1
|
Lan S, Liu S, Wang K, Chen W, Zheng D, Zhuang Y, Zhang S. tRNA-derived RNA fragment, tRF-18-8R6546D2, promotes pancreatic adenocarcinoma progression by directly targeting ASCL2. Gene 2024; 927:148739. [PMID: 38955307 DOI: 10.1016/j.gene.2024.148739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/11/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Pancreatic adenocarcinoma (PAAD) is a life-threatening cancer. Exploring new diagnosis and treatment targets helps improve its prognosis. tRNA-derived small non-coding RNAs (tsRNAs) are a novel type of gene expression regulators and their dysregulation is closely related to many human cancers. Yet the expression and functions of tsRNAs in PAAD are not well understood. Our study used RNA sequencing to identify tsRNA expression profiles in PAAD cells cultured in no or high glucose media and found tRF-18-8R6546D2 was an uncharacterized tsRNA, which has significantly high expression in PAAD cells and tissues. Clinically, tRF-18-8R6546D2 is linked to poor prognosis in PAAD patients and can be used to distinguish them from healthy populations. Functionally, in vitro and vivo, tRF-18-8R6546D2 over-expression promoted PAAD cell proliferation, migration and invasion, inhibited apoptosis, whereas tRF-18-8R6546D2 knock-down showed opposite effects. Mechanistically, tRF-18-8R6546D2 promoted PAAD malignancy partly by directly silencing ASCL2 and further regulating its downstream genes such as MYC and CASP3. These findings show that tRF-18-8R6546D2 is a novel oncogenic factor and can be a promising diagnostic or prognostic biomarker and therapeutic target for PAAD.
Collapse
Affiliation(s)
- Sihua Lan
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Epigenetics and Gene Regulation of Malignant Tumors, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510000, China
| | - Sixue Liu
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Ke Wang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Wenying Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Dandan Zheng
- Doctor of excellence program, First Affiliated Hospital of Jilin University, Changchun 130000, China
| | - Yanyan Zhuang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Epigenetics and Gene Regulation of Malignant Tumors, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510000, China.
| | - Shineng Zhang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Epigenetics and Gene Regulation of Malignant Tumors, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510000, China.
| |
Collapse
|
2
|
Bhattacharjya D, Sivalingam N. Mechanism of 5-fluorouracil induced resistance and role of piperine and curcumin as chemo-sensitizers in colon cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8445-8475. [PMID: 38878089 DOI: 10.1007/s00210-024-03189-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 10/30/2024]
Abstract
Among cancer-related deaths worldwide, colorectal cancer ranks second, accounting for 1.2% of deaths in those under 50 years and 0.6% of deaths in those between 50 and 54 years. The anticancer drug 5-fluorouracil is widely used to treat colorectal cancer. Due to a better understanding of the drug's mechanism of action, its anticancer activity has been increased through a variety of therapeutic alternatives. Clinical use of 5-FU has been severely restricted due to drug resistance. The chemoresistance mechanism of 5-FU is challenging to overcome because of the existence of several drug efflux transporters, DNA repair enzymes, signaling cascades, classical cellular processes, cancer stem cells, metastasis, and angiogenesis. Curcumin, a potent phytocompound derived from Curcuma longa, functions as a nuclear factor (NF)-κB inhibitor and sensitizer to numerous chemotherapeutic drugs. Piperine, an alkaloid found in Piper longum, inhibits cancer cell growth, causing cell cycle arrest and apoptosis. This review explores the mechanism of 5-FU-induced chemoresistance in colon cancer cells and the role of curcumin and piperine in enhancing the sensitivity of 5-FU-based chemotherapy. CLINICAL TRIAL REGISTRATION: Not applicable.
Collapse
Affiliation(s)
- Dorothy Bhattacharjya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
3
|
Zhang Z, Zhao Y, Wang Y, Zhao Y, Guo J. Autophagy/ferroptosis in colorectal cancer: Carcinogenic view and nanoparticle-mediated cell death regulation. ENVIRONMENTAL RESEARCH 2023; 238:117006. [PMID: 37669735 DOI: 10.1016/j.envres.2023.117006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
The cell death mechanisms have a long history of being evaluated in diseases and pathological events. The ability of triggering cell death is considered to be a promising strategy in cancer therapy, but some mechanisms have dual functions in cancer, requiring more elucidation of underlying factors. Colorectal cancer (CRC) is a disease and malignant condition of colon and rectal that causes high mortality and morbidity. The autophagy targeting in CRC is therapeutic importance and this cell death mechanism can interact with apoptosis in inhibiting or increasing apoptosis. Autophagy has interaction with ferroptosis as another cell death pathway in CRC and can accelerate ferroptosis in suppressing growth and invasion. The dysregulation of autophagy affects the drug resistance in CRC and pro-survival autophagy can induce drug resistance. Therefore, inhibition of protective autophagy enhances chemosensitivity in CRC cells. Moreover, autophagy displays interaction with metastasis and EMT as a potent regulator of invasion in CRC cells. The same is true for ferroptosis, but the difference is that function of ferroptosis is determined and it can reduce viability. The lack of ferroptosis can cause development of chemoresistance in CRC cells and this cell death mechanism is regulated by various pathways and mechanisms that autophagy is among them. Therefore, current review paper provides a state-of-art analysis of autophagy, ferroptosis and their crosstalk in CRC. The nanoparticle-mediated regulation of cell death mechanisms in CRC causes changes in progression. The stimulation of ferroptosis and control of autophagy (induction or inhibition) by nanoparticles can impair CRC progression. The engineering part of nanoparticle synthesis to control autophagy and ferroptosis in CRC still requires more attention.
Collapse
Affiliation(s)
- Zhibin Zhang
- Chengde Medical College, College of Traditional Chinese Medicine, Chengde, Hebei, 067000, China.
| | - Yintao Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yuman Wang
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yutang Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Jianen Guo
- Chengde Medical College, Chengde, Hebei, 067000, China
| |
Collapse
|
4
|
Orlandi G, Roncucci L, Carnevale G, Sena P. Different Roles of Apoptosis and Autophagy in the Development of Human Colorectal Cancer. Int J Mol Sci 2023; 24:10201. [PMID: 37373349 DOI: 10.3390/ijms241210201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer (CRC) remains a major life-threatening malignancy, despite numerous therapeutic and screening attempts. Apoptosis and autophagy are two processes that share common signaling pathways, are linked by functional relationships and have similar protein components. During the development of cancer, the two processes can trigger simultaneously in the same cell, causing, in some cases, an inhibition of autophagy by apoptosis or apoptosis by autophagy. Malignant cells that have accumulated genetic alterations can take advantage of any alterations in the apoptotic process and as a result, progress easily in the cancerous transformation. Autophagy often plays a suppressive role during the initial stages of carcinogenicity, while in the later stages of cancer development it can play a promoting role. It is extremely important to determine the regulation of this duality of autophagy in the development of CRC and to identify the molecules involved, as well as the signals and the mechanisms behind it. All the reported experimental results indicate that, while the antagonistic effects of autophagy and apoptosis occur in an adverse environment characterized by deprivation of oxygen and nutrients, leading to the formation and development of CRC, the effects of promotion and collaboration usually involve an auxiliary role of autophagy compared to apoptosis. In this review, we elucidate the different roles of autophagy and apoptosis in human CRC development.
Collapse
Affiliation(s)
- Giulia Orlandi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo, 71-41124 Modena, Italy
| | - Luca Roncucci
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo, 71-41124 Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo, 71-41124 Modena, Italy
| | - Paola Sena
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo, 71-41124 Modena, Italy
| |
Collapse
|
5
|
Jin C, Wang T, Yang Y, Zhou P, Li J, Wu W, Lv X, Ma G, Wang A. Rational targeting of autophagy in colorectal cancer therapy: From molecular interactions to pharmacological compounds. ENVIRONMENTAL RESEARCH 2023; 227:115721. [PMID: 36965788 DOI: 10.1016/j.envres.2023.115721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
The abnormal progression of tumors has been a problem for treatment of cancer and therapeutic should be directed towards targeting main mechanisms involved in tumorigenesis in tumors. The genomic mutations can result in changes in biological mechanisms in human cancers. Colorectal cancer is one of the most malignant tumors of gastrointestinal tract and its treatment has been faced some difficulties due to development of resistance in tumor cells and also, their malignant behavior. Hence, new therapeutic modalities for colorectal cancer are being investigated. Autophagy is a "self-digestion" mechanism that is responsible for homeostasis preserving in cells and its aberrant activation/inhibition can lead to tumorigenesis. The current review focuses on the role of autophagy mechanism in colorectal cancer. Autophagy may be associated with increase/decrease in progression of colorectal cancer due to mutual function of this molecular mechanism. Pro-survival autophagy inhibits apoptosis to increase proliferation and survival rate of colorectal tumor cells and it is also involved in cancer metastasis maybe due to EMT induction. In contrast, pro-death autophagy decreases growth and invasion of colorectal tumor cells. The status of autophagy (upregulation and down-regulation) is a determining factor for therapy response in colorectal tumor cells. Therefore, targeting autophagy can increase sensitivity of colorectal tumor cells to chemotherapy and radiotherapy. Interestingly, nanoparticles can be employed for targeting autophagy in cancer therapy and they can both induce/suppress autophagy in tumor cells. Furthermore, autophagy modulators can be embedded in nanostructures in improving tumor suppression and providing cancer immunotherapy.
Collapse
Affiliation(s)
- Canhui Jin
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Tianbao Wang
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Yanhui Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Pin Zhou
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Juncheng Li
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Wenhao Wu
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Xin Lv
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Guoqing Ma
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Aihong Wang
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China.
| |
Collapse
|
6
|
Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q, Xu H. Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. Mol Cancer 2022; 21:144. [PMID: 35836256 PMCID: PMC9281132 DOI: 10.1186/s12943-022-01616-7] [Citation(s) in RCA: 327] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 02/08/2023] Open
Abstract
Background The Wnt signaling pathway is a complex network of protein interactions that functions most commonly in embryonic development and cancer, but is also involved in normal physiological processes in adults. The canonical Wnt signaling pathway regulates cell pluripotency and determines the differentiation fate of cells during development. The canonical Wnt signaling pathway (also known as the Wnt/β-catenin signaling pathway) is a recognized driver of colon cancer and one of the most representative signaling pathways. As a functional effector molecule of Wnt signaling, the modification and degradation of β-catenin are key events in the Wnt signaling pathway and the development and progression of colon cancer. Therefore, the Wnt signaling pathway plays an important role in the pathogenesis of diseases, especially the pathogenesis of colorectal cancer (CRC). Objective Inhibit the Wnt signaling pathway to explore the therapeutic targets of colorectal cancer. Methods Based on studying the Wnt pathway, master the biochemical processes related to the Wnt pathway, and analyze the relevant targets when drugs or inhibitors act on the Wnt pathway, to clarify the medication ideas of drugs or inhibitors for the treatment of diseases, especially colorectal cancer. Results Wnt signaling pathways include: Wnt/β-catenin or canonical Wnt signaling pathway, planar cell polarity (Wnt-PCP) pathway and Wnt-Ca2+ signaling pathway. The Wnt signaling pathway is closely related to cancer cell proliferation, stemness, apoptosis, autophagy, metabolism, inflammation and immunization, microenvironment, resistance, ion channel, heterogeneity, EMT/migration/invasion/metastasis. Drugs/phytochemicals and molecular preparations for the Wnt pathway of CRC treatment have now been developed. Wnt inhibitors are also commonly used clinically for the treatment of CRC. Conclusion The development of drugs/phytochemicals and molecular inhibitors targeting the Wnt pathway can effectively treat colorectal cancer clinically.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
7
|
Zeng C, Qi G, Shen Y, Li W, Zhu Q, Yang C, Deng J, Lu W, Liu Q, Jin J. DPEP1 promotes drug resistance in colon cancer cells by forming a positive feedback loop with ASCL2. Cancer Med 2022; 12:412-424. [PMID: 35670012 PMCID: PMC9844606 DOI: 10.1002/cam4.4926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Drug resistance is an important factor affecting the efficacy of chemotherapy in patients with colon cancer. However, clinical markers for diagnosing drug resistance of tumor cells are not only a few in number, but also low in specificity, and the mechanism of action of tumor cell drug resistance remains unclear. METHODS Dipeptidase 1 (DPEP1) expression was analyzed using the cancer genome atlas (TCGA) and genotype-Tissue Expression pan-cancer data. Survival analysis was performed using the survival package in R software to assess the prognostic value of DPEP1 expression in colon cancer. Correlation and Venn analyses were adopted to identify key genes. Immunohistochemistry, western blot, qRT-PCR, Co-immunoprecipitation, and dual-luciferase reporter experiments were carried out to explore the underlying associations between DPEP1 and Achaete scute-like 2 (ASCL2). MTT assays were used to evaluate the role of DPEP1 and ASCL2 in colon cancer drug resistance. RESULTS DPEP1 was highly expressed in colon cancer tissues. DPEP1 expression correlated negatively with disease-specific survival but not with overall survival. Bioinformatics analysis and experiments showed that the expressions of DPEP1 and ASCL2 in colon cancer tissues were markedly positively correlated. Mechanistic research indicated that DPEP1 enhanced the stability of protein ASCL2 by inhibiting its ubiquitination-mediated degradation. In turn, ASCL2 functioned as a transcription factor to activate the transcriptional activity of the DPEP1 gene and boost its expression. Furthermore, DPEP1 also could enhance the expression of colon cancer stem cell markers (LGR5, CD133, and CD44), which strengthened the tolerance of colon cancer cells to chemotherapy drugs. CONCLUSIONS Our findings reveal that the DPEP1 enhances the stemness of tumor cells by forming a positive feedback loop with ASCL2 to improve resistance to chemotherapy drugs.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina
| | - Guoping Qi
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina
| | - Ying Shen
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Wenjing Li
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Qi Zhu
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Chunxia Yang
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Jianzhong Deng
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Wenbin Lu
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Qian Liu
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Jianhua Jin
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| |
Collapse
|
8
|
Li YR, Meng K, Yang G, Liu BH, Li CQ, Zhang JY, Zhang XM. Diagnostic genes and immune infiltration analysis of colorectal cancer determined by LASSO and SVM machine learning methods: a bioinformatics analysis. J Gastrointest Oncol 2022; 13:1188-1203. [PMID: 35837194 PMCID: PMC9274036 DOI: 10.21037/jgo-22-536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/16/2022] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Genetic factors account for approximately 35% of colorectal cancer risk. The specificity and sensitivity of previous diagnostic biomarkers for colorectal cancer could not meet the need of clinical application. The expanding scale and inherent complexity of biological data have encouraged a growing use of machine learning to build informative and predictive models of the underlying biological processes. The aim of this study is to identify diagnostic genes of colorectal cancer by using machine learning methods. METHODS The GSE41328 and GSE106582 data sets were downloaded from the Gene Expression Omnibus (GEO) database. The gene expression differences between colon cancer and normal tissues were analyzed. The key colorectal cancer genes were screened and validated by Least Absolute Shrinkage and Selection Operator (LASSO) and Support Vector Machine (SVM) regression. Immune cell infiltration and the correlation with the key genes in patients with colon cancer were further analyzed by CIBERSORT. RESULTS Eleven key genes were identified as biomarkers for colon cancer, namely ASCL2, BEST4, CFD, DPEPCFD, FOXQ1, TRIB3, KLF4, MMP7, MMP11, PYY, and PDK4. The mean area under the receiver operating characteristic (ROC) curve (AUC) of all 11 genes for colon cancer diagnosis were 0.94 with a range of 0.91-0.97. In the validation set, the expression of the 11 key genes was significantly different between colon cancer and normal subjects (P<0.05) and the mean AUCs were 0.82 with a range of 0.70-0.88. Immune cell infiltration analyses demonstrated that the relative quantity of plasma cells, T cells, B cells, NK cells, MO, M1, Dendritic cells resting, Mast cells resting, Mast cells activated, and Neutrophils in the tumor group were significantly different to the normal group. CONCLUSIONS ASCL2, BEST4, CFD, DPEPCFD, FOXQ1, TRIB3, KLF4, MMP7, MMP11, PYY, and PDK4 were identified as the key genes for colon cancer diagnosis. These genes are expected to become novel diagnostic markers and targets of new pharmacotherapies for colorectal cancer.
Collapse
Affiliation(s)
- Yan-Rong Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ke Meng
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Guang Yang
- Department of Laboratory, The Red Cross (SEN GONG GENERAL) Hospital of Heilongjiang, Heilongjiang, China
| | - Bao-Hai Liu
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chu-Qiao Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jia-Yuan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiao-Mei Zhang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|