1
|
Zupanc C, Franko A, Štrbac D, Kovač V, Dolžan V, Goričar K. Serum Calretinin and Genetic Variability as a Prognostic and Predictive Factor in Malignant Mesothelioma. Int J Mol Sci 2023; 25:190. [PMID: 38203360 PMCID: PMC10778798 DOI: 10.3390/ijms25010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Calretinin is a promising diagnostic biomarker for malignant mesothelioma (MM), but less is known about its prognostic role. Our aim was to evaluate the association between serum calretinin concentration or genetic factors and the survival or outcome of cisplatin-based chemotherapy in MM. Our study included 265 MM patients. Serum calretinin concentration was determined using ELISA. Patients were genotyped for seven polymorphisms in CALB2, E2F2, MIR335, NRF1, and SEPTIN7 using competitive allele-specific PCR. Nonparametric tests, logistic regression, and survival analysis were used for statistical analysis. Higher serum calretinin concentration was associated with shorter progression-free (PFS) (HR = 1.18 (1.02-1.37), p = 0.023) and overall survival (OS) (HR = 1.20 (1.03-1.41), p = 0.023), but the association was not significant after adjusting for clinical factors (HR = 1.05 (0.85-1.31), p = 0.653 and HR = 1.06 (0.84-1.34), p = 0.613, respectively). SEPTIN7 rs3801339 and MIR335 rs3807348 were associated with survival even after adjustment (HR = 1.76 (1.17-2.64), p = 0.007 and HR = 0.65 (0.45-0.95), p = 0.028, respectively). Calretinin concentration was higher in patients who progressed after treatment with cisplatin-based chemotherapy (1.68 vs. 0.45 ng/mL, p = 0.001). Calretinin concentration above 0.89 ng/mL was associated with shorter PFS and OS from the start of chemotherapy (HR = 1.88 (1.28-2.77), p = 0.001 and HR = 1.91 (1.22-2.97), p = 0.004, respectively), even after adjusting for clinical factors (p < 0.05). MIR335 rs3807348 was associated with a better response to chemotherapy (OR = 2.69 (1.17-6.18), p = 0.020). We showed that serum calretinin is associated with survival and chemotherapy treatment outcomes in MM and could serve as a predictive biomarker.
Collapse
Affiliation(s)
- Cita Zupanc
- Military Medical Unit-Slovenian Army, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.F.); (D.Š.); (V.K.)
| | - Alenka Franko
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.F.); (D.Š.); (V.K.)
- Clinical Institute of Occupational Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Danijela Štrbac
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.F.); (D.Š.); (V.K.)
- Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Viljem Kovač
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.F.); (D.Š.); (V.K.)
- Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
2
|
Chiaro J, Antignani G, Feola S, Feodoroff M, Martins B, Cojoc H, Russo S, Fusciello M, Hamdan F, Ferrari V, Ciampi D, Ilonen I, Räsänen J, Mäyränpää M, Partanen J, Koskela S, Honkanen J, Halonen J, Kuryk L, Rescigno M, Grönholm M, Branca RM, Lehtiö J, Cerullo V. Development of mesothelioma-specific oncolytic immunotherapy enabled by immunopeptidomics of murine and human mesothelioma tumors. Nat Commun 2023; 14:7056. [PMID: 37923723 PMCID: PMC10624665 DOI: 10.1038/s41467-023-42668-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumor with a poor prognosis. As the available therapeutic options show a lack of efficacy, novel therapeutic strategies are urgently needed. Given its T-cell infiltration, we hypothesized that MPM is a suitable target for therapeutic cancer vaccination. To date, research on mesothelioma has focused on the identification of molecular signatures to better classify and characterize the disease, and little is known about therapeutic targets that engage cytotoxic (CD8+) T cells. In this study we investigate the immunopeptidomic antigen-presented landscape of MPM in both murine (AB12 cell line) and human cell lines (H28, MSTO-211H, H2452, and JL1), as well as in patients' primary tumors. Applying state-of-the-art immuno-affinity purification methodologies, we identify MHC I-restricted peptides presented on the surface of malignant cells. We characterize in vitro the immunogenicity profile of the eluted peptides using T cells from human healthy donors and cancer patients. Furthermore, we use the most promising peptides to formulate an oncolytic virus-based precision immunotherapy (PeptiCRAd) and test its efficacy in a mouse model of mesothelioma in female mice. Overall, we demonstrate that the use of immunopeptidomic analysis in combination with oncolytic immunotherapy represents a feasible and effective strategy to tackle untreatable tumors.
Collapse
Affiliation(s)
- Jacopo Chiaro
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014, Helsinki, Finland
| | - Gabriella Antignani
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014, Helsinki, Finland
| | - Sara Feola
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014, Helsinki, Finland
| | - Michaela Feodoroff
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Beatriz Martins
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014, Helsinki, Finland
| | - Hanne Cojoc
- Valo Therapeutics Oy, Viikinkaari 6, Helsinki, Finland, 00790, Helsinki, Finland
| | - Salvatore Russo
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014, Helsinki, Finland
| | - Manlio Fusciello
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014, Helsinki, Finland
| | - Firas Hamdan
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014, Helsinki, Finland
| | - Valentina Ferrari
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Daniele Ciampi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Ilkka Ilonen
- Department of General Thoracic and Esophageal Surgery, Heart and Lung Center, Helsinki University Hospital, 00029, Helsinki, Finland
- Department of Surgery, Clinicum, University of Helsinki, 00029, Helsinki, Finland
| | - Jari Räsänen
- Department of General Thoracic and Esophageal Surgery, Heart and Lung Center, Helsinki University Hospital, 00029, Helsinki, Finland
- Department of Surgery, Clinicum, University of Helsinki, 00029, Helsinki, Finland
| | - Mikko Mäyränpää
- Department of Pathology, Helsinki University Hospital, Helsinki, Finland
| | - Jukka Partanen
- Research & Development Finnish Red Cross Blood Service Helsinki, Kivihaantie 7, 00310, Helsinki, Finland
| | - Satu Koskela
- Finnish Red Cross Blood Service Biobank, Härkälenkki 13, 01730, Vantaa, Finland
| | - Jarno Honkanen
- Finnish Red Cross Blood Service Biobank, Härkälenkki 13, 01730, Vantaa, Finland
| | - Jussi Halonen
- Finnish Red Cross Blood Service Biobank, Härkälenkki 13, 01730, Vantaa, Finland
| | - Lukasz Kuryk
- Valo Therapeutics Oy, Viikinkaari 6, Helsinki, Finland, 00790, Helsinki, Finland
- Department of Virology, National Institute of Public Health NIH-National Research Institute, 24 Chocimska Str., 00-791, Warsaw, Poland
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Mikaela Grönholm
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014, Helsinki, Finland
| | - Rui M Branca
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Janne Lehtiö
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Vincenzo Cerullo
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790, Helsinki, Finland.
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710, Helsinki, Finland.
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014, Helsinki, Finland.
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University Federico II, 80131, Naples, Italy.
| |
Collapse
|
3
|
Shek D, Gloss B, Lai J, Ma L, Zhang HE, Carlino MS, Mahajan H, Nagrial A, Gao B, Read SA, Ahlenstiel G. Identification and Characterisation of Infiltrating Immune Cells in Malignant Pleural Mesothelioma Using Spatial Transcriptomics. Methods Protoc 2023; 6:mps6020035. [PMID: 37104017 PMCID: PMC10146955 DOI: 10.3390/mps6020035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Increasing evidence strongly supports the key role of the tumour microenvironment in response to systemic therapy, particularly immune checkpoint inhibitors (ICIs). The tumour microenvironment is a complex tapestry of immune cells, some of which can suppress T-cell immunity to negatively impact ICI therapy. The immune component of the tumour microenvironment, although poorly understood, has the potential to reveal novel insights that can impact the efficacy and safety of ICI therapy. Successful identification and validation of these factors using cutting-edge spatial and single-cell technologies may enable the development of broad acting adjunct therapies as well as personalised cancer immunotherapies in the near future. In this paper we describe a protocol built upon Visium (10x Genomics) spatial transcriptomics to map and characterise the tumour-infiltrating immune microenvironment in malignant pleural mesothelioma. Using ImSig tumour-specific immune cell gene signatures and BayesSpace Bayesian statistical methodology, we were able to significantly improve immune cell identification and spatial resolution, respectively, improving our ability to analyse immune cell interactions within the tumour microenvironment.
Collapse
|
4
|
Identification of Novel Diagnostic Markers for Malignant Pleural Mesothelioma Using a Reverse Translational Approach Based on a Rare Synchronous Tumor. Diagnostics (Basel) 2022; 12:diagnostics12020316. [PMID: 35204409 PMCID: PMC8871196 DOI: 10.3390/diagnostics12020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
Although the routine use of immunohistochemistry has improved the accuracy of histopathologic diagnosis in clinical practice, new methods for discovering novel diagnostic markers are still needed. We sought new diagnostic markers for malignant pleural mesothelioma (MPM) using a reverse translational approach with limited archival tissues from a very rare case. Total RNA extracted from formalin-fixed paraffin-embedded (FFPE) tissues of a synchronous collision tumor consisting of MPM and pulmonary adenocarcinoma (PAC) was employed for gene expression profiling (GEP) analysis. Among the 54 genes selected by GEP analysis, we finally identified the following two candidate MPM marker genes: PHGDH and TRIM29. Immunohistochemical analysis of 48 MM and 20 PAC cases showed that both PHGDH and TRIM29 had sensitivity and specificity almost equivalent to those of calretinin (sensitivity 50% and 46% vs. 63%, and specificity 95% and 100% vs. 100%, respectively). Importantly, of the 23 epithelioid MMs, all 3 calretinin-negative cases were positive for TRIM29. These two markers may be diagnostically useful for immunohistochemical distinction between MPMs and PACs. This successful reverse translational approach based on FFPE samples from one very rare case encourages the further use of such samples for the development of novel diagnostic markers.
Collapse
|
5
|
Mahfuz AMUB, Zubair-Bin-Mahfuj AM, Podder DJ. A network-biology approach for identification of key genes and pathways involved in malignant peritoneal mesothelioma. Genomics Inform 2021; 19:e16. [PMID: 34261301 PMCID: PMC8261271 DOI: 10.5808/gi.21019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/15/2021] [Indexed: 11/20/2022] Open
Abstract
Even in the current age of advanced medicine, the prognosis of malignant peritoneal mesothelioma (MPM) remains abysmal. Molecular mechanisms responsible for the initiation and progression of MPM are still largely not understood. Adopting an integrated bioinformatics approach, this study aims to identify the key genes and pathways responsible for MPM. Genes that are differentially expressed in MPM in comparison with the peritoneum of healthy controls have been identified by analyzing a microarray gene expression dataset. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of these differentially expressed genes (DEG) were conducted to gain a better insight. A protein-protein interaction (PPI) network of the proteins encoded by the DEGs was constructed using STRING and hub genes were detected analyzing this network. Next, the transcription factors and miRNAs that have possible regulatory roles on the hub genes were detected. Finally, survival analyses based on the hub genes were conducted using the GEPIA2 web server. Six hundred six genes were found to be differentially expressed in MPM; 133 are upregulated and 473 are downregulated. Analyzing the STRING generated PPI network, six dense modules and 12 hub genes were identified. Fifteen transcription factors and 10 miRNAs were identified to have the most extensive regulatory functions on the DEGs. Through bioinformatics analyses, this work provides an insight into the potential genes and pathways involved in MPM.
Collapse
Affiliation(s)
- A. M. U. B. Mahfuz
- Department of Biotechnology & Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka 1209, Bangladesh
| | | | - Dibya Joti Podder
- Department of General Surgery, Sher-E-Bangla Medical College, Barishal 8200, Bangladesh
| |
Collapse
|
6
|
Cakiroglu E, Senturk S. Genomics and Functional Genomics of Malignant Pleural Mesothelioma. Int J Mol Sci 2020; 21:ijms21176342. [PMID: 32882916 PMCID: PMC7504302 DOI: 10.3390/ijms21176342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare, aggressive cancer of the mesothelial cells lining the pleural surface of the chest wall and lung. The etiology of MPM is strongly associated with prior exposure to asbestos fibers, and the median survival rate of the diagnosed patients is approximately one year. Despite the latest advancements in surgical techniques and systemic therapies, currently available treatment modalities of MPM fail to provide long-term survival. The increasing incidence of MPM highlights the need for finding effective treatments. Targeted therapies offer personalized treatments in many cancers. However, targeted therapy in MPM is not recommended by clinical guidelines mainly because of poor target definition. A better understanding of the molecular and cellular mechanisms and the predictors of poor clinical outcomes of MPM is required to identify novel targets and develop precise and effective treatments. Recent advances in the genomics and functional genomics fields have provided groundbreaking insights into the genomic and molecular profiles of MPM and enabled the functional characterization of the genetic alterations. This review provides a comprehensive overview of the relevant literature and highlights the potential of state-of-the-art genomics and functional genomics research to facilitate the development of novel diagnostics and therapeutic modalities in MPM.
Collapse
Affiliation(s)
- Ece Cakiroglu
- Izmir Biomedicine and Genome Center, Izmir 35340, Turkey;
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Turkey
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Izmir 35340, Turkey;
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Turkey
- Correspondence:
| |
Collapse
|
7
|
Taghizadeh H, Zöchbauer‐Müller S, Mader RM, Müllauer L, Klikovits T, Bachleitner‐Hofmann T, Hoda MA, Prager GW. Gender differences in molecular-guided therapy recommendations for metastatic malignant mesothelioma. Thorac Cancer 2020; 11:1979-1988. [PMID: 32438515 PMCID: PMC7327667 DOI: 10.1111/1759-7714.13491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Malignant mesothelioma is an aggressive cancer and has a poor prognosis. Here, we analyzed the feasibility, molecular and gender aspects of targeted therapy recommendations for malignant mesothelioma based on the individual molecular tumor profile. METHODS In this single-center, real-world retrospective analysis of our platform for precision medicine, we evaluated the molecular profiling of malignant mesothelioma in 14 patients, including nine men and five women. Tumor samples of the patients were examined with a 50 gene next-generation sequencing (NGS) panel, immunohistochemistry, and fluorescence in situ hybridization, to detect possible molecular aberrations which may be targeted by off-label therapy custom-tailored to the individual patient. RESULTS In total, we identified 11 mutations in six of the 14 patients, including BAP1, FANCA, NF1, NF2, PD-L1, RAD52D, SETD2, SRC, and TP53. No mutation was detected in eight of the 14 patients. Targeted therapy was recommended for 11 out of the 14 patients. All recommendations were mainly based on the molecular characteristics determined by immunohistochemistry. Targeted therapy recommendations were significantly more often for men than women due to gender-specific differences in PDGFRα expression. Eventually, four patients received the targeted therapy, of whom one patient subsequently achieved stable disease. CONCLUSIONS Our observations suggest that a molecular-guided treatment approach is feasible for the management of advanced malignant mesothelioma. Our analysis revealed gender specific differences in PDGFRα expression that should be further evaluated in clinical trials.
Collapse
Affiliation(s)
- Hossein Taghizadeh
- Division of Clinical Oncology, Department of Medicine IMedical University of ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Sabine Zöchbauer‐Müller
- Division of Clinical Oncology, Department of Medicine IMedical University of ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Robert M. Mader
- Division of Clinical Oncology, Department of Medicine IMedical University of ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Leonhard Müllauer
- Clinical Institute of PathologyMedical University ViennaViennaAustria
| | - Thomas Klikovits
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Division of Thoracic Surgery, Department of SurgeryMedical University of ViennaViennaAustria
| | - Thomas Bachleitner‐Hofmann
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Division of Visceral Surgery, Department of SurgeryMedical University of ViennaViennaAustria
| | - Mir A. Hoda
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Division of Thoracic Surgery, Department of SurgeryMedical University of ViennaViennaAustria
| | - Gerald W. Prager
- Division of Clinical Oncology, Department of Medicine IMedical University of ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| |
Collapse
|
8
|
Singh A, Bhattacharyya N, Srivastava A, Pruett N, Ripley RT, Schrump DS, Hoang CD. MicroRNA-215-5p Treatment Suppresses Mesothelioma Progression via the MDM2-p53-Signaling Axis. Mol Ther 2019; 27:1665-1680. [PMID: 31227395 PMCID: PMC6731470 DOI: 10.1016/j.ymthe.2019.05.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 05/14/2019] [Accepted: 05/19/2019] [Indexed: 01/20/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an incurable, aggressive neoplasm with distinctive features, including preservation of wild-type p53, irrespective of histologic subtype. We posited that this consistent molecular characteristic represents an underexploited therapeutic target that can be approached by leveraging biologic effects of microRNA (miRNA). The Cancer Genome Atlas was surveyed to identify p53-responsive prognostic miRNA(s) in MPM. Using patient samples, in vitro MPM cell lines, and murine tumor xenograft models, we verified specific gene pathways targeted by these miRNAs, and we examined their therapeutic effects. miR-215-5p is a poor prognosis miRNA downregulated in MPM tissues, which has not been recognized previously. When miR-215-5p was ectopically re-expressed in MPM cells and delivered in vivo to tumor xenografts, it exerted significant cell killing by activating p53 function and inducing apoptosis. The mechanistic basis for this effect is due to combinatorial effects of a positive feedback loop of miR-215-MDM2-p53 signaling, additional mouse double minute 2 (MDM2)-p53 positive feedback loop(s) with other miRNAs such as miR-145-5p, and suppression of diverse gene targets associated with cell cycle dynamics not previously drug treatable in MPM clinical studies. Our results suggest a potential pathophysiologic role for and therapeutic significance of miR-215-5p in MPM.
Collapse
Affiliation(s)
- Anand Singh
- Thoracic Surgery Branch, National Cancer Institute, NIH, CCR and The Clinical Center, Bethesda, MD 20892, USA
| | - Nisan Bhattacharyya
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | | | - Nathanael Pruett
- Thoracic Surgery Branch, National Cancer Institute, NIH, CCR and The Clinical Center, Bethesda, MD 20892, USA
| | - R Taylor Ripley
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - David S Schrump
- Thoracic Surgery Branch, National Cancer Institute, NIH, CCR and The Clinical Center, Bethesda, MD 20892, USA
| | - Chuong D Hoang
- Thoracic Surgery Branch, National Cancer Institute, NIH, CCR and The Clinical Center, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Hoffmann PR, Hoffmann FW, Premeaux TA, Fujita T, Soprana E, Panigada M, Chew GM, Richard G, Hindocha P, Menor M, Khadka VS, Deng Y, Moise L, Ndhlovu LC, Siccardi A, Weinberg AD, De Groot AS, Bertino P. Multi-antigen Vaccination With Simultaneous Engagement of the OX40 Receptor Delays Malignant Mesothelioma Growth and Increases Survival in Animal Models. Front Oncol 2019; 9:720. [PMID: 31428586 PMCID: PMC6688537 DOI: 10.3389/fonc.2019.00720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/19/2019] [Indexed: 01/09/2023] Open
Abstract
Malignant Mesothelioma (MM) is a rare and highly aggressive cancer that develops from mesothelial cells lining the pleura and other internal cavities, and is often associated with asbestos exposure. To date, no effective treatments have been made available for this pathology. Herein, we propose a novel immunotherapeutic approach based on a unique vaccine targeting a series of antigens that we found expressed in different MM tumors, but largely undetectable in normal tissues. This vaccine, that we term p-Tvax, is comprised of a series of immunogenic peptides presented by both MHC-I and -II to generate robust immune responses. The peptides were designed using in silico algorithms that discriminate between highly immunogenic T cell epitopes and other harmful epitopes, such as suppressive regulatory T cell epitopes and autoimmune epitopes. Vaccination of mice with p-Tvax led to antigen-specific immune responses that involved both CD8+ and CD4+ T cells, which exhibited cytolytic activity against MM cells in vitro. In mice carrying MM tumors, p-Tvax increased tumor infiltration of CD4+ T cells. Moreover, combining p-Tvax with an OX40 agonist led to decreased tumor growth and increased survival. Mice treated with this combination immunotherapy displayed higher numbers of tumor-infiltrating CD8+ and CD4+ T cells and reduced T regulatory cells in tumors. Collectively, these data suggest that the combination of p-Tvax with an OX40 agonist could be an effective strategy for MM treatment.
Collapse
Affiliation(s)
- Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Fukun W Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Thomas A Premeaux
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Tsuyoshi Fujita
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Elisa Soprana
- Department of Molecular Immunology, San Raffaele University and Research Institute, Milan, Italy
| | - Maddalena Panigada
- Department of Molecular Immunology, San Raffaele University and Research Institute, Milan, Italy
| | - Glen M Chew
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | | | | | - Mark Menor
- Bioinformatics Core, Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Vedbar S Khadka
- Bioinformatics Core, Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Youping Deng
- Bioinformatics Core, Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Lenny Moise
- EpiVax, Inc., Providence, RI, United States.,Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Lishomwa C Ndhlovu
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Antonio Siccardi
- Department of Molecular Immunology, San Raffaele University and Research Institute, Milan, Italy
| | - Andrew D Weinberg
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Anne S De Groot
- EpiVax, Inc., Providence, RI, United States.,Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Pietro Bertino
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| |
Collapse
|
10
|
Zhang L, Singh A, Plaisier C, Pruett N, Ripley RT, Schrump DS, Hoang CD. Metadherin Is a Prognostic Apoptosis Modulator in Mesothelioma Induced via NF-κB-Mediated Signaling. Transl Oncol 2019; 12:859-870. [PMID: 31054476 PMCID: PMC6500914 DOI: 10.1016/j.tranon.2019.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022] Open
Abstract
Therapies against malignant pleural mesothelioma (MPM) have yielded disappointing results, in part, because pathologic mechanisms remain obscure. In searching for rational molecular targets, we identified metadherin (MTDH), a multifunctional gene associated with several tumor types but previously unrecognized in MPM. Cox proportional hazards regression analysis delineated associations between higher MTDH expression and lower patient survival from three independent MPM cohorts (n = 349 patients). Through in vitro assays with overexpression and downregulation constructs in MPM cells, we characterized the role of MTDH. We confirmed in vivo the phenotype of altered MTDH expression in a murine xenograft model. Transcriptional regulators of MTDH were identified by chromatin immunoprecipitation. Overexpression of both MTDH mRNA (12-fold increased) and protein levels was observed in tumor tissues. MTDH stable overexpression significantly augmented proliferation, invasiveness, colony formation, chemoresistance, and an antiapoptosis phenotype, while its suppression showed opposite effects in MPM cells. Interestingly, NF-κB and c-Myc (in a feed-forward loop motif) contributed to modulating MTDH expression. Knockdown of MTDH expression profoundly retarded xenograft tumor growth. Thus, our findings support the notion that MTDH integrates upstream signals from certain transcription factors and mediates pathogenic interactions contributing to MPM traits. MTDH represents a new MPM-associated gene that can contribute to insights of MPM biology and, as such, suggest other treatment strategies.
Collapse
Affiliation(s)
- Li Zhang
- Thoracic Surgery Branch, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Anand Singh
- Thoracic Surgery Branch, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Nathanael Pruett
- Thoracic Surgery Branch, NCI, National Institutes of Health, Bethesda, MD, USA
| | - R Taylor Ripley
- Dept. of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - David S Schrump
- Thoracic Surgery Branch, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Chuong D Hoang
- Thoracic Surgery Branch, NCI, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Jean D, Jaurand MC. Mesotheliomas in Genetically Engineered Mice Unravel Mechanism of Mesothelial Carcinogenesis. Int J Mol Sci 2018; 19:E2191. [PMID: 30060470 PMCID: PMC6121615 DOI: 10.3390/ijms19082191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022] Open
Abstract
Malignant mesothelioma (MM), a rare and severe cancer, mainly caused as a result of past-asbestos exposure, is presently a public health concern. Current molecular studies aim to improve the outcome of the disease, providing efficient therapies based on the principles of precision medicine. To model the molecular profile of human malignant mesothelioma, animal models have been developed in rodents, wild type animals and genetically engineered mice harbouring mutations in tumour suppressor genes, especially selecting genes known to be inactivated in human malignant mesothelioma. Animals were either exposed or not exposed to asbestos or to other carcinogenic fibres, to understand the mechanism of action of fibres at the molecular level, and the role of the selected genes in mesothelial carcinogenesis. The aim of the manuscript was to compare mesothelioma models to human malignant mesothelioma and to specify the clue genes playing a role in mesothelial carcinogenesis. Collectively, MM models recapitulate the clinical features of human MM. At least two altered genes are needed to induce malignant mesothelioma in mice. Two pathways regulated by Cdkn2a and Trp53 seem independent key players in mesothelial carcinogenesis. Other genes and pathways appear as bona fide modulators of the neoplastic transformation.
Collapse
Affiliation(s)
- Didier Jean
- Inserm, UMR-1162, Génomique Fonctionnelle des Tumeurs Solides, F-75010 Paris, France.
- Université Paris Descartes, Labex Immuno-Oncologie, Sorbonne Paris Cité, F-75000 Paris, France.
- Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, F-75010 Paris, France.
- Université Paris 13, Sorbonne Paris Cité, F-93206 Saint-Denis, France.
| | - Marie-Claude Jaurand
- Inserm, UMR-1162, Génomique Fonctionnelle des Tumeurs Solides, F-75010 Paris, France.
- Université Paris Descartes, Labex Immuno-Oncologie, Sorbonne Paris Cité, F-75000 Paris, France.
- Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, F-75010 Paris, France.
- Université Paris 13, Sorbonne Paris Cité, F-93206 Saint-Denis, France.
| |
Collapse
|
12
|
Pang Y, Hou X, Yang C, Liu Y, Jiang G. Advances on chimeric antigen receptor-modified T-cell therapy for oncotherapy. Mol Cancer 2018; 17:91. [PMID: 29769134 PMCID: PMC5956614 DOI: 10.1186/s12943-018-0840-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023] Open
Abstract
Tumor treatment is still complicated in the field of medicine. Tumor immunotherapy has been the most interesting research field in cancer therapy. Application of chimeric antigen receptor T (CAR-T) cell therapy has recently achieved excellent clinical outcome in patients, especially those with CD19-positive hematologic malignancies. This phenomenon has induced intense interest to develop CAR-T cell therapy for cancer, especially for solid tumors. However, the performance of CAR-T cell treatment in solid tumor is not as satisfactory as that in hematologic disease. Clinical studies on some neoplasms, such as glioblastoma, ovarian cancer, and cholangiocarcinoma, have achieved desirable outcome. This review describes the history and evolution of CAR-T, generalizes the structure and preparation of CAR-T, and summarizes the latest advances on CAR-T cell therapy in different tumor types. The last section presents the current challenges and prospects of CAR-T application to provide guidance for subsequent research.
Collapse
Affiliation(s)
- Yanyu Pang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Xiaoyang Hou
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Chunsheng Yang
- Department of Dermatology, Affiliated Huai'an Hospital of Xuzhou Medical University, the Second People's Hospital of Huai'an, Huai'an, 223002, China
| | - Yanqun Liu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|