1
|
Shi Y, Qiu A, Cui H, Lv H, Zhou L. Identification of an autophagy- and macropinocytosis-related prognostic signature for the prediction of prognosis and therapeutic response in gastric cancer. Genes Genomics 2024; 46:1149-1164. [PMID: 39150612 DOI: 10.1007/s13258-024-01557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Traditional liquid biopsy markers show a low rate of positivity and accurate in gastric cancer. With the rapid advancement of sequencing technology, scientists have identified promising research avenues in this field. Autophagy and macropinocytosis utilize diverse pathways and mechanisms to supply resources and fuel for tumor growth. Nonetheless, their potential interplay introduces an untapped avenue for the discovery of novel tumor biomarkers. OBJECTIVE To develop an innovative prognostic signature based on autophagy- and micropinocytosis-related genes, with the aim to predict the outcome and therapeutic response of gastric cancer patients. Additionally, to validate the prognostic impact of this signature, and elucidate the role of representative molecules in gastric cancer. METHODS To construct and validate a prognostic signature for gastric cancer, bioinformatics methods such as COX regression, LASSO regression, survival analysis, ROC curve, and nomogram were utilized based on the sequencing and clinical data of gastric cancer patients retrieved from the TCGA and GEO databases. GSEA functional enrichment analyses were employed to predict the biological functions. Meanwhile, qRT-PCR and Western blot experiments were utilized to quantify the mRNA and protein expression levels. Furthermore, the EdU assay and colony formation assay were utilized to examine the cell proliferation ability while the Transwell assays were conducted to assess the migration and invasion abilities of gastric cancer cells. RESULTS Through consistency clustering and univariate COX analyses, potential prognostic genes involved in both autophagy and macropinocytosis were identified. Based on these genes, a 9-gene signature was constructed, which demonstrated high accuracy in predicting gastric cancer patients' survival period, immunotherapeutic response, and chemotherapy drug tolerance. Furthermore, qRT-PCR analyses of gastric cancer tissue samples showed that the representative genes of this signature were aberrantly overexpressed in gastric cancer, with MATN3, as the most notable molecule, exhibiting significant carcinogenic effects on cancer cells by actively regulating their proliferation, migration, and invasion abilities. CONCLUSION Our newly created prognostic signature possesses significant potential as a biomarker for gastric cancer, while MATN3 is identified as an oncogenic factor in gastric cancer. This brings to light new perspectives, which can contribute to enhancing the diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Yuhua Shi
- Department of General Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, No. 75, Juchang Road, Yancheng, 224001, China
- Central Laboratory of Yancheng Third People's Hospital, Yancheng, China
| | - Aifeng Qiu
- Department of General Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, No. 75, Juchang Road, Yancheng, 224001, China
- Central Laboratory of Yancheng Third People's Hospital, Yancheng, China
| | - Hengfeng Cui
- Department of General Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, No. 75, Juchang Road, Yancheng, 224001, China
- Central Laboratory of Yancheng Third People's Hospital, Yancheng, China
| | - Heng Lv
- The First Clinical School, Xuzhou Medical University, No. 99, Huaihai West Road, Xuzhou, 221002, China.
| | - Lei Zhou
- Department of General Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, No. 75, Juchang Road, Yancheng, 224001, China.
- Central Laboratory of Yancheng Third People's Hospital, Yancheng, China.
- The Graduate School, Dalian Medical University, Dalian, China.
| |
Collapse
|
2
|
Luo J, Liang M, Ma T, Dong B, Jia L, Su M. Identification of angiogenesis-related subtypes and risk models for predicting the prognosis of gastric cancer patients. Comput Biol Chem 2024; 112:108174. [PMID: 39191168 DOI: 10.1016/j.compbiolchem.2024.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Gastric cancer (GC) is a leading cause of cancer-related mortality and is characterized by significant heterogeneity, highlighting the need for further studies aimed at personalized treatment strategies. Tumor angiogenesis is critical for tumor development and metastasis, yet its role in molecular subtyping and prognosis prediction remains underexplored. This study aims to identify angiogenesis-related subtypes and develop a prognostic model for GC patients. Using data from The Cancer Genome Atlas (TCGA), we performed consensus cluster analysis on differentially expressed angiogenesis-related genes (ARGs), identifying two patient subtypes with distinct survival outcomes. Differentially expressed genes between the subtypes were analyzed via Cox and LASSO regression, leading to the establishment of a subtype-based prognostic model using a machine learning algorithm. Patients were classified into high- and low-risk groups based on the risk score. Validation was performed using independent datasets (ICGC and GSE15459). We utilized a deconvolution algorithm to investigate the tumor immune microenvironment in different risk groups and conducted analyses on genetic profiling, sensitivity and combination of anti-tumor drug. Our study identified ten prognostic signature genes, enabling the calculation of a risk score to predict prognosis and overall survival. This provides critical data for stratified diagnosis and treatment upon patient admission, monitoring disease progression throughout the entire course, evaluating immunotherapy efficacy, and selecting personalized medications for GC patients.
Collapse
Affiliation(s)
- Jie Luo
- Department of Medical Affairs, Huanggang Central Hospital, Huanggang, China
| | - Mengyun Liang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Tengfei Ma
- Clinical Trial Centers, Huanggang Central Hospital, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China
| | - Bizhen Dong
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Liping Jia
- Department of Respiratory and Critical Care Medicine, Huanggang Central Hospital, Huanggang, China.
| | - Meifang Su
- Department of Hematopathology, Huanggang Central Hospital, Huanggang, China.
| |
Collapse
|
3
|
Li J, Xie B, Wang H, Wang Q, Wu Y. Investigating MATN3 and ASPN as novel drivers of gastric cancer progression via EMT pathways. Hum Mol Genet 2024:ddae129. [PMID: 39301785 DOI: 10.1093/hmg/ddae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/09/2024] [Accepted: 08/24/2024] [Indexed: 09/22/2024] Open
Abstract
Gastric cancer (GC) is a leading cause of cancer-related deaths globally, necessitating the identification of novel therapeutic targets. This study investigates the roles of MATN3 and ASPN in GC progression via the epithelial-mesenchymal transition (EMT) pathway. Analysis of the Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) dataset revealed that both MATN3 and ASPN are significantly upregulated in GC tissues and correlate with poor patient survival. Protein-protein interaction and co-expression analyses confirmed a direct interaction between MATN3 and ASPN, suggesting their synergistic role in EMT activation. Functional assays demonstrated that MATN3 promotes GC cell proliferation, migration, and invasion, while its knockdown inhibits these malignant behaviors and induces apoptosis. ASPN overexpression further amplified these oncogenic effects. In vivo, studies in a mouse model corroborated that co-overexpression of MATN3 and ASPN enhances tumor growth and metastasis. These findings highlight the MATN3-ASPN axis as a potential therapeutic target in GC, offering new insights into the molecular mechanisms driving GC progression.
Collapse
Affiliation(s)
- Jing Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou 215004, Jiangsu Province, China
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu 233004, Anhui Province, China
| | - Bo Xie
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu 233004, Anhui Province, China
| | - Hu Wang
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu 233004, Anhui Province, China
| | - QingKang Wang
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu 233004, Anhui Province, China
| | - YongYou Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou 215004, Jiangsu Province, China
| |
Collapse
|
4
|
李 靖, 喻 大, 陈 少, 谢 波, 汪 虎. [Relationship Between the Expression of Human Matricellular Protein 3 and the Pathological Features, Drug Resistance, and Prognosis of Gastric Cancer Based on Immunohistochemical Method]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:893-901. [PMID: 39170027 PMCID: PMC11334280 DOI: 10.12182/20240760205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Indexed: 08/23/2024]
Abstract
Objective To observe the relationship between the expression of human matricellular protein 3 (MATN3) and the pathological features, drug resistance, and prognosis of gastric cancer based on immunohistochemical method. Methods A total of 100 gastric cancer patients treated at the First Affiliated Hospital of Bengbu Medical College from January 2022 to December 2022 were included. MATN3 expression in gastric cancer tissues and paracancerous tissues was assessed by immunohistochemistry. The expression of MATN3 was compared across pathological features. Patients were divided into sensitive and resistant groups based on chemotherapy resistance, and MATN3 expression was compared between these groups. The relationship between MATN3 and recurrence-free survival (RFS) and overall survival (OS) of gastric cancer patients was analyzed using Kaplan-Meier survival curves. Univariate and multifactorial Cox regression analyses were used to analyze the factors affecting the prognosis of gastric cancer patients. Human gastric cancer cells MGC803 were transfected with MATN3. The cells were divided into a high expression group (LV-MATN3 group) and its control group (LV-NC group) and a low expression group (sh-MATN3 group) and its control group (sh-NC group). Cell proliferation was assessed using the CCK8 assay, cell migration and invasion were assessed using the Transwell assay, and MATN3 mRNA expression levels were measured using RT-qPCR. A nude mouse xenograft model was constructed by hypodermic injection of MGC-803 cells transfected with MATN3, and MATN3 mRNA expression levels in tumor tissues were measured using RT-qPCR. Results Immunohistochemical results showed a significantly higher rate of high MATN3 expression in gastric cancer tissues (64.00%, 64/100) compared to adjacent non-cancerous tissues (31.00%, 31/100) (P<0.05). High MATN3 expression was associated with age ≥60 years old, tumor location in the gastric body, tumor size ≥5 cm, lymph node metastasis (N1-N3), histological differentiation (moderate to high), tumor invasion depth (T3-T4), TNM stage (Ⅲ-Ⅳ), distant organ metastasis, recurrence, and mortality (P<0.05). Among patients with chemotherapy resistance, the high MATN3 expression rate was 79.49% (31/39) in the resistant group compared to 54.10% (33/61) in the sensitive group (P<0.05). Follow-up duration ranged from 11 to 22 months, with a 97.00% follow-up rate and 3 cases lost to follow-up. Kaplan-Meier survival curve analysis showed that patients with high MATN3 expression had significantly lower RFS and OS compared to those with low MATN3 expression (RFS: log-rank=17.291, P<0.001; OS: log-rank=21.719, P<0.001). Multivariate Cox analysis identified high MATN3 expression (hazard ratio [HR]=2.291, 95% confidence interval [CI]: 1.268-5.392), tumor location in the gastric body (HR=2.057, 95% CI: 1.441-5.666), lymph node metastasis (N1-N3) (HR=2.011, 95% CI: 1.010-2.274), tumor invasion depth (T3-T4) (H=2.977, 95% CI: 1.032-7.853), TNM stage Ⅲ-Ⅳ (HR=2.008, 95% CI: 1.049-3.902), and distant organ metastasis (HR=2.505, 95% CI: 1.529-5.000) as independent risk factors affecting RFS and OS (P<0.05). Cell and animal experiments demonstrated that compared to the LV-NC group, the LV-MATN3 group exhibited significantly higher cell proliferation, migration, and invasion (P<0.05), as well as increased tumor volume and MATN3 mRNA expression in tumor tissues (P<0.05). Conversely, the sh-MATN3 group showed significantly reduced cell proliferation, migration, and invasion, along with decreased tumor volume and MATN3 mRNA levels compared to the sh-NC group (P<0.05). Conclusion MATN3 is highly expressed in gastric cancer tissues and is associated with various pathological features, drug resistance and poor prognosis. MATN3 holds potential as a diagnostic marker for poor prognosis and may play a role in the malignant behaviors of gastric cancer cells, including proliferation, migration, and invasion.
Collapse
Affiliation(s)
- 靖 李
- 蚌埠医科大学第一附属医院 肿瘤外科 (蚌埠 233000)Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 大军 喻
- 蚌埠医科大学第一附属医院 肿瘤外科 (蚌埠 233000)Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 少华 陈
- 蚌埠医科大学第一附属医院 肿瘤外科 (蚌埠 233000)Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 波 谢
- 蚌埠医科大学第一附属医院 肿瘤外科 (蚌埠 233000)Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 虎 汪
- 蚌埠医科大学第一附属医院 肿瘤外科 (蚌埠 233000)Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| |
Collapse
|
5
|
Li X, Lei Y. Construction of a prognostic risk model for Stomach adenocarcinoma based on endoplasmic reticulum stress genes. Wien Klin Wochenschr 2024; 136:319-330. [PMID: 37993598 DOI: 10.1007/s00508-023-02306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/21/2023] [Indexed: 11/24/2023]
Abstract
OBJECTIVE Stomach adenocarcinoma (STAD) is caused by malignant transformation of gastric glandular cells and is characterized by a high incidence rate and a poor prognosis. This study was designed to establish a prognostic risk model for STAD according to endoplasmic reticulum (ER) stress feature genes as cancer cells are susceptible to ER stress. METHODS The TCGA-STAD dataset was downloaded to screen differentially expressed genes (DEGs). By intersecting DEGs with ER stress genes retrieved from GeneCards, ER stress-related DEGs in STAD were obtained. Kmeans cluster analysis of STAD subtypes and Single sample gene set enrichment analysis (ssGSEA) analysis of immune infiltration were performed. Cox regression analysis was utilized to construct a risk prognostic model. Samples were split into high-risk and low-risk groups according to the median risk score. Survival analysis and Receiver Operating Characteristic (ROC) curves were conducted to assess the validity of the model. Gene set enrichment analysis (GSEA) was performed to investigate differential pathways in the two risk groups. Cox analysis was performed to verify the independence of the risk model, and a nomogram was generated. RESULTS A total of 162 ER stress-related DEGs in STAD were identified by bioinformatics analysis. Kmeans cluster analysis showed that STAD was divided into 3 subgroups. The ssGSEA showed that the levels of immune infiltration in subgroups 2 and 3 were significantly higher than subgroup 1. With 12 prognostic genes (MATN3, ATP2A1, NOX4, AQP11, HP, CAV1, STARD3, FKBP10, EGF, F2, SERPINE1, CNGA3) selected from ER stress-related DEGs using Cox regression analysis, we then constructed a prognostic model. Kaplan-Meier (K‑M) survival curves and ROC curves showed good prediction performance of the model. Significant enrichment of genes in the high-risk group was found in extracellular matrix (ECM) receptor interaction. Cox regression analysis combined with clinical factors showed that the risk model could be used as an independent prognostic factor. The prediction correction curve showed that the good prediction ability of the nomogram. CONCLUSION The STAD could be divided into three subgroups, and the 12-gene model constructed by ER stress signatures had a good prognostic performance for STAD patients.
Collapse
Affiliation(s)
- Xi Li
- Department of General Surgery, Zigong Fourth People's Hospital, No. 19 Tanmulin Street, Ziliujing District, 643000, Zigong City, Sichuan Province, China
| | - Yuehua Lei
- Department of General Surgery, Zigong Fourth People's Hospital, No. 19 Tanmulin Street, Ziliujing District, 643000, Zigong City, Sichuan Province, China.
| |
Collapse
|
6
|
Sorvina A, Antoniou M, Esmaeili Z, Kochetkova M. Unusual Suspects: Bone and Cartilage ECM Proteins as Carcinoma Facilitators. Cancers (Basel) 2023; 15:cancers15030791. [PMID: 36765749 PMCID: PMC9913341 DOI: 10.3390/cancers15030791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The extracellular matrix (ECM) is the complex three-dimensional network of fibrous proteins and proteoglycans that constitutes an essential part of every tissue to provide support for normal tissue homeostasis. Tissue specificity of the ECM in its topology and structure supports unique biochemical and mechanical properties of each organ. Cancers, like normal tissues, require the ECM to maintain multiple processes governing tumor development, progression and spread. A large body of experimental and clinical evidence has now accumulated to demonstrate essential roles of numerous ECM components in all cancer types. Latest findings also suggest that multiple tumor types express, and use to their advantage, atypical ECM components that are not found in the cancer tissue of origin. However, the understanding of cancer-specific expression patterns of these ECM proteins and their exact roles in selected tumor types is still sketchy. In this review, we summarize the latest data on the aberrant expression of bone and cartilage ECM proteins in epithelial cancers and their specific functions in the pathogenesis of carcinomas and discuss future directions in exploring the utility of this selective group of ECM components as future drug targets.
Collapse
|
7
|
Chi XJ, Song YB, Liu DH, Wei LQ, An X, Feng ZZ, Lan XH, Lan D, Huang C. Significance of platelet adhesion-related genes in colon cancer based on non-negative matrix factorization-based clustering algorithm. Digit Health 2023; 9:20552076231203902. [PMID: 37766908 PMCID: PMC10521306 DOI: 10.1177/20552076231203902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Background Although surgical methods are the most effective treatments for colon adenocarcinoma (COAD), the cure rates remain low, and recurrence rates remain high. Furthermore, platelet adhesion-related genes are gaining attention as potential regulators of tumorigenesis. Therefore, identifying the mechanisms responsible for the regulation of these genes in patients with COAD has become important. The present study aims to investigate the underlying mechanisms of platelet adhesion-related genes in COAD patients. Methods The present study was an experimental study. Initially, the effects of platelet number and related genomic alteration on survival were explored using real-world data and the cBioPortal database, respectively. Then, the differentially expressed platelet adhesion-related genes of COAD were analyzed using the TCGA database, and patients were further classified by employing the non-negative matrix factorization (NMF) analysis method. Afterward, some of the clinical and expression characteristics were analyzed between clusters. Finally, least absolute shrinkage and selection operator regression analysis was used to establish the prognostic nomogram. All data analyses were performed using the R package. Results High platelet counts are associated with worse survival in real-world patients, and alternations to platelet adhesion-related genes have resulted in poorer prognoses, based on online data. Based on platelet adhesion-related genes, patients with COAD were classified into two clusters by NMF-based clustering analysis. Cluster2 had a better overall survival, when compared to Cluster1. The gene copy number and enrichment analysis results revealed that two pathways were differentially enriched. In addition, the differentially expressed genes between these two clusters were enriched for POU6F1 in the transcription factor signaling pathway, and for MATN3 in the ceRNA network. Finally, a prognostic nomogram, which included the ALOX12 and ACTG1 genes, was established based on the platelet adhesion-related genes, with a concordance (C) index of 0.879 (0.848-0.910). Conclusion The mRNA expression-based NMF was used to reveal the potential role of platelet adhesion-related genes in COAD. The series of experiments revealed the feasibility of targeting platelet adhesion-associated gene therapy.
Collapse
Affiliation(s)
- Xiao-jv Chi
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Yi-bei Song
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Deng-he Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Li-qiang Wei
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Xin An
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zi-zhen Feng
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-hua Lan
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dong Lan
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao Huang
- School of Information and Management, Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Zhou R, Peng N, Li W. Constructing a novel gene signature derived from oxidative stress specific subtypes for predicting survival in stomach adenocarcinoma. Front Immunol 2022; 13:964919. [PMID: 36059494 PMCID: PMC9436409 DOI: 10.3389/fimmu.2022.964919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Oxidative stress (OS) response is crucial in oncogenesis and progression of tumor. But the potential prognostic importance of OS-related genes (OSRGs) in stomach adenocarcinoma (STAD) lacked comprehensive study. STAD clinical information and transcriptome data were retrieved from the Gene Expression Omnibus and The Cancer Genome Atlas databases. The prognostic OSRGs were filtered via the univariate Cox analysis and OSRG-based molecular subtypes of STAD were developed using consensus clustering. Weighted gene co-expression network analysis (WGCNA) was subsequently conducted to filter molecular subtype-associated gene modules. The prognosis-related genes were screened via univariate and least absolute shrinkage and selection operator Cox regression analysis were used to construct a prognostic risk signature. Finally, a decision tree model and nomogram were developed by integrating risk signature and clinicopathological characteristics to analyze individual STAD patient’s survival. Four OSRG-based molecular subtypes with significant diversity were developed based on 36 prognostic OSRGs for STAD, and an OSRGs-based subtype-specific risk signature with eight genes for prognostic prediction of STAD was built. Survival analysis revealed a strong prognostic performance of the risk signature exhibited in predicting STAD survival. There were significant differences in mutation patterns, chemotherapy sensitivity, clinicopathological characteristics, response to immunotherapy, biological functions, immune microenvironment, immune cell infiltration among different molecular subtypes and risk groups. The risk score and age were verified as independent risk factors for STAD, and a nomogram integrating risk score and age was established, which showed superior predictive performance for STAD prognosis. We developed an OSRG-based molecular subtype and identified a novel risk signature for prognosis prediction, providing a useful tool to facilitate individual treatment for patients with STAD.
Collapse
Affiliation(s)
- Renlong Zhou
- Department of Blood Transfusion, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Naixiong Peng
- Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Wei Li
- Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen, China
- *Correspondence: Wei Li,
| |
Collapse
|
9
|
Hao S, Huang M, Xu X, Wang X, Huo L, Wang L, Gu J. MDN1 Mutation Is Associated With High Tumor Mutation Burden and Unfavorable Prognosis in Breast Cancer. Front Genet 2022; 13:857836. [PMID: 35386280 PMCID: PMC8978890 DOI: 10.3389/fgene.2022.857836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Breast cancer (BRCA) is the most common cancer worldwide and a serious threat to human health. MDN1 mutations have been observed in several cancers. However, the associations of MDN1 mutation with tumor mutation burden (TMB) and prognosis of BRCA have not been investigated. Methods: Genomic, transcriptomic, and clinical data of 973 patients with BRCA from The Cancer Genome Atlas (TCGA) database were analyzed. The clinical attributes of BRCA based on the MDN1 mutation status were assessed by comparing TMB and tumor infiltrating immune cells. Gene ontology analysis and gene set enrichment analysis (GSEA) were conducted to identify the key signaling pathways associated with MDN1 mutation. Moreover, univariate and multivariate Cox regression analyses were performed to assess the association between prognostic factors and survival outcomes. Finally, nomograms were used to determine the predictive value of MDN1 mutation on clinical outcomes in patients with BRCA. Results: MDN1 was found to have a relatively high mutation rate (2.77%). Compared to the MDN1 wild-type patients, the TMB value was significantly higher in MDN1 mutant patients (p < 0.001). Prognostic analysis revealed that MDN1 mutant patients had a worse survival probability than MDN1 wild-type patients (hazard ratio = 2.91; 95% CI:1.07–7.92; p = 0.036). GSEA revealed samples with MDN1 mutation enriched in retinol metabolism, drug metabolism cytochrome P450, glucuronidation, miscellaneous transport, and binding event pathways. Conclusion: MDN1 mutation was found to be associated with high TMB and inferior prognosis, suggesting that MDN1 mutation may play a potential role in prognosis prediction and immunotherapy guidance in BRCA.
Collapse
Affiliation(s)
- Shuai Hao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Miao Huang
- Nursing School, Chongqing Medical University, Chongqing, China
| | - Xiaofan Xu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xulin Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liqun Huo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lu Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|