1
|
Mi S, Yang Y, Liu X, Tang S, Liang N, Sun J, Liu C, Ren Q, Lu J, Hu P, Zhang J. Effect of immune checkpoint inhibitors at different treatment time periods on prognosis of patients with extensive-stage small-cell lung cancer. Clin Transl Oncol 2024; 26:2339-2350. [PMID: 38598001 DOI: 10.1007/s12094-024-03471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND The application of immune checkpoint inhibitors (ICIs) in treating patients with extensive-stage small-cell lung cancer (ES-SCLC) has brought us new hope, but the real-world outcome is relatively lacking. Our aim was to investigate the clinical use, efficacy, and survival benefit of ICIs in ES-SCLC from real-world data analysis. METHODS A retrospective analysis of ES-SCLC patients was conducted between 2012 and 2022. Progression-free survival (PFS) and overall survival (OS) were assessed between groups to evaluate the value of ICIs at different lines of treatment. PFS1 was defined as the duration from initial therapy to disease progression or death. PFS2 was defined as the duration from the first disease progression to the second disease progression or death. RESULTS One hundred and eighty patients with ES-SCLC were included. We performed landmark analysis, which showed that compared to the second-line and subsequent-lines ICIs-combined therapy group (2SL-ICIs) and non-ICIs group, the first-line ICIs-combined therapy group (1L-ICIs) prolonged OS and PFS1. There was a trend toward prolonged OS in the 2SL-ICIs group than in the non-ICIs group, but the significance threshold was not met (median OS 11.94 months vs. 11.10 months, P = 0.14). A longer PFS2 was present in the 2SL-ICIs group than in the non-ICIs group (median PFS2 4.13 months vs. 2.60 months, P < 0.001). CONCLUSION First-line ICIs plus chemotherapy should be applied in clinical practice. If patients did not use ICIs plus chemotherapy in first-line therapy, the use of ICIs in the second line or subsequent lines of treatment could prolong PFS2.
Collapse
Affiliation(s)
- Song Mi
- Department of Oncology, Shandong University of Traditional Chinese Medicine, Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Yunxin Yang
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Shaotong Tang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Ning Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Jinyue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qidong Ren
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jihong Lu
- College of Clinical and Basic Medicine of Shandong First Medical University, Jinan, China
| | - Pingping Hu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China.
| | - Jiandong Zhang
- Department of Oncology, Shandong University of Traditional Chinese Medicine, Shandong Provincial Qianfoshan Hospital, Jinan, China.
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China.
| |
Collapse
|
2
|
Tomatis S, Mancosu P, Reggiori G, Lobefalo F, Gallo P, Lambri N, Paganini L, La Fauci F, Bresolin A, Parabicoli S, Pelizzoli M, Navarria P, Franzese C, Lenoci D, Scorsetti M. Twenty Years of Advancements in a Radiotherapy Facility: Clinical Protocols, Technology, and Management. Curr Oncol 2023; 30:7031-7042. [PMID: 37504370 PMCID: PMC10378035 DOI: 10.3390/curroncol30070510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Hypo-fractionation can be an effective strategy to lower costs and save time, increasing patient access to advanced radiation therapy. To demonstrate this potential in practice within the context of temporal evolution, a twenty-year analysis of a representative radiation therapy facility from 2003 to 2022 was conducted. This analysis utilized comprehensive data to quantitatively evaluate the connections between advanced clinical protocols and technological improvements. The findings provide valuable insights to the management team, helping them ensure the delivery of high-quality treatments in a sustainable manner. METHODS Several parameters related to treatment technique, patient positioning, dose prescription, fractionation, equipment technology content, machine workload and throughput, therapy times and patients access counts were extracted from departmental database and analyzed on a yearly basis by means of linear regression. RESULTS Patients increased by 121 ± 6 new per year (NPY). Since 2010, the incidence of hypo-fractionation protocols grew thanks to increasing Linac technology. In seven years, both the average number of fractions and daily machine workload decreased by -0.84 ± 0.12 fractions/year and -1.61 ± 0.35 patients/year, respectively. The implementation of advanced dose delivery techniques, image guidance and high dose rate beams for high fraction doses, currently systematically used, has increased the complexity and reduced daily treatment throughput since 2010 from 40 to 32 patients per 8 h work shift (WS8). Thanks to hypo-fractionation, such an efficiency drop did not affect NPY, estimating 693 ± 28 NPY/WS8, regardless of the evaluation time. Each newly installed machine was shown to add 540 NPY, while absorbing 0.78 ± 0.04 WS8. The COVID-19 pandemic brought an overall reduction of 3.7% of patients and a reduction of 0.8 fractions/patient, to mitigate patient crowding in the department. CONCLUSIONS The evolution of therapy protocols towards hypo-fractionation was supported by the use of proper technology. The characteristics of this process were quantified considering time progression and organizational aspects. This strategy optimized resources while enabling broader access to advanced radiation therapy. To truly value the benefit of hypo-fractionation, a reimbursement policy should focus on the patient rather than individual treatment fractionation.
Collapse
Affiliation(s)
- Stefano Tomatis
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Pietro Mancosu
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Giacomo Reggiori
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Francesca Lobefalo
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Pasqualina Gallo
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Nicola Lambri
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Lucia Paganini
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Francesco La Fauci
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Andrea Bresolin
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Sara Parabicoli
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Marco Pelizzoli
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Pierina Navarria
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Ciro Franzese
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Domenico Lenoci
- Development Strategic Initiatives Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Marta Scorsetti
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| |
Collapse
|
3
|
Mercier SL, Moore SM, Akurang D, Tiberi D, Wheatley-Price P. Stereotactic Body Radiotherapy (SBRT) in Very Limited-Stage Small Cell Lung Cancer (VLS-SCLC). Curr Oncol 2022; 30:100-109. [PMID: 36661657 PMCID: PMC9858162 DOI: 10.3390/curroncol30010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine tumour with metastatic propensity. Stereotactic body radiation therapy (SBRT) is an emerging therapeutic option for SCLC, despite limited supporting evidence. By evaluating the use of SBRT in very limited stage (VLS) SCLC at our institution, we aimed to contribute to the existing knowledge in this area while establishing a basis for further research. We performed a retrospective review of all cases of VLS-SCLC treated with SBRT between 2013 and 2020. Baseline demographics, diagnostic, and treatment information were collected. The primary outcome was overall survival (OS). We identified 46 patients with pathologically confirmed VLS-SCLC; 25 were treated with SBRT, and the remainder received either surgery, conventional radiation therapy, chemotherapy, or palliative-intent therapy. After a median follow-up of 23.7 months, 44% of the patients had died; the median OS was of 24.4 months for the SBRT cohort and 67.0 months for the curative intent non-SBRT cohort. The difference in disease recurrence and survival between cohorts was underpowered and not statistically significant. Higher baseline ECOG and comorbidity was noted in the SBRT cohort.
Collapse
Affiliation(s)
| | - Sara M. Moore
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8L5, Canada
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Deborah Akurang
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - David Tiberi
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- Department of Radiology, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Paul Wheatley-Price
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8L5, Canada
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| |
Collapse
|
4
|
Aizer AA, Lamba N, Ahluwalia MS, Aldape K, Boire A, Brastianos PK, Brown PD, Camidge DR, Chiang VL, Davies MA, Hu LS, Huang RY, Kaufmann T, Kumthekar P, Lam K, Lee EQ, Lin NU, Mehta M, Parsons M, Reardon DA, Sheehan J, Soffietti R, Tawbi H, Weller M, Wen PY. Brain metastases: A Society for Neuro-Oncology (SNO) consensus review on current management and future directions. Neuro Oncol 2022; 24:1613-1646. [PMID: 35762249 PMCID: PMC9527527 DOI: 10.1093/neuonc/noac118] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Brain metastases occur commonly in patients with advanced solid malignancies. Yet, less is known about brain metastases than cancer-related entities of similar incidence. Advances in oncologic care have heightened the importance of intracranial management. Here, in this consensus review supported by the Society for Neuro-Oncology (SNO), we review the landscape of brain metastases with particular attention to management approaches and ongoing efforts with potential to shape future paradigms of care. Each coauthor carried an area of expertise within the field of brain metastases and initially composed, edited, or reviewed their specific subsection of interest. After each subsection was accordingly written, multiple drafts of the manuscript were circulated to the entire list of authors for group discussion and feedback. The hope is that the these consensus guidelines will accelerate progress in the understanding and management of patients with brain metastases, and highlight key areas in need of further exploration that will lead to dedicated trials and other research investigations designed to advance the field.
Collapse
Affiliation(s)
- Ayal A Aizer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Nayan Lamba
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Radiation Oncology Program, Boston, Massachusetts, USA
| | | | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Adrienne Boire
- Department of Neurology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Priscilla K Brastianos
- Departments of Neuro-Oncology and Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - D Ross Camidge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Veronica L Chiang
- Departments of Neurosurgery and Radiation Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Leland S Hu
- Department of Radiology, Neuroradiology Division, Mayo Clinic, Phoenix, Arizona, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Priya Kumthekar
- Department of Neurology at The Feinberg School of Medicine at Northwestern University and The Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Keng Lam
- Department of Neurology, Kaiser Permanente, Los Angeles Medical Center, Los Angeles, California, USA
| | - Eudocia Q Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Minesh Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida, USA
| | - Michael Parsons
- Departments of Oncology and Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David A Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Y Wen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Efficacy and Safety of PD-L1 Inhibitors plus Chemotherapy versus Chemotherapy Alone in First-Line Treatment of Extensive-Stage Small-Cell Lung Cancer: A Retrospective Real-World Study. JOURNAL OF ONCOLOGY 2022; 2022:3645489. [PMID: 36199793 PMCID: PMC9529407 DOI: 10.1155/2022/3645489] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022]
Abstract
Background Most patients with small-cell lung cancer (SCLC) have extensive-stage (ES) disease with a poor prognosis. Immunotherapy has shown good therapeutic effects in the treatment of ES-SCLC. We performed a real-world retrospective study to evaluate the safety and efficacy of PD-L1 inhibitors plus chemotherapy in patients with ES-SCLC. Method A total of 224 patients diagnosed with ES-SCLC between March 2017 and April 2021 were included, of which 115 received only etoposide-platinum (EP) chemotherapy,and 109 received programmed cell-death ligand 1 (PD-L1) inhibitors and EP. Results Immune checkpoint inhibitors (ICIs) plus platinum were associated with a significant improvement in overall survival (OS), with a hazard ratio (HR) of 0.60 (95% CI, 0.42–0.85; P=0.0054); median OS was 19 months in the ICIs plus EP group vs. 12 months in the EP group. The median progression-free survival (PFS) was 8.5 and 5.0 months, respectively (HR for disease progression or death, 0.42; 95% CI, 0.31–0.57; P < 0.0001). Male patients <65 years old, Stage IV, PS 0-1, without liver and brain metastasis had a better OS in the ICIs plus EP group than the EP group. The PFS and OS in the durvalumab plus chemotherapy group were insignificantly longer than that of the atezolizumab plus chemotherapy group. Any adverse effects (AEs) of grade 3 or 4 occurred in 50 patients (45.9%) in the ICIs plus EP group and 48 patients (41.7%) in the EP alone group. The most common immune-related AEs (irAEs) were immune hypothyroidism events (17.1%, 7/41), immune dermatitis (9.8%, 4/41), and immune pneumonia (9.8%, 4/41) in the durvalumab plus platinum-etoposide group. Immune liver insufficiency (10.3%, 7/68) and immune hypothyroidism (8.8%, 6/68) were the most common irAEs in the atezolizumab plus platinum-etoposide group. Conclusion This study shows that adding PD-L1 inhibitors to chemotherapy can significantly improve PFS and OS in patients with ES-SCLC and demonstrates its safety without additional AEs.
Collapse
|
6
|
Real-World Adherence to Guideline-Recommended Treatment for Small Cell Lung Cancer. Am J Clin Oncol 2019; 43:236-242. [DOI: 10.1097/coc.0000000000000657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Gao Y, Li X, Gao J, Zhang Z, Feng Y, Nie J, Zhu W, Zhang S, Cao J. Metabolomic Analysis of Radiation-Induced Lung Injury in Rats: The Potential Radioprotective Role of Taurine. Dose Response 2019; 17:1559325819883479. [PMID: 31700502 PMCID: PMC6823985 DOI: 10.1177/1559325819883479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
Radiation-induced lung injury is a major dose-limiting toxicity that occurs due to thoracic radiotherapy. Metabolomics is a powerful quantitative measurement of low-molecular-weight metabolites in response to environmental disturbances. However, the metabolomic profiles of radiation-induced lung injury have not been reported yet. In this study, male Sprague-Dawley rats were subjected to a single dose of 10 or 20 Gy irradiation to the right lung. One week after radiation, the obvious morphological alteration of lung tissues after radiation was observed by hematoxylin and eosin staining through a transmission electron microscope. We then analyzed the metabolites and related pathways of radiation-induced lung injury by gas chromatography-mass spectrometry, and a total of 453 metabolites were identified. Compared to the nonirradiated left lung, 19 metabolites (8 upregulated and 11 downregulated) showed a significant difference in 10 Gy irradiated lung tissues, including mucic acid, methyl-β-d-galactopyranoside, quinoline-4-carboxylic acid, and pyridoxine. There were 31 differential metabolites (16 upregulated and 15 downregulated) between 20 Gy irradiated and nonirradiated lung tissues, including taurine, piperine, 1,2,4-benzenetriol, and lactamide. The Kyoto Encyclopedia of Genes and Genomes-based pathway analysis enriched 32 metabolic pathways between the irradiated and nonirradiated lung tissues, including pyrimidine metabolism, ATP-binding cassette transporters, aminoacyl-tRNA biosynthesis, and β-alanine metabolism. Among the dysregulated metabolites, we found that taurine promoted clonogenic survival and reduced radiation-induced necrosis in human embryonic lung fibroblast (HELF) cells. This study provides evidence indicating that radiation induces metabolic alterations of the lung. These findings significantly advance our understanding of the pathophysiology of radiation-induced lung injury from the perspective of metabolism.
Collapse
Affiliation(s)
- Yiying Gao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- Sichuan Center for Disease Control and Prevention, Sichuan, China
| | - Xugang Li
- Anshan Cancer Hospital, Anshan, China
| | | | | | - Yang Feng
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jihua Nie
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wei Zhu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Shuyu Zhang
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|