1
|
Diz F, Monteiro WF, Silveira IS, Ruano D, Zotti ER, Weimer RD, Melo MN, Schossler Lopes JG, Scheffel TB, Caldas LVE, da Costa JC, Morrone FB, Ligabue RA. Zinc-Modified Titanate Nanotubes as Radiosensitizers for Glioblastoma: Enhancing Radiotherapy Efficacy and Monte Carlo Simulations. ACS OMEGA 2024; 9:29499-29515. [PMID: 39005768 PMCID: PMC11238320 DOI: 10.1021/acsomega.4c02125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
Radiotherapy (RT) is the established noninvasive treatment for glioblastoma (GBM), a highly aggressive malignancy. However, its effectiveness in improving patient survival remains limited due to the radioresistant nature of GBM. Metal-based nanostructures have emerged as promising strategies to enhance RT efficacy. Among them, titanate nanotubes (TNTs) have gained significant attention due to their biocompatibility and cost-effectiveness. This study aimed to synthesize zinc-modified TNTs (ZnTNT) from sodium TNTs (NaTNT), in addition to characterizing the formed nanostructures and evaluating their radiosensitization effects in GBM cells (U87 and U251). Hydrothermal synthesis was employed to fabricate the TNTs, which were characterized using various techniques, including transmission electron microscopy (TEM), energy-dispersive spectroscopy, scanning-transmission mode, Fourier-transform infrared spectroscopy, ICP-MS (inductively coupled plasma mass spectrometry), X-ray photoelectron spectroscopy, and zeta potential analysis. Cytotoxicity was evaluated in healthy (Vero) and GBM (U87 and U251) cells by the MTT assay, while the internalization of TNTs was observed through TEM imaging and ICP-MS. The radiosensitivity of ZnTNT and NaTNT combined with 5 Gy was evaluated using clonogenic assays. Monte Carlo simulations using the MCNP6.2 code were performed to determine the deposited dose in the culture medium for RT scenarios involving TNT clusters and cells. The results demonstrated differences in the dose deposition values between the scenarios with and without TNTs. The study revealed that ZnTNT interfered with clonogenic integrity, suggesting its potential as a powerful tool for GBM treatment.
Collapse
Affiliation(s)
- Fernando
Mendonça Diz
- Preclinical
Research Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul—PUCRS, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
- Graduate
Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul—PUCRS, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| | - Wesley F. Monteiro
- Graduate
Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul—PUCRS, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| | - Iury Santos Silveira
- Institute
of Energy and Nuclear Research, National
Nuclear Energy Commission—IPEN/CNEN. São Paulo, São Paulo 01151, Brazil
| | - Daniel Ruano
- ALBA
Syconhrotron Light Source, Cerdanuola
del Vallès 08290, Spain
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científica (UPV-CSIC), Valencia 46022, Spain
| | - Eduardo Rosa Zotti
- Graduate
Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul—PUCRS, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| | - Rafael Diogo Weimer
- Graduate
Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul—PUCRS, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| | - Micael Nunes Melo
- Institute
of Technology and Research—ITP, Aracaju, Sergipe 49032-490 Brazil
| | - João Gabriel Schossler Lopes
- Radiotherapy
Service at Hospital São Lucas da Pontifical Catholic University
of Rio Grande do Sul/Oncoclinic Group, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Thamiris Becker Scheffel
- Preclinical
Research Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul—PUCRS, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| | - Linda V. E. Caldas
- Institute
of Energy and Nuclear Research, National
Nuclear Energy Commission—IPEN/CNEN. São Paulo, São Paulo 01151, Brazil
| | - Jaderson Costa da Costa
- Preclinical
Research Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul—PUCRS, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| | - Fernanda Bueno Morrone
- Preclinical
Research Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul—PUCRS, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
- School
of Life and Health Sciences, Pontifical
Catholic University of Rio Grande do Sul—PUCRS, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| | - Rosane Angélica Ligabue
- Graduate
Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul—PUCRS, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| |
Collapse
|
2
|
Cao Y, Ding S, Hu Y, Zeng L, Zhou J, Lin L, Zhang X, Ma Q, Cai R, Zhang Y, Duan G, Bian XW, Tian G. An Immunocompetent Hafnium Oxide-Based STING Nanoagonist for Cancer Radio-immunotherapy. ACS NANO 2024; 18:4189-4204. [PMID: 38193384 DOI: 10.1021/acsnano.3c09293] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
cGAS-STING signaling plays a critical role in radiotherapy (RT)-mediated immunomodulation. However, RT alone is insufficient to sustain STING activation in tumors under a safe X-ray dose. Here, we propose a radiosensitization cooperated with cGAS stimulation strategy by engineering a core-shell structured nanosized radiosensitizer-based cGAS-STING agonist, which is constituted with the hafnium oxide (HfO2) core and the manganese oxide (MnO2) shell. HfO2-mediated radiosensitization enhances immunogenic cell death to afford tumor associated antigens and adequate cytosolic dsDNA, while the GSH-degradable MnO2 sustainably releases Mn2+ in tumors to improve the recognition sensitization of cGAS. The synchronization of sustained Mn2+ supply with cumulative cytosolic dsDNA damage synergistically augments the cGAS-STING activation in irradiated tumors, thereby enhancing RT-triggered local and system effects when combined with an immune checkpoint inhibitor. Therefore, the synchronous radiosensitization with sustained STING activation is demonstrated as a potent immunostimulation strategy to optimize cancer radio-immuotherapy.
Collapse
Affiliation(s)
- Yuhua Cao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Shuaishuai Ding
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Yunping Hu
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Lijuan Zeng
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Jingrong Zhou
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Ling Lin
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Xiao Zhang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Qinghua Ma
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Ruili Cai
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Yu Zhang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Guangjie Duan
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, P. R. China
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology Ministry of Education of China, Chongqing 400038, P. R. China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, P. R. China
| |
Collapse
|
3
|
Skrodzki D, Molinaro M, Brown R, Moitra P, Pan D. Synthesis and Bioapplication of Emerging Nanomaterials of Hafnium. ACS NANO 2024; 18:1289-1324. [PMID: 38166377 DOI: 10.1021/acsnano.3c08917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
A significant amount of progress in nanotechnology has been made due to the development of engineered nanoparticles. The use of metallic nanoparticles for various biomedical applications has been extensively investigated. Biomedical research is highly focused on them because of their inert nature, nanoscale structure, and similar size to many biological molecules. The intrinsic characteristics of these particles, including electronic, optical, physicochemical, and surface plasmon resonance, that can be altered by altering their size, shape, environment, aspect ratio, ease of synthesis, and functionalization properties, have led to numerous biomedical applications. Targeted drug delivery, sensing, photothermal and photodynamic therapy, and imaging are some of these. The promising clinical results of NBTXR3, a high-Z radiosensitizing nanomaterial derived from hafnium, have demonstrated translational potential of this metal. This radiosensitization approach leverages the dependence of energy attenuation on atomic number to enhance energy-matter interactions conducive to radiation therapy. High-Z nanoparticle localization in tumor issue differentially increases the effect of ionizing radiation on cancer cells versus nearby healthy ones and mitigates adverse effects by reducing the overall radiation burden. This principle enables material multifunctionality as contrast agents in X-ray-based imaging. The physiochemical properties of hafnium (Z = 72) are particularly advantageous for these applications. A well-placed K-edge absorption energy and high mass attenuation coefficient compared to elements in human tissue across clinical energy ranges leads to significant attenuation. Chemical reactivity allows for variety in nanoparticle synthesis, composition, and functionalization. Nanoparticles such as hafnium oxide exhibit excellent biocompatibility due to physiochemical inertness prior to incidence with ionizing radiation. Additionally, the optical and electronic properties are applicable in biosensing, optical component coatings, and semiconductors. The wide interest has prompted extensive research in design and synthesis to facilitate property fine-tuning. This review summarizes synthetic methods for hafnium-based nanomaterials and applications in therapy, imaging, and biosensing with a mechanistic focus. A discussion and future perspective section highlights clinical progress and elaborates on current challenges. By focusing on factors impacting applicational effectiveness and examining limitations this review aims to support researchers and expedite clinical translation of future hafnium-based nanomedicine.
Collapse
Affiliation(s)
- David Skrodzki
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Matthew Molinaro
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Richard Brown
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Parikshit Moitra
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dipanjan Pan
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, 101 Huck Life Sciences Building, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|