1
|
Liaghat M, Ferdousmakan S, Mortazavi SH, Yahyazadeh S, Irani A, Banihashemi S, Seyedi Asl FS, Akbari A, Farzam F, Aziziyan F, Bakhtiyari M, Arghavani MJ, Zalpoor H, Nabi-Afjadi M. The impact of epithelial-mesenchymal transition (EMT) induced by metabolic processes and intracellular signaling pathways on chemo-resistance, metastasis, and recurrence in solid tumors. Cell Commun Signal 2024; 22:575. [PMID: 39623377 PMCID: PMC11610171 DOI: 10.1186/s12964-024-01957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
The intricate cellular process, known as the epithelial-mesenchymal transition (EMT), significantly influences solid tumors development. Changes in cell shape, metabolism, and gene expression linked to EMT facilitate tumor cell invasion, metastasis, drug resistance, and recurrence. So, a better understanding of the intricate processes underlying EMT and its role in tumor growth may lead to the development of novel therapeutic approaches for the treatment of solid tumors. This review article focuses on the signals that promote EMT and metabolism, the intracellular signaling pathways leading to EMT, and the network of interactions between EMT and cancer cell metabolism. Furthermore, the functions of EMT in treatment resistance, recurrence, and metastasis of solid cancers are covered. Lastly, treatment approaches that focus on intracellular signaling networks and metabolic alterations brought on by EMT will be discussed.
Collapse
Affiliation(s)
- Mahsa Liaghat
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085, India
| | | | - Sheida Yahyazadeh
- Department of Immunology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asrin Irani
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Abdullatif Akbari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Javad Arghavani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Mafi A, Hedayati N, Kahkesh S, Khoshayand S, Alimohammadi M, Farahani N, Hushmandi K. The landscape of circRNAs in gliomas temozolomide resistance: Insights into molecular pathways. Noncoding RNA Res 2024; 9:1178-1189. [PMID: 39022676 PMCID: PMC11250881 DOI: 10.1016/j.ncrna.2024.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 07/20/2024] Open
Abstract
As the deadliest type of primary brain tumor, gliomas represent a significant worldwide health concern. Circular RNA (circRNA), a unique non-coding RNA molecule, seems to be one of the most alluring target molecules involved in the pathophysiology of many kinds of cancers. CircRNAs have been identified as prospective targets and biomarkers for the diagnosis and treatment of numerous disorders, particularly malignancies. Recent research has established a clinical link between temozolomide (TMZ) resistance and certain circRNA dysregulations in glioma tumors. CircRNAs may play a therapeutic role in controlling or overcoming TMZ resistance in gliomas and may provide guidance for a novel kind of individualized glioma therapy. To address the biological characteristics of circRNAs and their potential to induce resistance to TMZ, this review has highlighted and summarized the possible roles that circRNAs may play in molecular pathways of drug resistance, including the Ras/Raf/ERK PI3K/Akt signaling pathway and metabolic processes in gliomas.
Collapse
Affiliation(s)
- Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sara Khoshayand
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Tang F, Cui Q. Diverse roles of aldolase enzymes in cancer development, drug resistance and therapeutic approaches as moonlighting enzymes. Med Oncol 2024; 41:224. [PMID: 39120781 DOI: 10.1007/s12032-024-02470-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Aldolase enzymes, particularly ALDOA, ALDOB, and ALDOC, play a crucial role in the development and progression of cancer. While the aldolase family is mainly known for its involvement in the glycolysis pathway, these enzymes also have various pathological and physiological functions through distinct signaling pathways such as Wnt/β-catenin, EGFR/MAPK, Akt, and HIF-1α. This has garnered increased attention in recent years and shed light on other sides of this enzyme. Potential therapeutic strategies targeting aldolases include using siRNA, inhibitors like naphthol AS-E phosphate and TX-2098, and natural compounds such as HDPS-4II and L-carnosine. Additionally, anticancer peptides derived from ALDOA, like P04, can potentially increase cancer cells' sensitivity to chemotherapy. Aldolases also affect cancer drug resistance by different approaches, making them good therapeutic targets. In this review, we extensively explore the role of aldolase enzymes in various types of cancers in proliferation, invasion, migration, and drug resistance; we also significantly explore the possible treatment considering aldolase function.
Collapse
Affiliation(s)
- Fan Tang
- General Surgery Department, Xinhua Hospital of Yili Kazak Autonomous Prefecture, YiLi, 835000, China
| | - Qingyang Cui
- Department of Interventional Oncology, Xinhua Hospital of Yili Kazak Autonomous Prefecture, YiLi, 835000, China.
| |
Collapse
|
4
|
Xu M, Xi S, Li H, Xia Y, Mei G, Cheng Z. Prognosis significance and potential association between ALDOA and AKT expression in colorectal cancer. Sci Rep 2024; 14:6488. [PMID: 38499636 PMCID: PMC10948905 DOI: 10.1038/s41598-024-57209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/15/2024] [Indexed: 03/20/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive tract and a leading cause of cancer-related death worldwide. Since many CRC patients are diagnosed already in the advanced stage, and traditional chemoradiotherapy is prone to drug resistance, it is important to find new therapeutic targets. In this study, the expression levels of ALDOA and p-AKT were detected in cancer tissues and paired normal tissues, and it was found that they were significantly increased in CRC tissues, and their high expression indicated poor prognosis. Moreover, a positive correlation between the expression of ALDOA and p-AKT was found in CRC tissues and paired normal tissues. In addition, the Kaplan-Meier analysis revealed that the group with both negative of ALDOA/p-AKT expression had longer five-year survival rates compared with the other group. Besides, the group with both high expression of ALDOA/p-AKT had a worse prognosis compared with the other group. Based on the expression of ALDOA and p-AKT in tumor tissues, we can effectively distinguish tumor tissues from normal tissues through cluster analysis. Furthermore, we constructed nomograms to predict 3-year and 5-year overall survival, showing that the expression of ALDOA/p-AKT plays a crucial role in predicting the prognosis of CRC patients. Therefore, ALDOA/p-AKT may act as a crucial role in CRC, which may provide new horizons for targeted therapies for CRC.
Collapse
Affiliation(s)
- Menglin Xu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Shihang Xi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Haoran Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, No.2 Zheshan West Road, Jinghu, Wuhu, 241000, Anhui, China
| | - Yong Xia
- Department of Education Affairs, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Guangliang Mei
- Department of Party Affairs, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Zhengwu Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, No.2 Zheshan West Road, Jinghu, Wuhu, 241000, Anhui, China.
| |
Collapse
|
5
|
Meng W, Lu X, Wang G, Xiao Q, Gao J. ZNF692 drives malignant development of hepatocellular carcinoma cells by promoting ALDOA-dependent glycolysis. Funct Integr Genomics 2024; 24:53. [PMID: 38453820 PMCID: PMC10920453 DOI: 10.1007/s10142-024-01326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/30/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the malignancies with the worst prognosis worldwide, in the occurrence and development of which glycolysis plays a central role. This study uncovered a mechanism by which ZNF692 regulates ALDOA-dependent glycolysis in HCC cells. RT-qPCR and western blotting were used to detect the expression of ZNF692, KAT5, and ALDOA in HCC cell lines and a normal liver cell line. The influences of transfection-induced alterations in the expression of ZNF692, KAT5, and ALDOA on the functions of HepG2 cells were detected by performing MTT, flow cytometry, Transwell, cell scratch, and colony formation assays, and the levels of glucose and lactate were determined using assay kits. ChIP and luciferase reporter assays were conducted to validate the binding of ZNF692 to the KAT5 promoter, and co-IP assays to detect the interaction between KAT5 and ALDOA and the acetylation of ALDOA. ZNF692, KAT5, and ALDOA were highly expressed in human HCC samples and cell lines, and their expression levels were positively correlated in HCC. ZNF692, ALDOA, or KAT5 knockdown inhibited glycolysis, proliferation, invasion, and migration and promoted apoptosis in HepG2 cells. ZNF692 bound to the KAT5 promoter and promoted its activity. ALDOA acetylation levels were elevated in HCC cell lines. KAT5 bound to ALDOA and catalyzed ALDOA acetylation. ALDOA or KAT5 overexpression in the same time of ZNF692 knockdown, compared to ZNF692 knockdown only, stimulated glycolysis, proliferation, invasion, and migration and reduced apoptosis in HepG2 cells. ZNF692 promotes the acetylation modification and protein expression of ALDOA by catalyzing KAT5 transcription, thereby accelerating glycolysis to drive HCC cell development.
Collapse
Affiliation(s)
- Weiwei Meng
- Department of Laboratory, Shenzhen Baoan Shiyan People's Hospital, No. 11, Jixiang Road, Shiyan Street, Baoan District, Shenzhen, Guangdong, 518108, P.R. China
| | - Xiaojuan Lu
- Department of Laboratory, Shenzhen Baoan Shiyan People's Hospital, No. 11, Jixiang Road, Shiyan Street, Baoan District, Shenzhen, Guangdong, 518108, P.R. China
| | - Guanglei Wang
- Department of Laboratory, Shenzhen Baoan Shiyan People's Hospital, No. 11, Jixiang Road, Shiyan Street, Baoan District, Shenzhen, Guangdong, 518108, P.R. China
| | - Qingyu Xiao
- Department of Blood Transfusion, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, Guangdong, 518108, P.R. China
| | - Jing Gao
- Department of Laboratory, Shenzhen Baoan Shiyan People's Hospital, No. 11, Jixiang Road, Shiyan Street, Baoan District, Shenzhen, Guangdong, 518108, P.R. China.
| |
Collapse
|
6
|
Wang Q, Liu J, Chen Z, Zheng J, Wang Y, Dong J. Targeting metabolic reprogramming in hepatocellular carcinoma to overcome therapeutic resistance: A comprehensive review. Biomed Pharmacother 2024; 170:116021. [PMID: 38128187 DOI: 10.1016/j.biopha.2023.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a heavy burden on human health with high morbidity and mortality rates. Systematic therapy is crucial for advanced and mid-term HCC, but faces a significant challenge from therapeutic resistance, weakening drug effectiveness. Metabolic reprogramming has gained attention as a key contributor to therapeutic resistance. Cells change their metabolism to meet energy demands, adapt to growth needs, or resist environmental pressures. Understanding key enzyme expression patterns and metabolic pathway interactions is vital to comprehend HCC occurrence, development, and treatment resistance. Exploring metabolic enzyme reprogramming and pathways is essential to identify breakthrough points for HCC treatment. Targeting metabolic enzymes with inhibitors is key to addressing these points. Inhibitors, combined with systemic therapeutic drugs, can alleviate resistance, prolong overall survival for advanced HCC, and offer mid-term HCC patients a chance for radical resection. Advances in metabolic research methods, from genomics to metabolomics and cells to organoids, help build the HCC metabolic reprogramming network. Recent progress in biomaterials and nanotechnology impacts drug targeting and effectiveness, providing new solutions for systemic therapeutic drug resistance. This review focuses on metabolic enzyme changes, pathway interactions, enzyme inhibitors, research methods, and drug delivery targeting metabolic reprogramming, offering valuable references for metabolic approaches to HCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Ziye Chen
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Jingjing Zheng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Kan L, Yang M, Zhang H. Long noncoding RNA PSMA3-AS1 functions as a competing endogenous RNA to promote gastric cancer progression by regulating the miR-329-3p/ALDOA axis. Biol Direct 2023; 18:36. [PMID: 37403106 PMCID: PMC10318671 DOI: 10.1186/s13062-023-00392-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023] Open
Abstract
LncRNA PSMA3-AS1 functions as an oncogene in several cancers, including ovarian cancer, lung cancer, and colorectal cancer. However, its role in gastric cancer (GC) progression remains unclear. In this study, the levels of PSMA3-AS1, miR-329-3p, and aldolase A (ALDOA) in 20 paired human GC tissues and adjacent nontumorous tissues were measured by real-time PCR. GC cells were transfected with recombinant plasmid carrying full-length PSMA3-AS1 or shRNA targeting PSMA3-AS1. The stable transfectants were selected by G418. Then, the effects of PSMA3-AS1 knockdown or overexpression on GC progression in vitro and in vivo were evaluated. The results showed that PSMA3-AS1 was highly expressed in human GC tissues. Stable knockdown of PSMA3-AS1 significantly restrained proliferation/migration/invasion, enhanced cell apoptosis, and induced oxidative stress in vitro. Tumor growth and matrix metalloproteinase expression in tumor tissues were markedly inhibited, while oxidative stress was enhanced in nude mice after stable PSMA3-AS1 knockdown. Additionally, PSMA3-AS1 negatively regulated miR-329-3p while positively regulated ALDOA expression. MiR-329-3p directly targeted ALDOA-3'UTR. Interestingly, miR-329-3p knockdown or ALDOA overexpression partially attenuated the tumor-suppressive effects of PSMA3-AS1 knockdown. Conversely, PSMA3-AS1 overexpression exhibited the opposite effects. PSMA3-AS1 promoted GC progression by regulating the miR-329-3p/ALDOA axis. PSMA3-AS1 might serve as a promising and effective target for GC treatment.
Collapse
Affiliation(s)
- Liang Kan
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Meiqi Yang
- Department of Endoscopy, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, China
| | - Huijing Zhang
- Department of Endoscopy, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, China.
| |
Collapse
|
8
|
Liang X, Wang Z, Dai Z, Zhang H, Zhang J, Luo P, Liu Z, Liu Z, Yang K, Cheng Q, Zhang M. Glioblastoma glycolytic signature predicts unfavorable prognosis, immunological heterogeneity, and ENO1 promotes microglia M2 polarization and cancer cell malignancy. Cancer Gene Ther 2023; 30:481-496. [PMID: 36494582 PMCID: PMC10014583 DOI: 10.1038/s41417-022-00569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 11/01/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022]
Abstract
Glioblastomas are the most malignant brain tumors, whose progress was promoted by aberrate aerobic glycolysis. The immune environment was highly engaged in glioblastoma formation, while its interaction with aerobic glycolysis remained unclear. Herein, we build a 7-gene Glycolytic Score (GS) by Elastic Net in the training set and two independent validating sets. The GS predicted malignant features and poor survival with good performances. Immune functional analyses and Cibersort calculation identified depressed T cells, B cells, natural killer cells immunity, and high immunosuppressive cell infiltration in the high-GS group. Also, high expressions of the immune-escape genes were discovered. Subsequently, the single-cell analyses validated the glycolysis-related immunosuppression. The functional results manifested the high-GS neoplastic cells' association with T cells, NK cells, and macrophage function regulation. The intercellular cross-talk showed strong associations between high-GS neoplastic cells and M2 macrophages/microglia in several immunological pathways. We finally confirmed that ENO1, the key gene of the GS, promoted M2 microglia polarization and glioblastoma cell malignant behaviors via immunofluorescence, clone formation, CCK8, and transwell rescue experiments. These results indicated the interactions between cancerous glycolysis and immunosuppression and glycolysis' role in promoting glioblastoma progression. Conclusively, we built a robust model and discovered strong interaction between GS and immune, shedding light on prognosis management improvement and therapeutic strategies development for glioblastoma patients.
Collapse
Affiliation(s)
- Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, 410008, P. R. China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, 410008, P. R. China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, 410008, P. R. China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, 410008, P. R. China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, P. R. China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, 410008, P. R. China
| | - Kui Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, 410008, P. R. China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China. .,National Clinical Research Center for Geriatric Disorders, Changsha, 410008, P. R. China.
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China. .,National Clinical Research Center for Geriatric Disorders, Changsha, 410008, P. R. China.
| |
Collapse
|
9
|
Lin J, Wang S, Lan W, Ji M, Li M. Pien Tze Huang regulates phosphorylation of metabolic enzymes in mice of hepatocellular carcinoma. Sci Rep 2023; 13:1897. [PMID: 36732657 PMCID: PMC9894829 DOI: 10.1038/s41598-023-29116-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
The Chinese medicine formula Pien Tze Huang (PZH) has been applied to the treatment of various diseases, the reported anti-tumor mechanisms included regulation of inflammation-associated cytokine secretion and cancer growth pathways. However, the potential influence of PZH on tumor metabolism remains unclear. This study aimed to investigate the global effect of PZH on hepatocellular carcinoma (HCC) compared with the anti-tumor agent sorafenib based on tandem mass tag (TMT) label proteomic and phosphoproteomic analysis in addition to parallel reaction monitoring (PRM) verification. It was observed that PZH could inhibit tumor weight by 59-69% in different concentrations. TMT proteomic studies indicated that fructose/mannose metabolism and glucagon signaling pathway in PZH group, and arachidonic acid metabolism and PPAR signaling pathway in sorafenib group, were significantly enriched, while glycolysis/gluconeogenesis pathway was found to be enriched remarkably both in PZH and sorafenib groups in TMT phosphoproteomic study. PRM verification further indicated that both PZH and sorafenib could down-regulate phosphorylations of the glycolytic enzymes phosphofructokinases 1, fructose-bisphosphate Aldolase A, phosphoglycerate mutase 2 and lactate dehydrogenase A chain, while phosphorylations of long chain fatty acid CoA ligase in fatty acid activation and acetyl-coenzyme A synthetase in glycolysis were significantly inhibited by PZH and sorafenib, respectively. This study proposed that PZH shared a similar anti-tumor mechanism of metabolic regulation to sorafenib, but differed in the regulation of some metabolic nodes. This is the first time to uncover the relationship between the anti-tumor effect of PZH and metabolic related enzymes, which distinguished from the known mechanisms of PZH. These data provided the potential molecular basis for PZH acting as a therapeutic drug for HCC, and offered cues of manipulation on Warburg effect under the treatment of PZH.
Collapse
Affiliation(s)
- Jinxia Lin
- Zhangzhou Pientzehuang Pharmaceutical Co., Ltd., Huporoad, Zhangzhou, 363000, People's Republic of China. .,Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou, 363000, Fujian, People's Republic of China.
| | - Shicong Wang
- Zhangzhou Pientzehuang Pharmaceutical Co., Ltd., Huporoad, Zhangzhou, 363000, People's Republic of China.,Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou, 363000, Fujian, People's Republic of China
| | - Wenliang Lan
- Zhangzhou Pientzehuang Pharmaceutical Co., Ltd., Huporoad, Zhangzhou, 363000, People's Republic of China.,Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou, 363000, Fujian, People's Republic of China
| | - Ming Ji
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Mei Li
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| |
Collapse
|
10
|
Liu J, Yu F, Liu Z, Wang X, Li J. A Robust Prognostic Signature of Tumor Microenvironment in Colorectal Cancer. Cancer Biother Radiopharm 2022; 37:963-975. [PMID: 34551265 DOI: 10.1089/cbr.2021.0171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Colorectal cancer (CRC) has been a major public health problem. Tumor microenvironment (TME) greatly contributes to the heterogeneity of CRC and is crucial for the regulation of CRC progression. The authors' study aimed to develop a robust prognostic signature for CRC patients based on TME-related genes. Materials and Methods: Gene expression data and clinicopathologic information of CRC patients were collected from Gene Expression Omnibus and The Cancer Genome Atlas databases. TME-related genes with prognostic value were identified by Cox regression and bootstrap method. The authors used the prognostic genes to construct a robust prognostic model using the least absolute shrinkage and selection operator (LASSO) regression method. The immune and stromal cell abundance of CRC samples were estimated by a microenvironment cell populations-counter method. Results: Based on a training set that comprised 893 CRC samples and 4775 TME-related genes, they established a prognostic model consisting of 25 TME-related genes. With specific risk score formulae, the prognostic model divided CRC patients into high-risk and low-risk subgroups with significantly different survival, which were further confirmed in validation cohorts consisting of other 473 CRC cases or subpopulation of specific stages. The result of time-dependent receiver operating characteristic analysis demonstrated strong predictive accuracy of the prognostic model both in training and validation cohorts. Multivariate Cox regression analysis showed that the 25-gene signature was an independent prognostic factor for overall survival, which was validated through clinical subgroups analysis. Further analysis revealed that CRC samples of high-risk group was abundant of stromal-relevant processes and had a significantly higher proportion of fibroblasts and endothelial cells infiltration. Conclusion: The authors established a robust prognostic signature of 25 TME-related genes which may be an effective tool for prognostic prediction and CRC patient stratification to assist in making treatment decisions.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Fei Yu
- Emergency Department, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, P.R. China
| | - Zhao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiaojing Wang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jianming Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
11
|
Tian W, Zhou J, Chen M, Qiu L, Li Y, Zhang W, Guo R, Lei N, Chang L. Bioinformatics analysis of the role of aldolase A in tumor prognosis and immunity. Sci Rep 2022; 12:11632. [PMID: 35804089 PMCID: PMC9270404 DOI: 10.1038/s41598-022-15866-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/30/2022] [Indexed: 12/26/2022] Open
Abstract
Aldolase A (ALDOA) is an enzyme that plays an important role in glycolysis and gluconeogenesis, which is closely related to tumor metabolism. In this study, the overall roles of ALDOA in pan-cancer have been investigated from several aspects using databases and online analysis tools. Using the ONCOMINE database, the expression of ALDOA in various cancers was analyzed. The prognostic role of ALDOA was explored by PrognoScan, GEPIA, and Kaplan–Meier Plotter. The immune-related role of ALDOA and its downstream substrates was decided by TIMER, cBioPortal and String. Our data indicate that ALDOA expression level in lung adenocarcinoma, liver hepatocellular carcinoma, head and neck squamous cell carcinoma is higher than that in normal tissues. Increased expression of ALDOA often indicates a poor prognosis for patients. The correlation between ALDOA and immune infiltration among different tumors is very different. We also investigate the relationship between ALDOA and its upstream/downstream proteins. Our results showed that ALDOA could be used as a biomarker for the tumor prognosis, and could be correlated with the infiltrating levels of macrophages, CD4+ T cells and CD8+ T cells.
Collapse
Affiliation(s)
- Wanjia Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Junying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Mengyu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Luojie Qiu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yike Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Weiwei Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Ruixia Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Lei Chang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
12
|
Li CH, Chan MH, Chang YC. The role of fructose 1,6-bisphosphate-mediated glycolysis/gluconeogenesis genes in cancer prognosis. Aging (Albany NY) 2022; 14:3233-3258. [PMID: 35404841 PMCID: PMC9037270 DOI: 10.18632/aging.204010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/25/2022] [Indexed: 11/30/2022]
Abstract
Metabolic reprogramming and elevated glycolysis levels are associated with tumor progression. However, despite cancer cells selectively inhibiting or expressing certain metabolic enzymes, it is unclear whether differences in gene profiles influence patient outcomes. Therefore, identifying the differences in enzyme action may facilitate discovery of gene ontology variations to characterize tumors. Fructose-1,6-bisphosphate (F-1,6-BP) is an important intermediate in glucose metabolism, particularly in cancer. Gluconeogenesis and glycolysis require fructose-1,6-bisphosphonates 1 (FBP1) and fructose-bisphosphate aldolase A (ALDOA), which participate in F-1,6-BP conversion. Increased expression of ALDOA and decreased expression of FBP1 are associated with the progression of various forms of cancer in humans. However, the exact molecular mechanism by which ALDOA and FBP1 are involved in the switching of F-1,6-BP is not yet known. As a result of their pancancer pattern, the relationship between ALDOA and FBP1 in patient prognosis is reversed, particularly in lung adenocarcinoma (LUAD) and liver hepatocellular carcinoma (LIHC). Using The Cancer Genome Atlas (TCGA), we observed that FBP1 expression was low in patients with LUAD and LIHC tumors, which was distinct from ALDOA. A similar trend was observed in the analysis of Cancer Cell Line Encyclopedia (CCLE) datasets. By dissecting downstream networks and possible upstream regulators, using ALDOA and FBP1 as the core, we identified common signatures and interaction events regulated by ALDOA and FBP1. Notably, the identified effectors dominated by ALDOA or FBP1 were distributed in opposite patterns and can be considered independent prognostic indicators for patients with LUAD and LIHC. Therefore, uncovering the effectors between ALDOA and FBP1 will lead to novel therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
13
|
Lu G, Shi W, Zhang Y. Prognostic Implications and Immune Infiltration Analysis of ALDOA in Lung Adenocarcinoma. Front Genet 2021; 12:721021. [PMID: 34925439 PMCID: PMC8678114 DOI: 10.3389/fgene.2021.721021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/28/2021] [Indexed: 12/31/2022] Open
Abstract
Background: aldolase A (ALDOA) has been reported to be involved in kinds of cancers. However, the role of ALDOA in lung adenocarcinoma has not been fully elucidated. In this study, we explored the prognostic value and correlation with immune infiltration of ALDOA in lung adenocarcinoma. Methods: The expression of ALDOA was analyzed with the Oncomine database, the Cancer Genome Atlas (TCGA), and the Human Protein Atlas (HPA). Mann-Whitney U test was performed to examine the relationship between clinicopathological characteristics and ALDOA expression. The receiver operating characteristic (ROC) curve and Kaplan-Meier method were conducted to describe the diagnostic and prognostic importance of ALDOA. The Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape were used to construct PPI networks and identify hub genes. Functional annotations and immune infiltration were conducted. Results: The mRNA and protein expression of ALDOA were higher in lung adenocarcinoma than those in normal tissues. The overexpression of ALDOA was significantly correlated with the high T stage, N stage, M stage, and TNM stage. Kaplan-Meier showed that high expression of ALDOA was correlated with short overall survival (38.9 vs 72.5 months, p < 0.001). Multivariate analysis revealed that ALDOA (HR 1.435, 95%CI, 1.013-2.032, p = 0.042) was an independent poor prognostic factor for overall survival. Functional enrichment analysis showed that positively co-expressed genes of ALDOA were involved in the biological progress of mitochondrial translation, mitochondrial translational elongation, and negative regulation of cell cycle progression. KEGG pathway analysis showed enrichment function in carbon metabolism, the HIF-1 signaling pathway, and glycolysis/gluconeogenesis. The "SCNA" module analysis indicated that the copy number alterations of ALDOA were correlated with three immune cell infiltration levels, including B cells, CD8+ T cells, and CD4+ T cells. The "Gene" module analysis indicated that ALDOA gene expression was negatively correlated with infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, and macrophages. Conclusion: Our study suggested that upregulated ALDOA was significantly correlated with tumor progression, poor survival, and immune infiltrations in lung adenocarcinoma. These results suggest that ALDOA is a potential prognostic biomarker and therapeutic target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Guojun Lu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Wen Shi
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yu Zhang
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Incomptine A Induces Apoptosis, ROS Production and a Differential Protein Expression on Non-Hodgkin's Lymphoma Cells. Int J Mol Sci 2021; 22:ijms221910516. [PMID: 34638856 PMCID: PMC8508949 DOI: 10.3390/ijms221910516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 01/24/2023] Open
Abstract
Sesquiterpene lactones are of pharmaceutical interest due their cytotoxic and antitumor properties, which are commonly found within plants of several genera from the Asteraceae family such as the Decachaeta genus. From Decachaeta incompta four heliangolide, namely incomptines A-D have been isolated. In this study, cytotoxic properties of incomptine A (IA) were evaluated on four lymphoma cancer cell lines: U-937, Farage, SU-DHL-2, and REC-1. The type of cell death induced by IA and its effects on U-937 cells were analyzed based on its capability to induce apoptosis and produce reactive oxygen species (ROS) through flow cytometry with 4′,6-diamidino-2-phenylindole staining, dual annexin V/DAPI staining, and dichlorofluorescein 2′,7′-diacetate, respectively. A differential protein expression analysis study was carried out by isobaric tags for relative and absolute quantitation (iTRAQ) through UPLC-MS/MS. Results reveal that IA exhibited cytotoxic activity against the cell line U-937 (CC50 of 0.12 ± 0.02 μM) and the incubation of these cells in presence of IA significantly increased apoptotic population and intracellular ROS levels. In the proteomic approach 1548 proteins were differentially expressed, out of which 587 exhibited a fold-change ≥ 1.5 and 961 a fold-change ≤ 0.67. Most of these differentially regulated proteins are involved in apoptosis, oxidative stress, glycolytic metabolism, or cytoskeleton structuration.
Collapse
|