1
|
Mollazadeh S, Abdolahzadeh N, Moghbeli M, Arab F, Saburi E. The crosstalk between non-coding RNA polymorphisms and resistance to lung cancer therapies. Heliyon 2023; 9:e20652. [PMID: 37829813 PMCID: PMC10565774 DOI: 10.1016/j.heliyon.2023.e20652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Lung cancer (LC) is one of the most common cancer-related mortality in the world. Even with intensive multimodality therapies, lung cancer has a poor prognosis and a high morbidity rate. This review focused on the role of non-coding RNA polymorphisms such as lncRNAs and miRNAs in the resistance to LC therapies, which could open promising avenue for better therapeutic response. Of note, there is currently no valid biomarker to predict lung cancer sensitivity in patients during treatment. Since genetic variations cause many challenges in treating patients, genotyping of known polymorphisms must be thoroughly explored to find desirable treatment platforms. With this knowledge, individualized treatments could become more possible in management of LC.
Collapse
Affiliation(s)
- Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Negar Abdolahzadeh
- Department of Advanced Sciences and Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Meysam Moghbeli
- Medical Genetics and Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Arab
- Medical Genetics and Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Chen YX, Chen J, Yin JY, Zhou HH, He BM, Liu ZQ. Non-Coding RNA Polymorphisms (rs2910164 and rs1333049) Associated With Prognosis of Lung Cancer Under Platinum-Based Chemotherapy. Front Pharmacol 2021; 12:709528. [PMID: 34603024 PMCID: PMC8481925 DOI: 10.3389/fphar.2021.709528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose: Lung cancer is the largest cause of cancer deaths in the world. Platinum-based chemotherapy is a foundation of first-line chemotherapy. However, the prognosis of lung cancer treated with platinum-based chemotherapy is still a challenge. Single nucleotide polymorphism of non-coding RNA has the potential to be a biomarker, but its effectiveness has yet to be comprehensively assessed. In this study, we explored the association between polymorphisms of non-coding RNA and prognosis of lung cancer patients receiving platinum-based chemotherapy. Materials and Methods: For 446 lung cancer patients receiving platinum-based chemotherapy, 22 single nucleotide polymorphisms of microRNA and long noncoding RNA were genotyped by MALDI-TOF mass spectrometry. Cox regression analysis, Kaplan-Meier method, and long-rank test have been performed to assess the association of overall and progression-free survival with polymorphisms. Results: In the additive and dominant models, genetic polymorphism of ANRIL rs1333049 (G > C) was significantly associated with progression-free survival. Additive model: CC vs GC vs GG [HR = 0.84, p = 0.021, 95% CI (0.73–0.97)]; Recessive model: CC vs GG + GC [HR = 0.77, p = 0.026, 95% CI (0.61–0.97)]. In the dominant model, compared with the CC genotype patients, lower risk of death [HR = 0.81, p = 0.036, 95% CI (0.66–0.99)] and lower risk of progression [HR = 0.81, p = 0.040, 95% CI (0.67–0.99)] have been observed on the patients with CG or GG genotype in miR-146A rs2910164. Conclusion: Our research demonstrated the potential of using ANRIL rs1333049 (G > C) and miR-146A rs2910164 (C > G) as biomarkers to support the prediction of a better prognosis for lung cancer patients receiving platinum-based chemotherapy.
Collapse
Affiliation(s)
- Yi-Xin Chen
- Hunan Key Laboratory of Pharmacogenetics, Department of Clinical Pharmacology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Juan Chen
- Departments of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Ji-Ye Yin
- Hunan Key Laboratory of Pharmacogenetics, Department of Clinical Pharmacology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Hong-Hao Zhou
- Hunan Key Laboratory of Pharmacogenetics, Department of Clinical Pharmacology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Bai-Mei He
- Departments of Gerontology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao-Qian Liu
- Hunan Key Laboratory of Pharmacogenetics, Department of Clinical Pharmacology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| |
Collapse
|
3
|
Association between microRNA-146a, -499a and -196a-2 SNPs and non-small cell lung cancer: a case-control study involving 2249 subjects. Biosci Rep 2021; 41:227816. [PMID: 33554246 PMCID: PMC7890400 DOI: 10.1042/bsr20201158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/15/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNA (miR) acts as a negative regulator of gene expression. Many literatures have suggested that miRs may be involved in the process of cell proliferation, inflammation, oxidative stress, energy metabolism and epithelial–mesenchymal transition. Thus, miRs may be implicated in the occurrence of non-small cell lung cancer (NSCLC). In the current investigation, we included 2249 subjects (1193 NSCLC patients and 1056 controls) and designed a study to identify the relationship of miR-146a rs2910164 C/G, -499a rs3746444 A/G and -196a-2 rs11614913 T/C with the risk of NSCLC. The risk factors (e.g., body mass index (BMI), sex, smoking, drinking and age) was used to adjust the odds ratios (ORs) and 95% confidence intervals (CIs). After conducting a power value assessment, we did not confirm that the miR-single nucleotide polymorphisms (SNPs) genotypic distributions were different in NSCLC cases and controls. However, the association of miR-196a-2 rs11614913 with a decreased risk of NSCLC was identified in the female subgroup (adjusted P=0.005, power = 0.809 for TC vs. TT, and adjusted P=0.004, power = 0.849 for CC/TC vs. TT). In addition, gene–gene interaction analysis showed that rs11614913 TC/3746444 AA and rs11614913 CC/rs3746444 AA could also reduce the susceptibility to NSCLC (rs11614913 TC/rs3746444 AA vs. rs11614913 TT/rs3746444 AA, P=0.001, power = 0.912 and rs11614913 CC/rs3746444 AA vs. rs11614913 TT/rs3746444 AA, P=0.003, power = 0.836). In conclusion, in overall comparisons, we did not confirm that the rs2910164, rs3746444, and rs11614913 SNPs genotypic distributions were different in NSCLC cases and controls. However, this case–control study demonstrates that miR-196a-2 rs11614913 may be a protective factor for the development of NSCLC among female patients.
Collapse
|
4
|
Wang YY, Zhang HY, Jiang WJ, Liu F, Li L, Deng SM, He ZY, Wang YZ. Genetic polymorphisms in pri-let-7a-2 are associated with ischemic stroke risk in a Chinese Han population from Liaoning, China: a case-control study. Neural Regen Res 2021; 16:1302-1307. [PMID: 33318409 PMCID: PMC8284288 DOI: 10.4103/1673-5374.301019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ischemic stroke is a complicated disease, and its pathogenesis has been attributed to the occurrence of genetic polymorphisms. Evidence has suggested that the microRNA let-7a is involved in the pathogenesis of ischemic stroke. Pri-miRNA is the primary transcript, which undergoes several processing steps to generate pre-miRNA and, later, mature miRNAs. In this case-control study, we analyzed the distribution of pri-let-7a-2 variants in patients at a high risk for ischemic stroke and the interactions of pri-let-7a-2 variants and environmental factors. Blood samples and clinical information were collected from 1086 patients with ischemic stroke and 836 healthy controls between December 2013 and December 2015 at the First Affiliated Hospital of China Medical University. We found that the rs1143770 CC genotype and the C allele were associated with a decreased risk of ischemic stroke, whereas the rs629367 CC genotype was associated with an increased risk for ischemic stroke. Moreover, these two single-nucleotide polymorphisms were in linkage disequilibrium in this study sample. We analyzed gene-environment interactions and found that rs1143770 exerted a combined effect on the pathogenesis of ischemic stroke, together with alcohol use, smoking, and a history of hypertension. Therefore, the detection of pri-let-7a-2 polymorphisms may increase the awareness of ischemic stroke risk. This study was approved by the Institutional Ethics Committee of the First Affiliated Hospital of China Medical University, China (approval No. 2012-38-1) on February 20, 2012, and was registered with the Chinese Clinical Trial Registry (registration number: ChiCTR-COC-17013559) on December 27, 2017.
Collapse
Affiliation(s)
- Yu-Ye Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - He-Yu Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong Province, China
| | - Wen-Juan Jiang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University; Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Fang Liu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lei Li
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shu-Min Deng
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhi-Yi He
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yan-Zhe Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University; Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
5
|
Wang D, Wang Y, Lin Z, Cai L. Association between miRNA-146a polymorphism and lung cancer susceptibility: A meta-analysis involving 6506 cases and 6576 controls. Gene 2020; 757:144940. [PMID: 32640303 DOI: 10.1016/j.gene.2020.144940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/14/2020] [Accepted: 07/01/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVE We sought to analyze the association between miR-146a rs2910164 G > C polymorphism and susceptibility to lung cancer using a meta-analysis of case-control studies. METHODS We systematically searched for studies reporting on the relationship between miR-146a rs2910164 polymorphism and the risk of lung cancer in PubMed, Embase, Web of Science and Chinese National Knowledge Infrastructure databases. We then calculated pooled odds ratios (ORs), at 95% confidence interval (CI) to assess the aforementioned relationship. All the data were analyzed using statistical packages implemented in R version 3.6.2 (R Project for Statistical Computing), run in RStudio version 1.2.5033. RESULTS A total of fifteen studies, comprising 6506 cases and 6576 controls, were enrolled in this meta-analysis. Significant associations were observed between miR-146a rs2910164 polymorphism and the risk of lung cancer based on overall pooled subjects under the allele, heterozygous, homozygous, dominant, and recessive genetic models (C vs. G: OR = 1.27, 95% CI: 1.12-1.44; GC vs. GG: OR = 1.23, 95% CI: 1.03-1.46; CC vs. GG: OR = 1.51, 95% CI: 1.18-1.93; GC + CC vs. GG: OR = 1.33, 95% CI: 1.10-1.61; CC vs. GG + GC: OR = 1.32, 95% CI: 1.13-1.53). Ethnicity-based subgroup analyses revealed no statistically significant differences in Asians using heterozygous and dominant genetic models. CONCLUSION miR-146a rs2910164 G > C polymorphism may be a risk factor of lung cancer. Asian populations exhibiting heterozygous and dominant genotypes need to be further investigated to validate our findings.
Collapse
Affiliation(s)
- Daohui Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Yuanping Wang
- Department of Urology, Wenzhou People's Hospital, Wenzhou 325000, Zhejiang, China
| | - Zhendong Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Lili Cai
- Hand Surgery and Peripheral Nerve Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| |
Collapse
|
6
|
Cui JJ, Wang LY, Tan ZR, Zhou HH, Zhan X, Yin JY. MASS SPECTROMETRY-BASED PERSONALIZED DRUG THERAPY. MASS SPECTROMETRY REVIEWS 2020; 39:523-552. [PMID: 31904155 DOI: 10.1002/mas.21620] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Personalized drug therapy aims to provide tailored treatment for individual patient. Mass spectrometry (MS) is revolutionarily involved in this area because MS is a rapid, customizable, cost-effective, and easy to be used high-throughput method with high sensitivity, specificity, and accuracy. It is driving the formation of a new field, MS-based personalized drug therapy, which currently mainly includes five subfields: therapeutic drug monitoring (TDM), pharmacogenomics (PGx), pharmacomicrobiomics, pharmacoepigenomics, and immunopeptidomics. Gas chromatography-MS (GC-MS) and liquid chromatography-MS (LC-MS) are considered as the gold standard for TDM, which can be used to optimize drug dosage. Matrix-assisted laser desorption ionization-time of flight-MS (MALDI-TOF-MS) significantly improves the capability of detecting biomacromolecule, and largely promotes the application of MS in PGx. It is becoming an indispensable tool for genotyping, which is used to discover and validate genetic biomarkers. In addition, MALDI-TOF-MS also plays important roles in identity of human microbiome whose diversity can explain interindividual differences of drug response. Pharmacoepigenetics is to study the role of epigenetic factors in individualized drug treatment. MS can be used to discover and validate pharmacoepigenetic markers (DNA methylation, histone modification, and noncoding RNA). For the emerging cancer immunotherapy, personalized cancer vaccine has effective immunotherapeutic activity in the clinic. MS-based immunopeptidomics can effectively discover and screen neoantigens. This article systematically reviewed MS-based personalized drug therapy in the above mentioned five subfields. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Jia-Jia Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Lei-Yun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Zhi-Rong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Xianquan Zhan
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
- Hunan Provincial Gynecological Cancer Diagnosis and Treatment Engineering Research Center, Changsha, Hunan, 410078, P. R. China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, Hunan, 410078, P. R. China
| |
Collapse
|
7
|
Chauhan SJ, Thyagarajan A, Sahu RP. Functional Significance of Mirna-149 in Lung Cancer: Can it be Utilized as a Potential Biomarker or a Therapeutic Target? AUSTIN JOURNAL OF MEDICAL ONCOLOGY 2020; 7:1048. [PMID: 38628497 PMCID: PMC11019914 DOI: 10.26420/austinjmedoncol.2020.1048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Accumulating evidence has documented the significance of miR-149 as a promising tumor-suppressive non-coding RNA that play critical roles in regulating genes involved in cancer growth and metastasis. Notably, the ability of miR-149 to be utilized as a potential biomarker in the diagnosis/prognosis or a therapeutic target has also been explored using various cellular and preclinical models, as well as in clinical settings of lung cancer. While the applicability of miR-149 in assessing tumor progression has been suggested, its potential in predicting treatment outcomes is needed to be verified in diverse settings of lung cancer patients. The current review presents an overview of the functional significance of miR-149 with ongoing challenges in non-small cell lung cancer.
Collapse
Affiliation(s)
- S J Chauhan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, USA
| | - A Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, USA
| | - R P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, USA
| |
Collapse
|
8
|
The Association Between Two Common Polymorphisms and Cancer Susceptibility: A Meta-Analysis. J Surg Res 2020; 253:156-166. [PMID: 32361252 DOI: 10.1016/j.jss.2020.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Most studies revealed that microRNAs could play important roles in the development of various types of cancers. However, the findings remain inconsistent and controversial. To get more accurate results about the association of miR-26a-1 rs7372209 and miR-423 rs6505162 polymorphisms with risk of cancer, we conduct this meta-analysis. MATERIALS AND METHODS We have searched relevant articles from the PubMed, Web of Science, Wanfang, and Chinese National Knowledge Infrastructure databases up to May 3, 2019. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were analyzed to assess the relationship between these two genetic polymorphisms and susceptibility to cancer. All statistical analyses were performed with Stata 12.0 software. RESULTS Thirty-five articles were eligible in this meta-analysis, including 17,746 cases and 21,808 controls. Our results suggested that the miR-26a-1 rs7372209 polymorphism was associated with the susceptibility to overall cancer significantly in homozygote comparison and recessive model (TT versus CC: OR = 1.167, 95% CI: 1.025-1.329, P = 0.020; TT versus CT + CC: OR = 1.162, 95% CI: 1.025-1.318, P = 0.019). For miR-423 rs6505162, this study showed that the relationship between it and overall cancer susceptibility was statistically significant among five genetic models (CA versus CC: OR = 0.884, 95% CI: 0.806-0.969, P = 0.009; AA + CA versus CC: OR = 0.870, 95% CI: 0.789-0.959, P = 0.005; AA versus CA + CC: OR = 0.904, 95% CI: 0.827-0.988, P = 0.026; A versus C: OR = 0.899, 95% CI: 0.834-0.970, P = 0.006) rather than homozygote model. CONCLUSIONS Rs7372209 in miR-26a-1 and rs6505162 in miR-423 are associated with overall cancer susceptibility.
Collapse
|
9
|
Zhao D. Single nucleotide alterations in MicroRNAs and human cancer-A not fully explored field. Noncoding RNA Res 2020; 5:27-31. [PMID: 32128468 PMCID: PMC7044681 DOI: 10.1016/j.ncrna.2020.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are ~20 nt long small noncoding RNAs that are processed from stem-looped precursors and function mainly as posttranscriptional regulators of protein coding genes through binding to 3'-untranslated regions of messenger RNAs to inhibit the translation or cause RNA degradation. It is predicted microRNAs could regulate up to half of all human genes and are proved to play important roles in human diseases including cancer. They bind to target mRNAs based on complementary binding which is dominated by the so-called "seed" region which are the 5' 2-8 bases of the microRNA. Due to the small size in nature, even a single nucleotide variation in the precursor region especially those located in the seed regions could show big influence. Here, I summarized and reviewed the current knowledge of these single nucleotide alterations in microRNAs in human cancer including (i) common SNPs in the precursor region, (ii) isomiRs, (iii) somatic mutations of microRNAs. Briefly, this is an underexploited field and clearly, warrants further studies to reveal their biological and clinical significances. I believe they will be key to advancing personalized medicine.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Genetics and Cell Biology, Nankai University School of Life Sciences, Tianjin, 300071, China
| |
Collapse
|
10
|
Han W, Cui H, Liang J, Su X. Role of MicroRNA-30c in cancer progression. J Cancer 2020; 11:2593-2601. [PMID: 32201529 PMCID: PMC7066027 DOI: 10.7150/jca.38449] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) is a non-coding small RNA of a type of 18~24 nucleotide-regulated gene that has been discovered in recent years. It mainly degrades the target gene mRNA or inhibits its translation process through the complete or incomplete bindings with 3'UTR of target genes, followed by the regulation of individual development, apoptosis, proliferation, differentiation and other life activities through the post-transcriptional regulation. Among many miRNAs, the microRNA family, miR-30, plays diverse roles in these key process of neoplastic transformation, metastasis, and clinical outcomes in different cancer progression. As key member of miR-30, miR-30c is regulated by oncogenic transcription factors and cancer progression related genes. Recently, numerous studies have demonstrated that the aberrant expression of miR-30c was significantly associated with the majority of human cancer progression. In this review, the diverse roles of miR-30c in different cancer progression such as the cellular and molecular mechanisms, the potential applications in clinics were summarized to speculate the benefits of miR-30c over-expression in cancer treatment and prognosis.
Collapse
Affiliation(s)
- Wenyan Han
- Laboratory of the Second Affiliated Hospital of Inner Mongolia Medical University.No.1 Yingfang Road, Huimin District, Hohhot, Inner Mongolia, China
| | - Hongwei Cui
- Clinical Medical Research Center of the Affiliated Hospital/Inner Mongolia Key Laboratory of Medical Cellular Biology, Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, P.R. China
| | - Junqing Liang
- Department of Breast Oncology, Inner Mongolia Autonomous Region Cancer Hospital, Hohhot, 010000, Inner Mongolia, P.R. China
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated Hospital/Inner Mongolia Key Laboratory of Medical Cellular Biology, Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, P.R. China
| |
Collapse
|
11
|
Liu L, Shi X, Zhao H, Yang M, Wang C, Liao M, Zhao J. Nicotine induces cell survival and chemoresistance by stimulating Mcl-1 phosphorylation and its interaction with Bak in lung cancer. J Cell Physiol 2019; 234:15934-15940. [PMID: 30741422 DOI: 10.1002/jcp.28251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Nicotine is a major carcinogen in cigarettes, which can enhance cell proliferation and metastasis and increase the chemoresistance of cancer cells. Our previous data found that nicotine promotes cell survival in lung cancer by affecting the expression of antiapoptotic protein Mcl-1, suggesting that the Mcl-1 may be a therapeutic target for patients with lung cancer. In this study, we found that the effects of drug resistance on nicotine-induced lung cancer cell lines were shown to influence the phosphorylation of Mcl-1. Moreover, nicotine induces Mcl-1 phosphorylation exclusively at the T163 site, which results in enhancement of the antiapoptotic activity of Mcl-1 and increased cell survival. Meanwhile, nicotine can reduce the sensitivity of H1299 cells to CDDP via enhancement of the binding of Mcl-1 to Bak, which inhibits the proapoptotic effect of Bak and ultimately leads to increased survival and drug resistance of lung cancer cells. Thus, nicotine-induced cell survival and chemoresistance may occur in a mechanism by stimulating Mcl-1 phosphorylation and its interaction with Bak, which may contribute to improving the efficacy of chemotherapy in the treatment of human lung cancer.
Collapse
Affiliation(s)
- Ling Liu
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaqing Shi
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huandong Zhao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manyi Yang
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chengzhi Wang
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Nephrology Blood Purification Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingmei Liao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinfeng Zhao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|