI: 10.3390/molecules29174156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Proteins are the most common types of biomarkers used in breast cancer (BC) theranostics and management. By definition, a biomarker must be a relevant, objective, stable, and quantifiable biomolecule or other parameter, but proteins are known to exhibit the most variate and profound structural and functional variation. Thus, the proteome is highly dynamic and permanently reshaped and readapted, according to changing microenvironments, to maintain the local cell and tissue homeostasis. It is known that protein posttranslational modifications (PTMs) can affect all aspects of protein function. In this review, we focused our analysis on the different types of PTMs of histological biomarkers in BC. Thus, we analyzed the most common PTMs, including phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, palmitoylation, myristoylation, and glycosylation/sialylation/fucosylation of transcription factors, proliferation marker Ki-67, plasma membrane proteins, and histone modifications. Most of these PTMs occur in the presence of cellular stress. We emphasized that these PTMs interfere with these biomarkers maintenance, turnover and lifespan, nuclear or subcellular localization, structure and function, stabilization or inactivation, initiation or silencing of genomic and non-genomic pathways, including transcriptional activities or signaling pathways, mitosis, proteostasis, cell-cell and cell-extracellular matrix (ECM) interactions, membrane trafficking, and PPIs. Moreover, PTMs of these biomarkers orchestrate all hallmark pathways that are dysregulated in BC, playing both pro- and/or antitumoral and context-specific roles in DNA damage, repair and genomic stability, inactivation/activation of tumor-suppressor genes and oncogenes, phenotypic plasticity, epigenetic regulation of gene expression and non-mutational reprogramming, proliferative signaling, endocytosis, cell death, dysregulated TME, invasion and metastasis, including epithelial-mesenchymal/mesenchymal-epithelial transition (EMT/MET), and resistance to therapy or reversal of multidrug therapy resistance. PTMs occur in the nucleus but also at the plasma membrane and cytoplasmic level and induce biomarker translocation with opposite effects. Analysis of protein PTMs allows for the discovery and validation of new biomarkers in BC, mainly for early diagnosis, like extracellular vesicle glycosylation, which may be considered as a potential source of circulating cancer biomarkers.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Claudiu-Laurentiu Josan
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Taniya M. Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| |
Collapse
|
2
|
Wang Q, Zhang N, Yang X, Feng S, Wang F, Zhang W, He Z. ERα promotes SUMO1 transcription by binding with the ERE and enhances SUMO1-mediated protein SUMOylation in breast cancer. Gland Surg 2023; 12:963-973. [PMID: 37727335 PMCID: PMC10506115 DOI: 10.21037/gs-23-39] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/20/2023] [Indexed: 09/21/2023]
Abstract
Background Estrogen plays a crucial role in the tumorigenesis of breast cancer (BC), and epigenetic modification by SUMOylation is essential for cancer development. However, the mechanism underlying estrogen's actions on protein SUMOylation and its effect on BC development are still incompletely understood. Methods SUMO1 in BC cell lines was verified via real-time quantitative PCR (RT-qPCR) and western blot. Cell proliferation and colony formation assays was also performed to evaluate SUMOylation as mediated by SUMO1. Luciferase activity to examine whether E2 promoted the transcription of SUMO1, and chromatin immunoprecipitation (ChIP) assay to determine the binding of estrogen receptor alpha (ERα) to SUMO1 were conduction, and an animal model was used to evaluate the effects of E2-ERα-enhanced SUMO1 transcription. Results E2 promoted SUMO1 mRNA and protein expression levels in a dose- and time-dependent manner in ER-positive BC cells; it exerted no influence on SUMO2/3 expression; in E2-induced SUMO1 transcription, ERα, but not ERβ, was essential to the process. In addition, E2-ERα upregulated the transcription of SUMO1 by binding with an estrogen-response element half-site (1/2ERE, in the -134 to -123 bp region) of the SUMO1 promoter, and E2-ERα induced SUMO1 transcription-enhanced cellular viability in ER-positive BC cells. To further determine SUMOylation as mediated by SUMO1 in ER-positive BC, we evaluated novel SUMO1 target proteins such as Ras and demonstrated that E2 increased Ras SUMOylation and cellular proliferation by affecting downstream signaling-pathway transduction. Finally, our data revealed that E2-ERα enhanced SUMO1 transcription to promote tumor growth in a BC orthotopic tumor model. Conclusions Collectively, our results showed that E2 promoted the transcription and protein expression of SUMO1 via ERα binding to a 1/2ERE in the SUMO1 promoter, and that E2-ERα also augmented SUMO1-mediated Ras SUMOylation and mediated cellular responses in ER-positive BC. We therefore achieved significant insights into the mechanism involved in ER-positive BC development and provided a novel target for its treatment.
Collapse
Affiliation(s)
- Quhui Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Nannan Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xiaobing Yang
- Department of General Surgery, Huaian Hospital of Huaian City, Huaian, China
| | - Shichun Feng
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Feiran Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Wei Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Zhixian He
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
3
|
Zhao K, Zheng Y, Lu W, Chen B. Identification of ubiquitination-related gene classification and a novel ubiquitination-related gene signature for patients with triple-negative breast cancer. Front Genet 2023; 13:932027. [PMID: 36685836 PMCID: PMC9853012 DOI: 10.3389/fgene.2022.932027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Ubiquitination-related genes (URGs) are important biomarkers and therapeutic targets in cancer. However, URG prognostic prediction models have not been established in triple-negative breast cancer (TNBC) before. Our study aimed to explore the roles of URGs in TNBC. Methods: The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and the Gene Expression Omnibus (GEO) databases were used to identify URG expression patterns in TNBC. Non-negative matrix factorization (NMF) analysis was used to cluster TNBC patients. The least absolute shrinkage and selection operator (LASSO) analysis was used to construct the multi-URG signature in the training set (METABRIC). Next, we evaluated and validated the signature in the test set (GSE58812). Finally, we evaluated the immune-related characteristics to explore the mechanism. Results: We identified four clusters with significantly different immune signatures in TNBC based on URGs. Then, we developed an 11-URG signature with good performance for patients with TNBC. According to the 11-URG signature, TNBC patients can be classified into a high-risk group and a low-risk group with significantly different overall survival. The predictive ability of this 11-URG signature was favorable in the test set. Moreover, we constructed a nomogram comprising the risk score and clinicopathological characteristics with favorable predictive ability. All of the immune cells and immune-related pathways were higher in the low-risk group than in the high-risk group. Conclusion: Our study indicated URGs might interact with the immune phenotype to influence the development of TNBC, which contributes to a further understanding of molecular mechanisms and the development of novel therapeutic targets for TNBC.
Collapse
|
4
|
Li F, Lai L, You Z, Cheng H, Guo G, Tang C, Xu L, Liu H, Zhong W, Lin Y, Wang Q, Lin Y, Wei Y. Identification of UBE2I as a Novel Biomarker in ccRCC Based on a Large-Scale CRISPR-Cas9 Screening Database and Immunohistochemistry. Front Mol Biosci 2022; 9:813428. [PMID: 35211510 PMCID: PMC8861443 DOI: 10.3389/fmolb.2022.813428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Background: The genome-wide CRISPR-cas9 dropout screening has emerged as an outstanding approach for characterization of driver genes of tumor growth. The present study aims to investigate core genes related to clear cell renal cell carcinoma (ccRCC) cell viability by analyzing the CRISPR-cas9 screening database DepMap, which may provide a novel target in ccRCC therapy. Methods: Candidate genes related to ccRCC cell viability by CRISPR-cas9 screening from DepMap and genes differentially expressed between ccRCC tissues and normal tissues from TCGA were overlapped. Weighted gene coexpression network analysis, pathway enrichment analysis, and protein–protein interaction network analysis were applied for the overlapped genes. The least absolute shrinkage and selection operator (LASSO) regression was used to construct a signature to predict the overall survival (OS) of ccRCC patients and validated in the International Cancer Genome Consortium (ICGC) and E-MTAB-1980 database. Core protein expression was determined using immunohistochemistry in 40 cases of ccRCC patients. Results: A total of 485 essential genes in the DepMap database were identified and overlapped with differentially expressed genes in the TCGA database, which were enriched in the cell cycle pathway. A total of four genes, including UBE2I, NCAPG, NUP93, and TOP2A, were included in the gene signature based on LASSO regression. The high-risk score of ccRCC patients showed worse OS compared with these low-risk patients in the ICGC and E-MTAB-1980 validation cohort. UBE2I was screened out as a key gene. The immunohistochemistry indicated UBE2I protein was highly expressed in ccRCC tissues, and a high-level nuclear translocation of UBE2I occurs in ccRCC. Based on the area under the curve (AUC) values, nuclear UBE2I had the best diagnostic power (AUC = 1). Meanwhile, the knockdown of UBE2I can inhibit the proliferation of ccRCC cells. Conclusion: UBE2I, identified by CRISPR-cas9 screening, was a core gene-regulating ccRCC cell viability, which accumulated in the nucleus and acted as a potential novel promising diagnostic biomarker for ccRCC patients. Blocking the nuclear translocation of UBE2I may have potential therapeutic value with ccRCC patients.
Collapse
Affiliation(s)
- Feng Li
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- *Correspondence: Feng Li, ; Qingshui Wang, ; Yao Lin, ; Yongbao Wei,
| | - Li Lai
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Central Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Zhijie You
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
| | - Hui Cheng
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
| | - Guodong Guo
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
| | - Chenchen Tang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Luyun Xu
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Hongxia Liu
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Wenting Zhong
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Youyu Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Qingshui Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory of Hepatic Drug Research, Fuzhou, China
- *Correspondence: Feng Li, ; Qingshui Wang, ; Yao Lin, ; Yongbao Wei,
| | - Yao Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Feng Li, ; Qingshui Wang, ; Yao Lin, ; Yongbao Wei,
| | - Yongbao Wei
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Feng Li, ; Qingshui Wang, ; Yao Lin, ; Yongbao Wei,
| |
Collapse
|