1
|
El Amine B, Fournier J, Minoves M, Baillieul S, Roche F, Perek N, Pépin JL, Tamisier R, Khouri C, Rome C, Briançon-Marjollet A. Cerebral oxidative stress, inflammation and apoptosis induced by intermittent hypoxia: a systematic review and meta-analysis of rodent data. Eur Respir Rev 2024; 33:240162. [PMID: 39694586 DOI: 10.1183/16000617.0162-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/21/2024] [Indexed: 12/20/2024] Open
Abstract
Obstructive sleep apnoea (OSA) contributes to cerebrovascular diseases and cognitive decline. Preclinical studies support the deleterious impact on the brain of intermittent hypoxia (IH), one of the main components of OSA, but heterogeneity in rodent species and brain regions studied, or induced by IH paradigms, can challenge interpretation of the studies. Hence, we conducted a systematic review and meta-analysis to evaluate the impact of IH on rodent brain oxidative stress, inflammation, apoptosis and the expression of brain-derived neurotrophic factor (BDNF) and hypoxia-inducible factor 1 (HIF-1). PubMed and Web of Science searches identified 663 articles related to IH exposure, of which 60 were included. The examined outcomes were oxidative stress, inflammation, apoptosis, HIF-1 or BDNF in brains. Standardised mean difference was used to compare studies. Metaregressions were performed to clarify the impact of IH exposure parameters, rodent characteristics or cerebral localisation on these outcomes. IH-induced oxidative stress (increased malondialdehyde (MDA) and NADPH oxidase (NOX) and decreased superoxide dismutase), increased inflammation (tumour necrosis factor-α, NF-κB and inducible nitric oxide synthase), HIF-1 and apoptosis evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labelling and cleaved caspase-3. In contrast, B-cell lymphoma 2 (BCL2) and BDNF expression were not significantly modified. Metaregressions showed that MDA, NOX and BDNF were associated with determinants of IH cycles (inspired oxygen fraction and duration of hypoxia) and some parameters depended on localisation. Rodent characteristics had little impact on the outcomes. Our meta-analysis robustly establishes that IH, independently of other confounders, has a strong effect on the brain by inducing oxidative stress, inflammation and apoptosis in rodent models. Our findings support the interest of considering and treating cerebral consequences of OSA in clinical practice.
Collapse
Affiliation(s)
- Bayan El Amine
- Univ. Grenoble Alpes, Inserm U1300, CHU Grenoble Alpes, HP2 Laboratory, Grenoble, France
- Univ. Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Joey Fournier
- Univ. Grenoble Alpes, Inserm CIC1406, CHU de Grenoble, Grenoble, France
| | - Mélanie Minoves
- Univ. Grenoble Alpes, Inserm U1300, CHU Grenoble Alpes, HP2 Laboratory, Grenoble, France
| | - Sébastien Baillieul
- Univ. Grenoble Alpes, Inserm U1300, CHU Grenoble Alpes, HP2 Laboratory, Grenoble, France
| | - Frédéric Roche
- Université Jean Monnet, Inserm U1059 Sainbiose, Saint Etienne, France
- Physiologie Clinique et de l'Exercice, CHU, Saint Etienne, France
| | - Nathalie Perek
- Université Jean Monnet, Inserm U1059 Sainbiose, Saint Etienne, France
| | - Jean-Louis Pépin
- Univ. Grenoble Alpes, Inserm U1300, CHU Grenoble Alpes, HP2 Laboratory, Grenoble, France
| | - Renaud Tamisier
- Univ. Grenoble Alpes, Inserm U1300, CHU Grenoble Alpes, HP2 Laboratory, Grenoble, France
| | - Charles Khouri
- Univ. Grenoble Alpes, Inserm U1300, CHU Grenoble Alpes, HP2 Laboratory, Grenoble, France
- Univ. Grenoble Alpes, Inserm CIC1406, CHU de Grenoble, Grenoble, France
| | - Claire Rome
- Univ. Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, Grenoble, France
| | | |
Collapse
|
2
|
Weng L, Luo Y, Luo X, Yao K, Zhang Q, Tan J, Yin Y. The common link between sleep apnea syndrome and osteoarthritis: a literature review. Front Med (Lausanne) 2024; 11:1401309. [PMID: 39234045 PMCID: PMC11371730 DOI: 10.3389/fmed.2024.1401309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Patients with Osteoarthritis (OA) often also suffer from Sleep Apnea Syndrome (SAS), and many scholars have started to notice this link, although the relationship between the two is still unclear. In this review, we aim to summarize the current literature on these two diseases, integrate evidence of the OA and OSA connection, explore and discuss their potential common mechanisms, and thus identify effective treatment methods for patients with both OA and SAS. Some shared characteristics of the two conditions have been identified, notably aging and obesity as mutual risk factors. Both diseases are associated with various biological processes or molecular pathways, including mitochondrial dysfunction, reactive oxygen species production, the NF-kB pathway, HIF, IL-6, and IL-8. SAS serves as a risk factor for OA, and conversely, OA may influence the progression of SAS. The effects of OA on SAS are underreported in the literature and require more investigation. To effectively manage these patients, timely intervention for SAS is necessary while treating OA, with weight reduction being a primary requirement, alongside combined treatments such as Continuous positive airway pressure (CPAP) and medications. Additionally, numerous studies in drug development are now aimed at inhibiting or clearing certain molecular pathways, including ROS, NF-KB, IL-6, and IL-8. Improving mitochondrial function might represent a viable new strategy, with further research into mitochondrial updates or transplants being essential.
Collapse
Affiliation(s)
- Lian Weng
- Luzhou Longmatan District People's Hospital, Luzhou, China
| | - Yuxi Luo
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiongjunjie Luo
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Kaitao Yao
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Qian Zhang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Junjie Tan
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yiran Yin
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Ruan Z, Li Y, Chen Y. HECTD3 promotes NLRP3 inflammasome and pyroptosis to exacerbate diabetes-related cognitive impairment by stabilising MALT1 to regulate JNK pathway. Arch Physiol Biochem 2024; 130:373-384. [PMID: 35913790 DOI: 10.1080/13813455.2022.2093377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND HECTD3 (HECT domain E3 ubiquitin protein ligase 3) exerts biological activities in neuroinflammation of distinct diseases, such as autoimmune encephalomyelitis and donations after heart death. However, the effect of HECTD3 on diabetes-associated cognitive decline (DACD) remains unclear. METHODS Wild-type or HECTD3-knockout rats were administered with streptozotocin to establish diabetic model. Pathological changes in the hippocampus were assessed by NISSL and haematoxylin and eosin staining. Morris water maze test was used to assess cognitive function. Neuronal survival and inflammation were investigated by immunofluorescence staining and ELISA assay. NLRP3 inflammasome and pyroptosis were assessed by western blot, immunofluorescence and flow cytometry assays. RESULTS HECTD3 was up-regulated in hippocampus of streptozotocin-induced diabetic rats and high glucose-induced PC12 cells. Knockout of HECTD3 increased the number of neurons and improved the learning and memory function. Moreover, knockout of HECTD3 promoted in vivo neuronal survival, and reduced levels of IL-1β, TNF-α, and IL-6 in the hippocampus. Silencing of HECTD3 increased cell viability, and reduced IL-1β, TNF-α, and IL-6 in high glucose-induced PC12 cells. Fluorescence intensities of NLRP3, GSDMD-N and caspase-1 were reduced in HECTD3-knockout diabetic rats, and knockdown of HECTD3 down-regulated protein expression of NLRP3, GSDMD-N, caspase-1, IL-1β, and IL-18 in high glucose-induced PC12 cells to suppress the pyroptosis. HECTD3 promoted the stability of mucosa-associated lymphoid tissue 1 (MALT1) through up-regulation of c-JUN and phospho (p)-JNK in high glucose-induced PC12 cells. Over-expression of MALT1 attenuated neuroprotective effects of HECTD3 silencing on high glucose-induced PC12 cells. CONCLUSION HECTD3 silencing exerted neuroprotective effect against DACD through MALT1-mediated JNK signalling.HighlightsHECTD3 was up-regulated in hippocampus of streptozotocin-induced diabetic rats and high glucose-induced PC12.Knockout of HECTD3 promoted in vivo neuronal survival, reduced inflammation and pyroptosis, and improved the learning and memory function in diabetic rats.Knockout of HECTD3 suppressed the activation of NLRP3 inflammasome in diabetic rats.Silencing of HECTD3 exerted neuroprotective effects through MALT1-mediated JNK signalling.
Collapse
Affiliation(s)
- Zhongfan Ruan
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yan Li
- Department of Anesthesiology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yanfang Chen
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Lavalle S, Masiello E, Iannella G, Magliulo G, Pace A, Lechien JR, Calvo-Henriquez C, Cocuzza S, Parisi FM, Favier V, Bahgat AY, Cammaroto G, La Via L, Gagliano C, Caranti A, Vicini C, Maniaci A. Unraveling the Complexities of Oxidative Stress and Inflammation Biomarkers in Obstructive Sleep Apnea Syndrome: A Comprehensive Review. Life (Basel) 2024; 14:425. [PMID: 38672697 PMCID: PMC11050908 DOI: 10.3390/life14040425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/03/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Obstructive sleep apnea syndrome (OSAS), affecting approximately 1 billion adults globally, is characterized by recurrent airway obstruction during sleep, leading to oxygen desaturation, elevated carbon dioxide levels, and disrupted sleep architecture. OSAS significantly impacts quality of life and is associated with increased morbidity and mortality, particularly in the cardiovascular and cognitive domains. The cyclic pattern of intermittent hypoxia in OSAS triggers oxidative stress, contributing to cellular damage. This review explores the intricate relationship between OSAS and oxidative stress, shedding light on molecular mechanisms and potential therapeutic interventions. METHODS A comprehensive review spanning from 2000 to 2023 was conducted using the PubMed, Cochrane, and EMBASE databases. Inclusion criteria encompassed English articles focusing on adults or animals and reporting values for oxidative stress and inflammation biomarkers. RESULTS The review delineates the imbalance between pro-inflammatory and anti-inflammatory factors in OSAS, leading to heightened oxidative stress. Reactive oxygen species biomarkers, nitric oxide, inflammatory cytokines, endothelial dysfunction, and antioxidant defense mechanisms are explored in the context of OSAS. OSAS-related complications include cardiovascular disorders, neurological impairments, metabolic dysfunction, and a potential link to cancer. This review emphasizes the potential of antioxidant therapy as a complementary treatment strategy. CONCLUSIONS Understanding the molecular intricacies of oxidative stress in OSAS is crucial for developing targeted therapeutic interventions. The comprehensive analysis of biomarkers provides insights into the complex interplay between OSAS and systemic complications, offering avenues for future research and therapeutic advancements in this multifaceted sleep disorder.
Collapse
Affiliation(s)
- Salvatore Lavalle
- Faculty of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy; (S.L.); (C.G.)
| | - Edoardo Masiello
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy;
| | - Giannicola Iannella
- Department of ‘Organi di Senso’, University “Sapienza”, Viale dell’Università, 33, 00185 Rome, Italy; (G.I.); (G.M.); (A.P.)
| | - Giuseppe Magliulo
- Department of ‘Organi di Senso’, University “Sapienza”, Viale dell’Università, 33, 00185 Rome, Italy; (G.I.); (G.M.); (A.P.)
| | - Annalisa Pace
- Department of ‘Organi di Senso’, University “Sapienza”, Viale dell’Università, 33, 00185 Rome, Italy; (G.I.); (G.M.); (A.P.)
| | - Jerome Rene Lechien
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, UMONS Research Institute for Health Sciences and Technology, University of Mons, 7022 Mons, Belgium;
| | - Christian Calvo-Henriquez
- Service of Otolaryngology, Hospital Complex of Santiago de Compostela, 15705 Santiago de Compostela, Spain;
| | - Salvatore Cocuzza
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, ENT Section, University of Catania, Via S. Sofia, 78, 95125 Catania, Italy; (S.C.); (F.M.P.)
| | - Federica Maria Parisi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, ENT Section, University of Catania, Via S. Sofia, 78, 95125 Catania, Italy; (S.C.); (F.M.P.)
| | - Valentin Favier
- Service d’ORL et de Chirurgie Cervico-Faciale, Centre Hospitalo-Universitaire de Montpellier, 80 Avenue Augustin Fliche, 34000 Montpellier, France
| | - Ahmed Yassin Bahgat
- Department of Otorhinolaryngology, Alexandria University, Alexandria 21577, Egypt;
| | - Giovanni Cammaroto
- Department of Head-Neck Surgery, Otolaryngology, Head-Neck and Oral Surgery Unit, Morgagni Pierantoni Hospital, Via Carlo Forlanini, 34, 47121 Forlì, Italy;
| | - Luigi La Via
- Department of Anaesthesia and Intensive Care, University Hospital Policlinico-San Marco, 95125 Catania, Italy;
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy; (S.L.); (C.G.)
| | - Alberto Caranti
- ENT and Audiology Department, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.V.)
| | - Claudio Vicini
- ENT and Audiology Department, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.V.)
| | - Antonino Maniaci
- Faculty of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy; (S.L.); (C.G.)
| |
Collapse
|
5
|
Rodriguez-Duboc A, Basille-Dugay M, Debonne A, Rivière MA, Vaudry D, Burel D. Apnea of prematurity induces short and long-term development-related transcriptional changes in the murine cerebellum. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100113. [PMID: 38020806 PMCID: PMC10663136 DOI: 10.1016/j.crneur.2023.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Apnea of prematurity (AOP) affects more than 50% of preterm infants and leads to perinatal intermittent hypoxia (IH) which is a major cause of morbimortality worldwide. At birth, the human cerebellar cortex is still immature, making it vulnerable to perinatal events. Additionally, studies have shown a correlation between cerebellar functions and the deficits observed in children who have experienced AOP. Yet, the cerebellar alterations underpinning this link remain poorly understood. To gain insight into the involvement of the cerebellum in perinatal hypoxia-related consequences, we developed a mouse model of AOP. Our previous research has revealed that IH induces oxidative stress in the developing cerebellum, as evidenced by the over-expression of genes involved in reactive oxygen species production and the under-expression of genes encoding antioxidant enzymes. These changes suggest a failure of the defense system against oxidative stress and could be responsible for neuronal death in the cerebellum. Building upon these findings, we conducted a transcriptomic study of the genes involved in the processes that occur during cerebellar development. Using real-time PCR, we analyzed the expression of these genes at different developmental stages and in various cell types. This enabled us to pinpoint a timeframe of vulnerability at P8, which represents the age with the highest number of downregulated genes in the cerebellum. Furthermore, we discovered that our IH protocol affects several molecular pathways, including proliferation, migration, and differentiation. This indicates that IH can impact the development of different cell types, potentially contributing to the histological and behavioral deficits observed in this model. Overall, our data strongly suggest that the cerebellum is highly sensitive to IH, and provide valuable insights into the cellular and molecular mechanisms underlying AOP. In the long term, these findings may contribute to the identification of novel therapeutic targets for improving the clinical management of this prevalent pathology.
Collapse
Affiliation(s)
- A. Rodriguez-Duboc
- Univ Rouen Normandie, Inserm, U1245, Normandie Univ, F-76000, Rouen, France
| | - M. Basille-Dugay
- Univ Rouen Normandie, Inserm, U1239, Normandie Univ, F-76000, Rouen, France
| | - A. Debonne
- Univ Rouen Normandie, Inserm, U1245, Normandie Univ, F-76000, Rouen, France
- Univ Rouen Normandie, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, Normandie Univ, F-76000, Rouen, France
| | - M.-A. Rivière
- Univ Rouen Normandie, UR 4108, LITIS Lab, INSA Rouen, NormaSTIC, CNRS 3638, Normandie Univ, F-76000, Rouen, France
| | - D. Vaudry
- Univ Rouen Normandie, Inserm, U1245, Normandie Univ, F-76000, Rouen, France
- Univ Rouen Normandie, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, Normandie Univ, F-76000, Rouen, France
| | - D. Burel
- Univ Rouen Normandie, Inserm, U1245, Normandie Univ, F-76000, Rouen, France
- Univ Rouen Normandie, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, Normandie Univ, F-76000, Rouen, France
| |
Collapse
|
6
|
Liu P, Tang W, Zhao D, Zhou P, Hu K. Active metabolites and potential mechanisms of Notopterygium incisum against obstructive sleep apnea Syndrome (OSAS): network analysis and experimental assessment. Front Pharmacol 2023; 14:1185100. [PMID: 37719850 PMCID: PMC10500596 DOI: 10.3389/fphar.2023.1185100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Background: Notopterygium incisum K.C. Ting ex H.T. Chang, a synonym of Hansenia weberbaueriana (Fedde ex H. Wolff) Pimenov & Kljuykov, is an anti-inflammatory medicinal plant. Although abrnotopterol has been reported to be its primary active metabolite, the other metabolites and their mechanisms of action remain unclear. This study aims to investigate the potential mechanisms by which its active metabolites treat Obstructive Sleep Apnea Syndrome (OSAS) through network analysis and experimental assessment. Methods: The metabolites and potential targets of Notopterygium incisum were extracted from public databases. We searched for OSAS-related genes in the Genecards, OMIM, PharmGkb, TTD, and DrugBank databases. Cytoscape 3.9.0 was used to construct the drug-target-disease network and screen for hub genes. Human bronchial epithelial (HBE) cells were cultivated in normoxia and chronic intermittent hypoxia (CIH) medium for 24 h. Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and prostaglandin E2 (PGE2) were quantified using enzyme-linked immunosorbent assay (ELISA). Prostaglandin-endoperoxide synthase 2(PTGS2) mRNA was detected using RT-qPCR, while PTGS2 and nuclear factor-kappa B (NF-κB) proteins were identified using Western blot analysis. Co-Immunoprecipitation (CoIP) and Western blotting were utilized to evaluate the ubiquitination of PTGS2 in HBE cells. Results: Pterostilbene and notopterol, isolated from Notopterygium incisum, had potential therapeutic effects on OSAS. The PTGS2 and estrogen receptor alpha (ESR1) hub genes were associated with OSAS. The pathway enrichment analysis focuses on the NF-κB, apoptosis, and HIF-1A pathways. In response to CIH, pterostilbene and notopterol decreased IL-6, TNF-α, and PGE2 levels. The NF-κB pathway was activated by an increase in PTGS2 levels. Pterostilbene promoted proteasome-mediated ubiquitination of PTGS2 protein and reduced PTGS2 levels, inhibiting the NF-κB pathway. Conclusion: This study reveals the active metabolites of Notopterygium incisum and hub genes involved in treating OSAS, which provide a basis for the follow-up development and exploitation of the botanical drug.
Collapse
Affiliation(s)
- Peijun Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Weihua Tang
- Department of Radiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Dong Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pan Zhou
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y, Yue H, Yin Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther 2023; 8:218. [PMID: 37230968 DOI: 10.1038/s41392-023-01496-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common breathing disorder in sleep in which the airways narrow or collapse during sleep, causing obstructive sleep apnea. The prevalence of OSAS continues to rise worldwide, particularly in middle-aged and elderly individuals. The mechanism of upper airway collapse is incompletely understood but is associated with several factors, including obesity, craniofacial changes, altered muscle function in the upper airway, pharyngeal neuropathy, and fluid shifts to the neck. The main characteristics of OSAS are recurrent pauses in respiration, which lead to intermittent hypoxia (IH) and hypercapnia, accompanied by blood oxygen desaturation and arousal during sleep, which sharply increases the risk of several diseases. This paper first briefly describes the epidemiology, incidence, and pathophysiological mechanisms of OSAS. Next, the alterations in relevant signaling pathways induced by IH are systematically reviewed and discussed. For example, IH can induce gut microbiota (GM) dysbiosis, impair the intestinal barrier, and alter intestinal metabolites. These mechanisms ultimately lead to secondary oxidative stress, systemic inflammation, and sympathetic activation. We then summarize the effects of IH on disease pathogenesis, including cardiocerebrovascular disorders, neurological disorders, metabolic diseases, cancer, reproductive disorders, and COVID-19. Finally, different therapeutic strategies for OSAS caused by different causes are proposed. Multidisciplinary approaches and shared decision-making are necessary for the successful treatment of OSAS in the future, but more randomized controlled trials are needed for further evaluation to define what treatments are best for specific OSAS patients.
Collapse
Affiliation(s)
- Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xueying Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yue Zhang
- Department of Geriatrics, the 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Hongmei Yue
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
8
|
Treatment of Modified Dahuang Fuzi Decoction on Cognitive Impairment Induced by Chronic Kidney Disease through Regulating AhR/NF- κB/JNK Signal Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8489699. [PMID: 35463092 PMCID: PMC9023153 DOI: 10.1155/2022/8489699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 11/18/2022]
Abstract
Aim An increasing widespread of chronic kidney disease (CKD) has been established lately around the globe. In addition to renal function loss, CKD can also cause cognitive impairment (CI). Modified Dahuang Fuzi Decoction (MDFD) is used as a traditional Chinese therapy for CKD. The effect of MDFD on cognitive impairment induced by chronic kidney disease (CKD-CI), and therapeutic mechanisms were investigated. Methods The CKD animals' model was developed in the 5/6 nephrectomized mice. Sham operation and model groups received normal saline, while positive control and MDFD high/medium/low dose received Aricept (10 mg/kg/day) and different doses of MDFD (24, 16, and 8 g/kg/day), respectively. Cognitive function was detected with the Morris water maze test, while related factors were determined by ELISA. Histopathology and mechanism were studied using HE, western blot, and qRT-PCR. Results In the CKD-CI mice model, escape latency decreased significantly, whereas time of crossing platform and time spent within the platform quadrant increased substantially (P < 0.05) after MDFD treatment. Moreover, renal function and brain injury in CKD-CI improved dose-dependently, while the effect of MDFD-L was worse. Proteins such as aryl hydrocarbon receptor, nuclear factor-kappa B and c-Jun-N-terminal kinase, and mRNA in the kidney and brain of all the treatment groups decreased substantially (P < 0.05). Expression of tropomyosin receptor kinase B and brain-derived neurotrophic factor at protein and mRNA levels in the brain were significantly enhanced (P < 0.05). Conclusion MDFD presumably activated the BDNF/TrkB pathway by inhibiting the AhR/NF-κB/JNK signaling pathway to treat CKD-CI.
Collapse
|
9
|
Tian X, Zhang Z, Li W. Expression of TLR2 and TLR5 in distal ileum of mice with obstructive jaundice and their role in intestinal mucosal injury. Arch Med Sci 2022; 18:237-250. [PMID: 35154543 PMCID: PMC8826794 DOI: 10.5114/aoms.2019.85648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/18/2019] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION The aim was to investigate the expression of TLR2 and TLR5 in the distal ileum of mice with obstructive jaundice (OJ) and their role in intestinal mucosal injury. MATERIAL AND METHODS A total of 100 male C57BL/6J mice were randomly assigned to two groups: (I) sham operation (SH); (II) bile duct ligation (BDL). The mice were respectively sacrificed before operation and on the 1st, 3rd, 5th and 7th days after operation to collect specimens. Various indicators were detected by PCR, immunohistochemistry and other methods. RESULTS TLR2 was increased gradually with the extension of OJ time in the BDL group (p < 0.05). However, the changes in the expression of TLR5 were not obvious at different time points. The amount of Bifidobacteria and Lactobacillus showed downward trends in intestinal tract of the BDL group. Furthermore, the amount of Escherichia coli was increased in intestinal tract of the BDL group. The pathological score of intestinal mucosa and the expression of NF-κB increased gradually in the BDL group with the extension of OJ time. There were positive correlations between the pathological score of intestinal mucosa and expressions of TLR2(r = 0.767, p < 0.05) and NF-κB (r = 0.817, p < 0.05) in BDL group. NF-κB expression was positively correlated with TLR2 expression(r = 0.706, p < 0.05). CONCLUSIONS Disturbance of intestinal flora caused by OJ could increase the expression of NF-κB via up-regulating the expression of TLR2 to activate the downstream signaling pathway, thus aggravated the injury of intestinal mucosa.
Collapse
Affiliation(s)
- Xiaopeng Tian
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology, Xingtai People’s Hospital, Xingtai, Hebei, China
| | | | - Wen Li
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Li J, Bi H. Integrating network pharmacology and in vitro model to investigate hippocampal neurotoxicity induced by atrazine. Toxicol Mech Methods 2021; 32:259-267. [PMID: 34663174 DOI: 10.1080/15376516.2021.1995917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Atrazine (ATR), a commonly applied herbicide in agriculture, has been found to cause hippocampal injury in rodents. However, the underlying toxicological targets and mechanisms are unclear. In this study, network pharmacology analysis and in vitro model were integrated to investigate the effect and mechanism of ATR-induced hippocampal neurotoxicity. In total, 71 targets of hippocampal neurotoxicity induced by ATR were predicted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG) enrichment analysis suggested that these targets were related to multiple GO terms and signaling pathways. To further investigate the underlying mechanisms, the top 10 hub targets were screened and included tumor protein p53 (Tp53), caspase 3 (Casp3), prostaglandin-endoperoxide synthase 2 (Ptgs2), cAMP-responsive element-binding protein 1 (Creb1), estrogen receptor 1 (Esr1), Jun proto-oncogene (Jun), brain-derived neurotrophic factor (Bdnf), catalase (Cat), sirtuin 1 (Sirt1) and Fos proto-oncogene (Fos). Moreover, the cell counting kit-8 (CCK8) and lactate dehydrogenase (LDH) assay showed that ATR had time and dose-dependent cytotoxicity on H19-7 cells. TUNEL staining revealed that ATR increased the apoptotic ratio. In addition, Real-time quantitative polymerase chain reaction (RT-qPCR) results indicated that the mRNA expression levels of all hub targets showed significant changes, except Esr1 and Jun. Our study demonstrated that ATR mainly acted on multiple targets and signaling pathways to exert its hippocampal neurotoxicity. These results provided initial evidence for the further exploration of the toxicological mechanism of ATR.
Collapse
Affiliation(s)
- Jianan Li
- Key Lab of Environment and Health, College of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haoran Bi
- Department of Biostatistics, College of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
11
|
Dai J, Li X, Wang C, Gu S, Dai L, Zhang J, Fan Y, Wu J. Repeated neonatal sevoflurane induced neurocognitive impairment through NF-κB-mediated pyroptosis. J Neuroinflammation 2021; 18:180. [PMID: 34419096 PMCID: PMC8380327 DOI: 10.1186/s12974-021-02233-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
Background Exposure to general anesthesia (GA) during the postnatal period is associated with neuroinflammation and long-term neurocognitive impairment in preclinical and clinical settings. Pyroptosis is a novel type of programmed cell death that, along with inflammation, has been found to play an important role in the mechanism of diverse neurological diseases. However, its roles in GA-induced neuroinflammation and neurocognitive impairment in the developing brain have not been investigated. Methods Rats at postnatal day 6 or primary hippocampal neurons at 9 days in vitro received 3% sevoflurane for 2 h daily for three consecutive days. A pharmacological inhibitor of nuclear factor (NF)-κB (BAY 11-7082) was administered to suppress NF-κB activation. Histological and biochemical analyses were performed to assess the pyroptosis as well as neuronal and synaptic damage both in vivo and in vitro. In addition, behavioral tests were performed to evaluate neurocognitive ability in rats. Results Repeated sevoflurane exposure activated NF-κB-mediated pyroptosis and neuroinflammation in the hippocampus in developing rats, damaged the neuronal morphology and synaptic integrity, and induced neurocognitive impairment in rats. BAY 11-7082 treatment suppressed the activation of pyroptosis, attenuated the neuronal and synaptic damage, and ameliorated the neurocognitive impairment induced by repeated sevoflurane administration to developing rats. Conclusions Repeated sevoflurane GA may induce neuroinflammation and neurocognitive impairment in developing rats via the activation of NF-κB-mediated pyroptosis. Our findings characterize a novel role of pyroptosis as a potential therapeutic target in neuroinflammation after repeated neonatal GA.
Collapse
Affiliation(s)
- Jing Dai
- Department of Obstetrics and Gynecology, Affiliated Jintan Hospital of Jiangsu University, Changzhou, 213200, China
| | - Xue Li
- Department of Anesthesiology, Affiliated Jintan Hospital of Jiangsu University, Changzhou, 213200, China
| | - Cai Wang
- Department of Anesthesiology, Affiliated Jintan Hospital of Jiangsu University, Changzhou, 213200, China
| | - Shuxin Gu
- Department of Anesthesiology, Affiliated Jintan Hospital of Jiangsu University, Changzhou, 213200, China
| | - Lei Dai
- Department of Anesthesiology, Affiliated Jintan Hospital of Jiangsu University, Changzhou, 213200, China
| | - Jingyun Zhang
- Department of Anesthesiology, Affiliated Jintan Hospital of Jiangsu University, Changzhou, 213200, China
| | - Yunxia Fan
- Department of Anesthesiology, Affiliated Jintan Hospital of Jiangsu University, Changzhou, 213200, China.
| | - Jing Wu
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
12
|
Zhao Y, Yang S, Guo Q, Guo Y, Zheng Y, Ji E. Shashen-Maidong Decoction improved chronic intermittent hypoxia-induced cognitive impairment through regulating glutamatergic signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114040. [PMID: 33794336 DOI: 10.1016/j.jep.2021.114040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/03/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Obstructive sleep apnea (OSA) is characterized by chronic intermittent hypoxia (CIH), which is associated with cognitive impairment. Previous study suggested CIH exposure could induce similar symptoms and signs to the clinical features of Deficiency of both Qi and Yin Syndrome (DQYS) in Traditional Chinese Medicine (TCM). Shashen-Maidong Decoction (SMD) has been applied clinically for DQYS for hundred years. However, SMD treatment could be beneficial to CIH induced cognitive impairment is still unclear. AIM OF THE STUDY Therefore, the aim of this study was to investigate the effect of SMD treatment on CIH induced cognitive impairment, and to explore the related neuroprotective mechanism. MATERIALS AND METHODS Mice were exposed to CIH for 5 weeks (8 h/day) and were orally treated with either vehicle or SMD (5.265 g/kg/day) 30 min before CIH exposure. Spatial memory was evaluated by Morris Water Maze and Y-Maze test. Synaptic morphology in hippocampus was observed by Golgi-Cox staining and Electron microscope, and NR2B-ERK signaling pathway were detected by western blotting. RESULTS Our results showed that SMD treatment improved performance in either Morris Water Maze or Y-Maze test in mice exposed to CIH, increased spine density and postsynaptic density (PSD) thickness in hippocampus. SMD treatment suppressed the over-activation of NR2B/CaMKII/SynGAP induced by CIH exposure, enhanced ERK/CREB phosphorylation and increased PSD-95 and BDNF expression. CONCLUSION SMD attenuates the CIH-induced cognitive impairment through regulating NR2B-ERK signaling pathway. Additionally, our findings provided that DQYS may be the potential therapeutic target for neurocognitive diseases in patients with OSA.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, Hebei, People's Republic of China
| | - Qiuhong Guo
- Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, Hebei, People's Republic of China
| | - Yajing Guo
- Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Yuying Zheng
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Ensheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
13
|
Zhang P, Wang Y, Wang H, Cao J. Sesamol alleviates chronic intermittent hypoxia-induced cognitive deficits via inhibiting oxidative stress and inflammation in rats. Neuroreport 2021; 32:105-111. [PMID: 33323839 DOI: 10.1097/wnr.0000000000001564] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chronic intermittent hypoxia (CIH) is a major pathophysiological feature of obstructive sleep apnea (OSA), which can cause oxidative stress and inflammation which can further impair the nervous system. Cognitive impairment is a common complication of the nervous system in OSA. Sesamol, a natural extract from Sesamum plants, is believed to have strong antioxidant and anti-inflammation capacity, which has a powerful neuroprotective function. But whether sesamol can improve CIH-induced cognitive impairment is unclear. This study aimed to explore whether sesamol can improve CIH-induced cognitive impairment and its relative mechanism in the model rats with OSA. Rats were exposed to CIH for 8 h a day for 2, 4, 6, and 8 weeks separately and concurrently were treated with sesamol (20 mg/kg/day, intraperitoneal). The Morris water maze (MWM) test was used to evaluate their learning and memory function. The activity of the superoxide dismutase (SOD) and the level of malondialdehyde were measured to evaluate the oxidative stress in the hippocampus of the rats. The levels of tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) in the hippocampus were quantified to analyse neuroinflammation by ELISA. The MWM test showed that sesamol improved learning and memory impairment in CIH-exposed rats. We also found that the sesamol-treated CIH-exposed rats had significantly increased the activity of SOD, as well as reduced the level of malondialdehyde in the hippocampus. In addition, sesamol also reduced the levels of TNF-α and IL-1β in the hippocampus. These data show that sesamol is able to alleviate cognitive impairments in CIH-exposed rats, with its neuroprotective effects likely inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Respiratory and Critical Medicine, Tianjin Medical University General Hospital
- Department of Respiratory and Critical Medicine, North China University of Science and Technology Affiliated Hospital
| | - Yanhui Wang
- Department of Clinical Medicine, Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Hongyang Wang
- Department of Respiratory and Critical Medicine, North China University of Science and Technology Affiliated Hospital
| | - Jie Cao
- Department of Respiratory and Critical Medicine, Tianjin Medical University General Hospital
| |
Collapse
|
14
|
Cao R, Zhang MJ, Zhou YT, Liu YJ, Wang HH, Zhang QX, Shi YW, Li JC, Wong TS, Yin M. The dorsal and the ventral side of hypoglossal motor nucleus showed different response to chronic intermittent hypoxia in rats. Sleep Breath 2020; 25:325-330. [PMID: 32562172 DOI: 10.1007/s11325-020-02125-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE To study neurochemical reactions to chronic intermittent hypoxia (CIH) in the hypoglossal nucleus (HN) of rats. METHODS Adult male Sprague-Dawley rats (n = 12) were randomly divided into two groups (the CIH and the control group). The CIH rats were housed in a hypoxic chamber with the fraction of oxygen volume alternating between 21% and 5% by providing air for 60 s and then providing nitrogen for 60 s from 8:30 am to 16:30 pm each day for 35 days. The control group was housed in a cabin with normal oxygen levels. We studied the expression of c-fos protein, 5-hydroxytryptamine (5-HT) positive terminals, and its 2A receptors in hypoglossal nuclei by immunohistochemistry. RESULTS The expression of c-fos, 5-HT positive terminals, and accordingly 5-HT 2A receptors in the CIH group were significantly higher than that in the controls (p < 0.05). The ventral side of the HN showed a clearly higher expression of 5-HT and its 2A receptors than the dorsal side (p < 0.05). CONCLUSION There were 2 responses of the HN to CIH. First, CIH induced a higher expression of 5-HT positive terminals and its 2A receptors, and second, this reaction was much more evident in ventral side than in the dorsal side. We postulate that these responses may serve to be a protective and compensatory mechanism for CIH.
Collapse
Affiliation(s)
- Rui Cao
- Department of Otorhinolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Min-Juan Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yun-Tao Zhou
- Experimental Teaching Demonstration Centre, School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Ya-Jie Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Huan-Huan Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qin-Xin Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ya-Wen Shi
- Department of Otorhinolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jia-Chen Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Thian-Sze Wong
- Division of Head and Neck, the department of surgery, the faculty of medicine, The University of Hong Kong, Hong Kong, China
| | - Min Yin
- Department of Otorhinolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|