1
|
Ibrahim Arif S, Amer YS, Adnan Alkamal T, Abdulrahman Binsaeed M, Ibrahim Arif B, Dhaifallah Albaqami M, Bakri Alfahed O. Patient response to the management during the acute presentation of cough variant Asthma: Retrospective cohort study. Saudi J Biol Sci 2023; 30:103875. [PMID: 38058763 PMCID: PMC10696240 DOI: 10.1016/j.sjbs.2023.103875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023] Open
Abstract
The clinical improvement after assessing patients with cough variant asthma in outpatient clinics, and therapy success varied depending on the subjective improvement. Cough could be controlled within appropriate time and subsequent management can consist of inhaled corticosteroids. In this study we used the cough improvement, the only available clinical response, as a predictable factor to determine the effect of different modalities of treatment among patients with cough variant asthma. Retrospective observational analysis was performed in Saudi Arabia's King Saud University Medical City, on the presentation, diagnosis, course of therapy, and responsiveness to oral and inhaled steroids in patients with cough variant asthma. All patients who visited the clinic on multiple occasions with persistent, acute coughing without being pre-screened between September 2021 and September 2022 included based on medical records. Cough resembles cough variant asthma is the term used to describe a cough without a diagnosed etiology. To identify patients eligible for CVA treatment, iindividuals having GERD-associated cough, allergic rhinitis, bronchial asthma, smokers and atopic cough was excluded. For the examination of these findings, IBM SPSS version 28 (Armonk, NY, USA) was employed. As a result of using budesonide-formoterol inhaler, most patients (86.3 %) showed improvement in their cough symptoms (with 95 %CI: 78.3 to 94.9). There was a significant yet weak positive correlation between the frequency of cough symptoms before and after using budesonide-formoterol (r = 0.318, P value < 0.001). The understanding of treatment response and patient selection for budesonide-formoterol inhaler therapy, providing clinicians with valuable information to optimize patient care.
Collapse
Affiliation(s)
- Samir Ibrahim Arif
- Family Medicine Center, King Khalid University Hospital, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Yasser S. Amer
- CPG and Quality Research Unit, Quality Management Department, Pediatrics Department, King Saud University Medical City, Riyadh, Saudi Arabia
- Research Chair for Evidence-Based Health Care and Knowledge Translation, King Saud University Medical City, Riyadh, Saudi Arabia
| | | | | | - Bandar Ibrahim Arif
- Intern, Clinical Pharmacy, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Meshari Dhaifallah Albaqami
- Nursing Services Department, Occupational Health and Safety Clinic King Khalid University Hospital, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Ousama Bakri Alfahed
- Family Medicine Center, King Khalid University Hospital, King Saud University Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Zhan W, Wu F, Zhang Y, Lin L, Li W, Luo W, Yi F, Dai Y, Li S, Lin J, Yuan Y, Qiu C, Jiang Y, Zhao L, Chen M, Qiu Z, Chen R, Xie J, Guo C, Jiang M, Yang X, Shi G, Sun D, Chen R, Zhong N, Shen H, Lai K. Identification of cough-variant asthma phenotypes based on clinical and pathophysiologic data. J Allergy Clin Immunol 2023; 152:622-632. [PMID: 37178731 DOI: 10.1016/j.jaci.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Cough-variant asthma (CVA) may respond differently to antiasthmatic treatment. There are limited data on the heterogeneity of CVA. OBJECTIVE We aimed to classify patients with CVA using cluster analysis based on clinicophysiologic parameters and to unveil the underlying molecular pathways of these phenotypes with transcriptomic data of sputum cells. METHODS We applied k-mean clustering to 342 newly physician-diagnosed patients with CVA from a prospective multicenter observational cohort using 10 prespecified baseline clinical and pathophysiologic variables. The clusters were compared according to clinical features, treatment response, and sputum transcriptomic data. RESULTS Three stable CVA clusters were identified. Cluster 1 (n = 176) was characterized by female predominance, late onset, normal lung function, and a low proportion of complete resolution of cough (60.8%) after antiasthmatic treatment. Patients in cluster 2 (n = 105) presented with young, nocturnal cough, atopy, high type 2 inflammation, and a high proportion of complete resolution of cough (73.3%) with a highly upregulated coexpression gene network that related to type 2 immunity. Patients in cluster 3 (n = 61) had high body mass index, long disease duration, family history of asthma, low lung function, and low proportion of complete resolution of cough (54.1%). TH17 immunity and type 2 immunity coexpression gene networks were both upregulated in clusters 1 and 3. CONCLUSION Three clusters of CVA were identified with different clinical, pathophysiologic, and transcriptomic features and responses to antiasthmatics treatment, which may improve our understanding of pathogenesis and help clinicians develop individualized cough treatment in asthma.
Collapse
Affiliation(s)
- Wenzhi Zhan
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feng Wu
- Department of Pulmonary and Critical Care Medicine, Huizhou the Third People's Hospital, Guangzhou Medical University, Huizhou, China
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, the First People's Hospital of Yunnan Province, Kunming, China
| | - Lin Lin
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, the Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen Li
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Luo
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fang Yi
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanrong Dai
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Suyun Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiangtao Lin
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yadong Yuan
- Department of Pulmonary and Critical Care Medicine, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chen Qiu
- Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, the First Affiliated Hospital of Southern University of Science and Technology, the Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Yong Jiang
- Department of Respiratory and Critical Care Medicine, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Limin Zhao
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Meihua Chen
- Department of Pulmonary and Critical Care Medicine, Songshan Lake Central Hospital of Dongguan City, the Third People's Hospital of Dongguan City, Dongguan, China
| | - Zhongmin Qiu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruchong Chen
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiaxing Xie
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunxing Guo
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mei Jiang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohong Yang
- Department of Respiratory and Critical Care Medicine, Xinjiang Interstitial Lung Disease Clinical Medicine Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dejun Sun
- Department of Pulmonary and Critical Care Medicine, the Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Rongchang Chen
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, the First Affiliated Hospital of Southern University of Science and Technology, the Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Nanshan Zhong
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huahao Shen
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kefang Lai
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Shim JS, Kim BK, Kim SH, Kwon JW, Ahn KM, Kang SY, Park HK, Park HW, Yang MS, Kim MH, Lee SM. A smartphone-based application for cough counting in patients with acute asthma exacerbation. J Thorac Dis 2023; 15:4053-4065. [PMID: 37559656 PMCID: PMC10407484 DOI: 10.21037/jtd-22-1492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/19/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND While tools exist for objective cough counting in clinical studies, there is no available tool for objective cough measurement in clinical practice. An artificial intelligence (AI)-based cough count system was recently developed that quantifies cough sounds collected through a smartphone application. In this prospective study, this AI-based cough algorithm was applied among real-world patients with an acute exacerbation of asthma. METHODS Patients with an acute asthma exacerbation recorded their cough sounds for 7 days (2 consecutive hours during awake time and 5 consecutive hours during sleep) using CoughyTM smartphone application. During the study period, subjects received systemic corticosteroids and bronchodilator to control asthma. Coughs collected by application were counted by both the AI algorithm and two human experts. Subjects also provided self-measured peak expiratory flow rate (PEFR) and completed other outcome assessments [e.g., cough symptom visual analogue scale (CS-VAS), awake frequency, salbutamol use] to investigate the correlation between cough and other parameters. RESULTS A total of 1,417.6 h of cough recordings were obtained from 24 asthmatics (median age =39 years). Cough counts by AI were strongly correlated with manual cough counts during sleep time (rho =0.908, P<0.001) and awake time (rho =0.847, P<0.001). Sleep time cough counts were moderately to strongly correlated with CS-VAS (rho =0.339, P<0.001), the frequency of waking up (rho =0.462, P<0.001), and salbutamol use at night (rho =0.243, P<0.001). Weak-to-moderate correlations were found between awake time cough counts and CS-VAS (rho =0.313, P<0.001), the degree of activity limitation (rho =0.169, P=0.005), and salbutamol use at awake time (rho =0.276, P<0.001). Neither awake time nor sleep time cough counts were significantly correlated with PEFR. CONCLUSIONS The strong correlation between cough counts using the AI-based algorithm and human experts, and other indicators of patient health status provides evidence of the validity of this AI algorithm for use in asthma patients experiencing an acute exacerbation. Study findings suggest that CoughyTM could be a novel solution for objectively monitoring cough in a clinical setting.
Collapse
Affiliation(s)
- Ji-Su Shim
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Byung-Keun Kim
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sae-Hoon Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jae-Woo Kwon
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Kyung-Min Ahn
- Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Sung-Yoon Kang
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Han-Ki Park
- Department of Allergy and Clinical Immunology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Heung-Woo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min-Suk Yang
- Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Min-Hye Kim
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Sang Min Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| |
Collapse
|
4
|
Jiang H, Bai Z, Ou Y, Liu H, Si Z, Liu Y, Liu X, Liu X, Zhang Z, Tan N. β-Hydroxybutyric acid upregulated by Suhuang antitussive capsule ameliorates cough variant asthma through GSK3β/AMPK-Nrf2 signal axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116013. [PMID: 36586526 DOI: 10.1016/j.jep.2022.116013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cough variant asthma (CVA) is a chronic inflammatory disease characterized by cough as the main symptom. Suhuang antitussive capsule (Suhuang), one of traditional Chinese patent medicines, mainly treats CVA clinically. Previous studies have shown that Suhuang significantly improved CVA, post-infectious cough (PIC), sputum obstruction and airway remodeling. However, the effect of Suhuang on ovalbumin-induced (OVA-induced) metabolic abnormalities in CVA is unknown. AIM OF THE STUDY This study aimed to identify potential metabolites associated with efficacy of Suhuang in the treatment of CVA, and determined how Suhuang regulates metabolites, and differential metabolites reduce inflammation and oxidative stress. MATERIALS AND METHODS Rats were given 1 mg OVA/100 mg aluminum hydroxide in the 1st and 7th days by intraperitoneal injection and challenged by atomizing inhalation of 1% OVA saline solution after two weeks to establish the CVA model. Rats were intragastrically (i.g.) administrated with Suhuang at 1.4 g/kg and β-hydroxybutyric acid (β-HB) were given with different concentrations (87.5 and 175 mg/kg/day) by intraperitoneal injection for 2 weeks. After 26 days, GC-MS-based metabolomic approach was applied to observe metabolic changes and search differential metabolites. The number of coughs, coughs latencies, enzyme-linked immunosorbent assay (ELISA), histological analysis and quantitative-polymerase chain reaction (Q-PCR) were used to investigate the effects of Suhuang. Then β-HB on CVA rats, NLRP3 inflammasome and GSK3β/AMPK/Nrf2 signalling pathway were detected by western blotting. RESULTS The results showed that Suhuang treatment significantly enhanced the serum level of β-HB. Interestingly, exposure to exogenous β-HB was also protective against OVA-induced CVA. β-HB significantly reduced the number of coughs and lengthened coughs latencies, improved lung injury, reduced the secretion of various cytokines, and directly inhibited the NLRP3 inflammasome. In addition, β-HB increased the nuclear accumulation of Nrf2 by activating the GSK3β/AMPK signaling axis, and then inactivating the NF-κB signaling pathway, effectively protecting OVA-induced CVA from oxidative stress and inflammation. CONCLUSIONS The results of this study shows that β-HB can reduce inflammation and oxidative stress, the increased production of β-HB in serum might be the crucial factor for Suhuang to exert its effect in the treatment of CVA.
Collapse
Affiliation(s)
- Hong Jiang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Ziyu Bai
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yongyu Ou
- Beijing Haiyan Pharmaceutical Co., Ltd., Yangtze River Pharmaceutical Group, Beijing, 102206, PR China
| | - Huiling Liu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zilin Si
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yafang Liu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiaoqiong Liu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiaoqing Liu
- Beijing Haiyan Pharmaceutical Co., Ltd., Yangtze River Pharmaceutical Group, Beijing, 102206, PR China.
| | - Zhihao Zhang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
5
|
Exploration in the Mechanism of Zhisou San for the Treatment of Cough Variant Asthma Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1698571. [PMID: 35815290 PMCID: PMC9259218 DOI: 10.1155/2022/1698571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Background Cough variant asthma (CVA) has no definitive diagnosis or pathogenic causes, and there is currently no effective and safe treatment. Methods The network pharmacology was employed to investigate possible targets of Zhisou San (ZSS) in CVA treatment. The main chemical constituents of seven herbs in ZSS were collected based on the TCMSP. To explain the main mechanism, we sequentially screened the targets of each active ingredient and constructed the network of “herb-ingredient-target-disease.” The core targets of ZSS were further confirmed by the molecular docking analysis. Furthermore, pulmonary function, histopathology, and biochemical assays in mice were used to investigate the effect of ZSS on the treatment of CVA. Results A total of 137 active ingredients and 86 potential targets for the ZSS in the treatment of CVA were screened, which were connected with the regulation of inflammatory response and immune balance, such as IL-17 signaling pathway, Th17 cell differentiation, TNF signaling pathway, Toll-like receptor signaling pathway, MAPK signaling pathway, T-cell receptor signaling pathway, Th1 and Th2 cell differentiation, and other signaling pathways closely related to the pathogenesis of CVA. Thereinto, 29 core targets contained 8 of the highest scores and could evidently bind to components such as stigmasterol, quercetin, stemoninine B, luteolin, and β-sitosterol predicted by molecular docking. Furthermore, experiments in vivo were conducted for further validation that ZSS had essential effects on lung function and histopathology as well as the inflammatory state in CVA mice, which was significantly related to regulating the Th17/Treg immune balance to reduce inflammation as the important pharmacological mechanism. Conclusion This study revealed that ZSS has multicomponent and multipathway characteristics of ZSS in the treatment of CVA, which was primarily associated with inflammation and Th17/Treg immune balance. This study provides a scientific foundation for systematically elaborating the pharmacological activities and mechanism of ZSS, as well as explaining the reliability of the TCM compatibility theory.
Collapse
|