1
|
Liu S, Wu J, Lu X, Guo C, Zheng Q, Wang Y, Hu Q, Bian S, Luo L, Cheng Q, Liu Z, Dai W. Targeting CDK12 obviates the malignant phenotypes of colorectal cancer through the Wnt/β-catenin signaling pathway. Exp Cell Res 2023; 428:113613. [PMID: 37100369 DOI: 10.1016/j.yexcr.2023.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 04/22/2023] [Indexed: 04/28/2023]
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer-related mortality and lies third in terms of morbidity due to the limited number of effective druggable targets. Since cancer stem cells (CSCs) are considered to be one of the roots of tumorigenesis, outgrowth and metastasis, targeting CSCs may be a promising strategy to reverse the malignant phenotypes of CRC. Cyclin-dependent kinase 12 (CDK12) has been reported to be involved in the self-renewal of CSCs in various cancers, rendering it an attractive potential target against CSCs to consequently limit the malignant phenotypes in CRC. In the present study, we aimed to investigate whether CDK12 can be a potential therapeutic target for patients with CRC and clarify its underlying mechanism. We found that CDK12, but not CDK13 is required for CRC survival. CDK12 was found to drive tumor initiation according to the colitis-associated colorectal cancer mouse model. In addition, CDK12 promoted CRC outgrowth and hepatic metastasis in the subcutaneous allograft and liver metastasis mouse models, respectively. In particular, CDK12 was able to induce the self-renewal of CRC CSCs. Mechanistically, the activation of Wnt/β-catenin signaling mediated by CDK12 was implicated in stemness regulation and malignant phenotype maintenance. These findings indicate that CDK12 is a candidate druggable target in CRC. Therefore, the CDK12 inhibitor SR-4835 warrants clinical trial testing in patients with CRC.
Collapse
Affiliation(s)
- Shenglan Liu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Junhong Wu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Xiaolu Lu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Caiyao Guo
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Qisheng Zheng
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Yu Wang
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Qiao Hu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Shuigen Bian
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Li Luo
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Qilai Cheng
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China.
| | - Wei Dai
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
2
|
Ge P, Wu Y. Surgery is the means of treatment, but high-quality survival is the ultimate goal. Hepatobiliary Surg Nutr 2022; 11:308-310. [PMID: 35464268 PMCID: PMC9023842 DOI: 10.21037/hbsn-2022-05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 07/02/2024]
Affiliation(s)
- Penglei Ge
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
The Role of Farnesoid X Receptor in Accelerated Liver Regeneration in Rats Subjected to ALPPS. Curr Oncol 2021; 28:5240-5254. [PMID: 34940077 PMCID: PMC8700148 DOI: 10.3390/curroncol28060438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022] Open
Abstract
Background: the role of bile acid (BA)-induced farnesoid X receptor (Fxr) signaling in liver regeneration following associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) was investigated in a rat model. Methods: Male Wistar rats underwent portal vein ligation (PVL) (n = 30) or ALPPS (n = 30). Animals were sacrificed pre-operatively and at 24, 48, 72, or 168 h after intervention. Regeneration rate, Ki67 index, hemodynamic changes in the hepatic circulation, and BA levels were assessed. Transcriptome analysis of molecular regulators involved in the Fxr signaling pathway, BA transport, and BA production was performed. Results: ALLPS induced more extensive liver regeneration (p < 0.001) and elevation of systemic and portal BA levels (p < 0.05) than PVL. The mRNA levels of proteins participating in hepatic Fxr signaling were comparable between the intervention groups. More profound activation of the intestinal Fxr pathway was observed 24 h after ALPPS compared to PVL. Conclusion: Our study elaborates on a possible linkage between BA-induced Fxr signaling and accelerated liver regeneration induced by ALPPS in rats. ALPPS could trigger liver regeneration via intestinal Fxr signaling cascades instead of hepatic Fxr signaling, thereby deviating from the mechanism of BA-mediated regeneration following one-stage hepatectomy.
Collapse
|