1
|
Chen XM, Liu YH, Ji SF, Xue XM, Wang LL, Zhang M, Chang YM, Wang XC. Protective effect of ginsenoside Rd on military aviation noise-induced cochlear hair cell damage in guinea pigs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23965-23981. [PMID: 36331733 DOI: 10.1007/s11356-022-23504-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Noise pollution has become one of the important social hazards that endanger the auditory system of residents, causing noise-induced hearing loss (NIHL). Oxidative stress has a significant role in the pathogenesis of NIHL, in which the silent information regulator 1(SIRT1)/proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling pathway is closely engaged. Ginsenoside Rd (GSRd), a main monomer extract from ginseng plants, has been confirmed to suppress oxidative stress. Therefore, the hypothesis that GSRd may attenuate noise-induced cochlear hair cell loss seemed promising. Forty-eight male guinea pigs were randomly divided into four groups: control, noise exposure, GSRd treatment (30 mg/kg Rd for 10d + noise), and experimental control (30 mg/kg glycerol + noise). The experimental groups received military helicopter noise exposure at 115 dB (A) for 4 h daily for five consecutive days. Hair cell damage was evaluated by using inner ear basilar membrane preparation and scanning electron microscopy. Terminal dUTP nick end labeling (TUNEL) and immunofluorescence staining were conducted. Changes in the SIRT1/PGC-1α signaling pathway and other apoptosis-related markers in the cochleae, as well as oxidative stress parameters, were used as readouts. Loss of outer hair cells, more disordered cilia, prominent apoptosis, and elevated free radical levels were observed in the experimental groups. GSRd treatment markedly mitigated hearing threshold shifts, ameliorated outer hair cell loss and lodging or loss of cilia, and improved apoptosis through decreasing Bcl-2 associated X protein (Bax) expression and increasing Bcl-2 expression. In addition, GSRd alleviated the noise-induced cochlear redox injury by upregulating superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels, decreasing malondialdehyde (MDA) levels, and enhancing the activity of SIRT1 and PGC-1α messenger ribonucleic acid (mRNA) and protein expression. In conclusion, GSRd can improve structural and oxidative damage to the cochleae caused by noise. The underlying mechanisms may be associated with the SIRT1/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Xue-Min Chen
- Department of Aerospace Hygiene, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; State Key Lab of Hearing Science, Ministry of Education; Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Yu-Hui Liu
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, China
- Department of Aviation Medicine, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
- Air Force Health Care Center for Special Services, Hangzhou, China
| | - Shuai-Fei Ji
- Medical School of Chinese PLA, Beijing, China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xin-Miao Xue
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; State Key Lab of Hearing Science, Ministry of Education; Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Lin-Lin Wang
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; State Key Lab of Hearing Science, Ministry of Education; Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Min Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, China
- Department of Aviation Medicine, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Yao-Ming Chang
- Department of Aerospace Hygiene, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Xiao-Cheng Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, China.
- Department of Aviation Medicine, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
Chen XM, Xue XM, Yu N, Guo WW, Yuan SL, Jiang QQ, Yang SM. The Role of Genetic Variants in the Susceptibility of Noise-Induced Hearing Loss. Front Cell Neurosci 2022; 16:946206. [PMID: 35903368 PMCID: PMC9315435 DOI: 10.3389/fncel.2022.946206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
Noised-induced hearing loss (NIHL) is an acquired, progressive neurological damage caused by exposure to intense noise in various environments including industrial, military and entertaining settings. The prevalence of NIHL is much higher than other occupational injuries in industrialized countries. Recent studies have revealed that genetic factors, together with environmental conditions, also contribute to NIHL. A group of genes which are linked to the susceptibility of NIHL had been uncovered, involving the progression of oxidative stress, potassium ion cycling, cilia structure, heat shock protein 70 (HSP70), DNA damage repair, apoptosis, and some other genes. In this review, we briefly summarized the studies primary in population and some animal researches concerning the susceptible genes of NIHL, intending to give insights into the further exploration of NIHL prevention and individual treatment.
Collapse
Affiliation(s)
- Xue-min Chen
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Xin-miao Xue
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Ning Yu
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Wei-wei Guo
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Shuo-long Yuan
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Qing-qing Jiang
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Shi-ming Yang
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| |
Collapse
|
3
|
Xu S, Wang B, Han L, Pu Y, Zhu B, Zhang J. Polymorphisms in the FAS gene are associated with susceptibility to noise-induced hearing loss. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21754-21765. [PMID: 33411277 DOI: 10.1007/s11356-020-12028-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
This study investigated the relationship between genetic polymorphisms in the FAS gene and noise-induced hearing loss (NIHL) risk among Chinese workers exposed to occupational noise, and the molecular mechanism of NIHL caused by noise. In this case-control study, 692 NIHL workers and 650 controls were selected for genotyping of four single nucleotide polymorphisms (SNPs) of the FAS gene. Logistic regression was used to calculate the odds ratio (OR) and 95% confidence interval (CI) of the association of these genetic polymorphisms and NIHL. At the same time, a noise-exposed rat model was constructed to further clarify the effect of noise exposure on fas gene expression and the pathogenic mechanism of NIHL. Two polymorphisms, rs1468063 and rs2862833, were associated with NIHL in the case-control study. Individuals with the rs1468063-TT or rs2862833-AA genotypes had decreased NIHL risk (p < 0.01, p = 0.02, respectively). Compared with the control group, the hearing threshold of the case group of rats increased, while serum MDA, urine 8-OHdG, and fas gene expression increased, but let-7e expression decreased. Genetic polymorphisms in the FAS gene are related to the risk of NIHL in the Chinese population. Noise can cause a large amount of reactive oxygen species (ROS) in the cochlea tissue and blood, which lead to oxidative stress, lipid peroxidation, and DNA damage, further activating the FAS gene, and ultimately leading to hearing loss.
Collapse
Affiliation(s)
- Shouxiang Xu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Boshen Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - Lei Han
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Baoli Zhu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China.
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China.
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Human Paraoxonase-2 (PON2): Protein Functions and Modulation. Antioxidants (Basel) 2021; 10:antiox10020256. [PMID: 33562328 PMCID: PMC7915308 DOI: 10.3390/antiox10020256] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
PON1, PON2, and PON3 belong to a family of lactone hydrolyzing enzymes endowed with various substrate specificities. Among PONs, PON2 shows the highest hydrolytic activity toward many acyl-homoserine lactones (acyl-HL) involved in bacterial quorum-sensing signaling. Accordingly, defense against pathogens, such as Brevundimonas aeruginosa (B. aeruginosa), was postulated to be the principal function of PON2. However, recent findings have highlighted the importance of PON2 in oxidative stress control, inhibition of apoptosis, and the progression of various types of malignancies. This review focuses on all of these aspects of PON2.
Collapse
|
5
|
Costa C, Briguglio G, Giamb� F, Catanoso R, Teodoro M, Caccamo D, Fenga C. Association between oxidative stress biomarkers and PON and GST polymorphisms as a predictor for susceptibility to the effects of pesticides. Int J Mol Med 2020; 45:1951-1959. [DOI: 10.3892/ijmm.2020.4541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/10/2020] [Indexed: 11/06/2022] Open
Affiliation(s)
- Chiara Costa
- Department of Clinical and Experimental Medicine, University of Messina, I‑98125 Messina, Italy
| | - Giusi Briguglio
- Department of Biomedical and Dental Sciences and Morpho‑Functional Imaging, Occupational Medicine Section, University of Messina, I‑98125 Messina, Italy
| | - Federica Giamb�
- Department of Biomedical and Dental Sciences and Morpho‑Functional Imaging, Occupational Medicine Section, University of Messina, I‑98125 Messina, Italy
| | - Rosaria Catanoso
- Department of Biomedical and Dental Sciences and Morpho‑Functional Imaging, Occupational Medicine Section, University of Messina, I‑98125 Messina, Italy
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences and Morpho‑Functional Imaging, Occupational Medicine Section, University of Messina, I‑98125 Messina, Italy
| | - Daniela Caccamo
- Department of Biomedical and Dental Sciences and Morpho‑Functional Imaging, Occupational Medicine Section, University of Messina, I‑98125 Messina, Italy
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morpho‑Functional Imaging, Occupational Medicine Section, University of Messina, I‑98125 Messina, Italy
| |
Collapse
|
6
|
Miao L, Ji J, Wan L, Zhang J, Yin L, Pu Y. An overview of research trends and genetic polymorphisms for noise-induced hearing loss from 2009 to 2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34754-34774. [PMID: 31696427 DOI: 10.1007/s11356-019-06470-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/09/2019] [Indexed: 05/27/2023]
Abstract
Recently, there has been increased studies in noise-induced hearing loss (NIHL). We aimed to make an overview of research trends and genetic polymorphisms for NIHL from 2009 to 2018 with VOSviewer software. A total of 2391 papers were identified for research trends analysis in NIHL and 33 studies identified for a brief review of genetic polymorphisms in human NIHL. The number of publications has been increasing over the past decade. The journal Hearing Research published the most articles (218). The USA contributed the largest number of papers (1042; 43.58%), with the most citations (18,987) and the highest H-index (60). The University of Washington was the most contributive institution. Liberman MC published the most articles (32), and Kujawa SG possessed the highest co-citations (584). Except for high-frequency keywords identified by the software, "prevalence," "oxidative stress," "hair cells," and "cochlear implant" were also the latest research frontiers. HSPA1A rs1043618, HSPA1L rs2227956, PON2 rs12026 and rs7785846, SOD2 rs2855116, KCNE1 rs2070358, KCNQ4 rs34287852, GJB2 rs3751385, PCDH15 rs7095441 and rs11004085, GRHL2 rs1981361, ITGA8 rs10508489, MYH14 rs667907, and POU4F3 rs891969 were the research hotspots and were replicated in independent samples. Inflammation response underlying NIHL has emerged and should be considered as a pioneering field in the future for the prevention of NIHL and conservation of hearing.
Collapse
Affiliation(s)
- Long Miao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Jiahui Ji
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Liu Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
7
|
Open chromatin dynamics in prosensory cells of the embryonic mouse cochlea. Sci Rep 2019; 9:9060. [PMID: 31227770 PMCID: PMC6588700 DOI: 10.1038/s41598-019-45515-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
Hearing loss is often due to the absence or the degeneration of hair cells in the cochlea. Understanding the mechanisms regulating the generation of hair cells may therefore lead to better treatments for hearing disorders. To elucidate the transcriptional control mechanisms specifying the progenitor cells (i.e. prosensory cells) that generate the hair cells and support cells critical for hearing function, we compared chromatin accessibility using ATAC-seq in sorted prosensory cells (Sox2-EGFP+) and surrounding cells (Sox2-EGFP−) from E12, E14.5 and E16 cochlear ducts. In Sox2-EGFP+, we find greater accessibility in and near genes restricted in expression to the prosensory region of the cochlear duct including Sox2, Isl1, Eya1 and Pou4f3. Furthermore, we find significant enrichment for the consensus binding sites of Sox2, Six1 and Gata3—transcription factors required for prosensory development—in the open chromatin regions. Over 2,200 regions displayed differential accessibility with developmental time in Sox2-EGFP+ cells, with most changes in the E12-14.5 window. Open chromatin regions detected in Sox2-EGFP+ cells map to over 48,000 orthologous regions in the human genome that include regions in genes linked to deafness. Our results reveal a dynamic landscape of open chromatin in prosensory cells with potential implications for cochlear development and disease.
Collapse
|
8
|
Levy D, Reichert CO, Bydlowski SP. Paraoxonases Activities and Polymorphisms in Elderly and Old-Age Diseases: An Overview. Antioxidants (Basel) 2019; 8:antiox8050118. [PMID: 31052559 PMCID: PMC6562914 DOI: 10.3390/antiox8050118] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is defined as the accumulation of progressive organ dysfunction. There is much evidence linking the involvement of oxidative stress in the pathogenesis of aging. With increasing age, susceptibility to the development of diseases related to lipid peroxidation and tissue injury increases, due to chronic inflammatory processes, and production of reactive oxygen species (ROS) and free radicals. The paraoxonase (PON) gene family is composed of three members (PON1, PON2, PON3) that share considerable structural homology and are located adjacently on chromosome 7 in humans. The most studied member product is PON1, a protein associated with high-density lipoprotein with paraoxonase/esterase activity. Nevertheless, all the three proteins prevent oxidative stress. The major aim of this review is to highlight the importance of the role of PON enzymes in the aging process, and in the development of the main diseases present in the elderly: cardiovascular disease, diabetes mellitus, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Débora Levy
- Genetic and Molecular Hematology Laboratory (LIM31), Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
| | - Cadiele Oliana Reichert
- Genetic and Molecular Hematology Laboratory (LIM31), Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
| | - Sérgio Paulo Bydlowski
- Genetic and Molecular Hematology Laboratory (LIM31), Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
- Center of Innovation and Translacional Medicine (CIMTRA), Department of Medicine, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
- Instituto Nacional de Ciencia e Tecnologia em Medicina Regenerativa (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, RJ, Brazil.
| |
Collapse
|
9
|
Krasitskaya VV, Bashmakova EE, Dobretsov KG, Orlova NV, Frank LA. [The genetic aspects of occupational hearing impairment]. Vestn Otorinolaringol 2017; 82:71-76. [PMID: 29072670 DOI: 10.17116/otorino201782571-76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This article was designed to be the overview of the current literature publications concerning the identification of the genetic markers of susceptibility to the noise-induced loss of hearing. The analysis of these data has demonstrated that the major gene polymorphisms associated with the development of this pathological condition are localized in the genes encoding for the antioxidant systems, potassium homeostasis, and adhesion molecules as well as in the genes involved in intercellular coupling, the mechanisms underlying the cellular response to stress, activation and regulation of heat shock proteins, and signaling function of the immune system. It is concluded that the further investigations into the genetic aspects of the full-genome sequencing techniques and the search for genomic associations could greatly contribute to the development of personalized medicine and the reduction of risks of occupational noise-induced sensorineural impairment of hearing.
Collapse
Affiliation(s)
- V V Krasitskaya
- Krasnoyarsk Research Centre of the Siberian Division of the Russian Academy of Sciences, Krasnoyarsk, Russia, 660036
| | - E E Bashmakova
- Krasnoyarsk Research Centre of the Siberian Division of the Russian Academy of Sciences, Krasnoyarsk, Russia, 660036
| | - K G Dobretsov
- The Centre for Otorhinolaryngology, Federal Siberian Research and Clinical Centre, Federal Medico-Biological Agency, Krasnoyarsk, Russia, 660037
| | - N V Orlova
- The Centre for Otorhinolaryngology, Federal Siberian Research and Clinical Centre, Federal Medico-Biological Agency, Krasnoyarsk, Russia, 660037
| | - L A Frank
- Krasnoyarsk Research Centre of the Siberian Division of the Russian Academy of Sciences, Krasnoyarsk, Russia, 660036
| |
Collapse
|
10
|
Duan X, Yang Y, Wang S, Feng X, Wang T, Wang P, Liu S, Li L, Li G, Yao W, Cui L, Wang W. Cross-sectional associations between genetic polymorphisms in metabolic enzymes and longer leukocyte telomere length induced by omethoate. Oncotarget 2017; 8:80638-80644. [PMID: 29113331 PMCID: PMC5655226 DOI: 10.18632/oncotarget.20971] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022] Open
Abstract
Purpose This study aimed to explore the effects of genetic polymorphisms in metabolic enzymes on relative telomere length changes and explore the mechanism of canceration induced by omethoate. Materials and Methods 180 long-term omethoate-exposed workers and 115 healthy controls were recruited. Real-time PCR method was applied to determine the relative telomere length in peripheral blood leukocytes DNA, and Six polymorphic loci of GSTT1(+/−), GSTM1(+/−), GSTP1 rs1695, CYP2E1 rs6413432, CYP2E1 rs3813867 and PON2 rs12026 were detected by polymerase chain reaction and restriction fragment length polymorphism method; Multiple linear regression was conducted to explore the effects of omethoate exposure and genetic polymorphisms on the telomere length. Results The relative telomere lengths in the control group (0.94 [0.76, 1.32]) were significantly shorter than that in the exposure group (1.50 [1.11, 2.57]) (Z = 7.910, P < 0.001). Univariate analysis showed that the relative telomere lengths of the GSTM1-deletion individuals were significantly longer than that of the non - deletion genotype in the control group (Z = 2.911, P = 0.004), and the relative telomere lengths of GSTP1 rs1695 polymorphism locus (GG+AG) genotype individuals were longer than that of AA genotype in the exposure group. The difference was statistically significant (Z = 2.262, P = 0.024). Multivariate analysis found that pesticide-exposure (b = 0.524, P < 0.001) and GSTM1 polymorphism (b = −0.136, P = 0.029) had an impact on telomere length. Conclusions The relative telomere lengths of omethoate-exposure workers were longer than that in the control population. Also GSTM1 genetic polymorphism may influence the changes of the telomere length induced by omethoate.
Collapse
Affiliation(s)
- Xiaoran Duan
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Sihua Wang
- Department of Occupational Health, Henan Institute for Occupational Medicine, Zhengzhou, China
| | - Xiaolei Feng
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Tuanwei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Pengpeng Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Suxiang Liu
- Clinical Department, Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Lei Li
- Clinical Department, Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Guoyu Li
- Clinical Department, Zhengzhou Institute of Occupational Health, Zhengzhou, China
| | - Wu Yao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Liuxin Cui
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|