1
|
Mostafa SM, Wang L, Tian B, Graber J, Moore C. Transcriptomic analysis reveals regulation of adipogenesis via long non-coding RNA, alternative splicing, and alternative polyadenylation. Sci Rep 2024; 14:16964. [PMID: 39043790 PMCID: PMC11266407 DOI: 10.1038/s41598-024-67648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Obesity is characterized by dysregulated adipogenesis that leads to increased number and/or size of adipocytes. Understanding the molecular mechanisms governing adipogenesis is therefore key to designing therapeutic interventions against obesity. In our study, we analyzed 3'-end sequencing data that we generated from human preadipocytes and adipocytes, as well as previously published RNA-seq datasets, to elucidate mechanisms of regulation via long non-coding RNA (lncRNA), alternative splicing (AS) and alternative polyadenylation (APA). We discovered lncRNAs that have not been previously characterized but may be key regulators of white adipogenesis. We also detected 100 AS events and, using motif enrichment analysis, identified RNA binding proteins (RBPs) that could mediate exon skipping-the most prevalent AS event. In addition, we show that usage of alternative poly(A) sites in introns or 3'-UTRs of key adipogenesis genes leads to isoform diversity, which can have significant biological consequences on differentiation efficiency. We also identified RBPs that may modulate APA and defined how 3'-UTR APA can regulate gene expression through gain or loss of specific microRNA binding sites. Taken together, our bioinformatics-based analysis reveals potential therapeutic avenues for obesity through manipulation of lncRNA levels and the profile of mRNA isoforms via alternative splicing and polyadenylation.
Collapse
Affiliation(s)
- Salwa Mohd Mostafa
- Graduate School of Biomedical Sciences and Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Luyang Wang
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Bin Tian
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Joel Graber
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, 04609, USA
| | - Claire Moore
- Graduate School of Biomedical Sciences and Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
2
|
Yu K, Tian Q, Feng S, Zhang Y, Cheng Z, Li M, Zhu H, He J, Li M, Xiong X. Integration analysis of cell division cycle-associated family genes revealed potential mechanisms of gliomagenesis and constructed an artificial intelligence-driven prognostic signature. Cell Signal 2024; 119:111168. [PMID: 38599441 DOI: 10.1016/j.cellsig.2024.111168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Cell division cycle-associated (CDCA) gene family members are essential cell proliferation regulators and play critical roles in various cancers. However, the function of the CDCA family genes in gliomas remains unclear. This study aims to elucidate the role of CDCA family members in gliomas using in vitro and in vivo experiments and bioinformatic analyses. We included eight glioma cohorts in this study. An unsupervised clustering algorithm was used to identify novel CDCA gene family clusters. Then, we utilized multi-omics data to elucidate the prognostic disparities, biological functionalities, genomic alterations, and immune microenvironment among glioma patients. Subsequently, the scRNA-seq analysis and spatial transcriptomic sequencing analysis were carried out to explore the expression distribution of CDCA2 in glioma samples. In vivo and in vitro experiments were used to investigate the effects of CDCA2 on the viability, migration, and invasion of glioma cells. Finally, based on ten machine-learning algorithms, we constructed an artificial intelligence-driven CDCA gene family signature called the machine learning-based CDCA gene family score (MLCS). Our results suggested that patients with the higher expression levels of CDCA family genes had a worse prognosis, more activated RAS signaling pathways, and more activated immunosuppressive microenvironments. CDCA2 knockdown inhibited the proliferation, migration, and invasion of glioma cells. In addition, the MLCS had robust and favorable prognostic predictive ability and could predict the response to immunotherapy and chemotherapy drug sensitivity.
Collapse
Affiliation(s)
- Kai Yu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Shi Feng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Ziqi Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Mingyang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jianying He
- Department of Orthopedics, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
3
|
A calpain-6/YAP axis in sarcoma stem cells that drives the outgrowth of tumors and metastases. Cell Death Dis 2022; 13:819. [PMID: 36153320 PMCID: PMC9509353 DOI: 10.1038/s41419-022-05244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 01/23/2023]
Abstract
Sarcomas include cancer stem cells, but how these cells contribute to local and metastatic relapse is largely unknown. We previously showed the pro-tumor functions of calpain-6 in sarcoma stem cells. Here, we use an osteosarcoma cell model, osteosarcoma tissues and transcriptomic data from human tumors to study gene patterns associated with calpain-6 expression or suppression. Calpain-6 modulates the expression of Hippo pathway genes and stabilizes the hippo effector YAP. It also modulates the vesicular trafficking of β-catenin degradation complexes. Calpain-6 expression is associated with genes of the G2M phase of the cell cycle, supports G2M-related YAP activities and up-regulated genes controlling mitosis in sarcoma stem cells and tissues. In mouse models of bone sarcoma, most tumor cells expressed calpain-6 during the early steps of tumor out-growth. YAP inhibition prevented the neoformation of primary tumors and metastases but had no effect on already developed tumors. It could even accelerate lung metastasis associated with large bone tumors by affecting tumor-associated inflammation in the host tissues. Our results highlight a specific mechanism involving YAP transcriptional activity in cancer stem cells that is crucial during the early steps of tumor and metastasis outgrowth and that could be targeted to prevent sarcoma relapse.
Collapse
|
4
|
Qian W, Yang L, Ni Y, Yin F, Qin L, Yang Y. LncRNA LINC01857 reduces metastasis and angiogenesis in breast cancer cells via regulating miR-2052/CENPQ axis. Open Med (Wars) 2022; 17:1357-1367. [PMID: 36046633 PMCID: PMC9372711 DOI: 10.1515/med-2022-0525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/29/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Long non-coding RNAs have been confirmed closely related to the metastasis and angiogenesis of breast cancer (BC). LINC01857 can promote the growth and metastasis of BC cells. The present work focused on exploring the role of LINC01857 in BC metastasis and angiogenesis and investigating the possible mechanisms. The results showed that LINC01857 and CENPQ were highly expressed in BC tissues and cells, while miR-2052 was contrarily expressed. In vitro study showed that low expression of linc01857 could inhibit the migration ability and vascularization of BC cells, and mir-2052 inhibitor partially restored the effect of si-LINC01857 on the migration ability and vascularization of BC cells. Likewise, inhibition of CENPQ can partially rescue the effects of miR-2052 inhibitor on the migration ability and vascularization of BC cells. In vivo studies showed that down-regulation of LINC01857 notably suppressed tumor growth and angiogenesis in nude mice. The miR-2052 inhibitor partially restored the effects of si-LINC01857. CENPQ suppression partially rescued the effects of the miR-2052 inhibitor. To conclude, LINC01857/miR-2052/CENPQ is the potential novel target for BC treatment.
Collapse
Affiliation(s)
- Weiwei Qian
- Department of Breast Surgery, Nantong Third People’s Hospital, Nantong University , Nantong , Jiangsu Province , China
| | - Linlin Yang
- Department of Oncology, Sheyang People’s Hospital , Yancheng City , Jiangsu Province 224300 , China
| | - Yi Ni
- Department of Breast Surgery, Nantong Third People’s Hospital, Nantong University , Nantong , Jiangsu Province , China
| | - Fei Yin
- Department of Breast Surgery, Nantong Third People’s Hospital, Nantong University , Nantong , Jiangsu Province , China
| | - Lili Qin
- Department of Endoscopic Center, Affiliated Hospital of Nantong University , Nantong City , Jiangsu Province 226001 , China
| | - Yang Yang
- Department of Trauma Center, Affiliated Hospital of Nantong University , No. 20 Xisi Road, Chongchuan District , Nantong City , Jiangsu Province 226001 , China
| |
Collapse
|