1
|
Zheng J, Wu YC, Phillips EH, Cai X, Wang X, Seung-Young Lee S. Increased Multiplexity in Optical Tissue Clearing-Based Three-Dimensional Immunofluorescence Microscopy of the Tumor Microenvironment by Light-Emitting Diode Photobleaching. J Transl Med 2024; 104:102072. [PMID: 38679160 PMCID: PMC11240282 DOI: 10.1016/j.labinv.2024.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024] Open
Abstract
Optical tissue clearing and three-dimensional (3D) immunofluorescence (IF) microscopy is transforming imaging of the complex tumor microenvironment (TME). However, current 3D IF microscopy has restricted multiplexity; only 3 or 4 cellular and noncellular TME components can be localized in cleared tumor tissue. Here we report a light-emitting diode (LED) photobleaching method and its application for 3D multiplexed optical mapping of the TME. We built a high-power LED light irradiation device and temperature-controlled chamber for completely bleaching fluorescent signals throughout optically cleared tumor tissues without compromise of tissue and protein antigen integrity. With newly developed tissue mounting and selected region-tracking methods, we established a cyclic workflow involving IF staining, tissue clearing, 3D confocal microscopy, and LED photobleaching. By registering microscope channel images generated through 3 work cycles, we produced 8-plex image data from individual 400 μm-thick tumor macrosections that visualize various vascular, immune, and cancer cells in the same TME at tissue-wide and cellular levels in 3D. Our method was also validated for quantitative 3D spatial analysis of cellular remodeling in the TME after immunotherapy. These results demonstrate that our LED photobleaching system and its workflow offer a novel approach to increase the multiplexing power of 3D IF microscopy for studying tumor heterogeneity and response to therapy.
Collapse
Affiliation(s)
- Jingtian Zheng
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois
| | - Yi-Chien Wu
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois
| | - Evan H Phillips
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois
| | - Xiaoying Cai
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois
| | - Xu Wang
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois
| | - Steve Seung-Young Lee
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois; University of Illinois Cancer Center, University of Illinois Chicago, Chicago, Illinois.
| |
Collapse
|
2
|
Zheng J, Wu YC, Phillips EH, Wang X, Lee SSY. Increased multiplexity in optical tissue clearing-based 3D immunofluorescence microscopy of the tumor microenvironment by LED photobleaching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569277. [PMID: 38076864 PMCID: PMC10705380 DOI: 10.1101/2023.11.29.569277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Optical tissue clearing and three-dimensional (3D) immunofluorescence (IF) microscopy have been transforming imaging of the complex tumor microenvironment (TME). However, current 3D IF microscopy has restricted multiplexity; only three or four cellular and non-cellular TME components can be localized in a cleared tumor tissue. Here we report a LED photobleaching method and its application for 3D multiplexed optical mapping of the TME. We built a high-power LED light irradiation device and temperature-controlled chamber for completely bleaching fluorescent signals throughout optically cleared tumor tissues without compromise of tissue and protein antigen integrity. With newly developed tissue mounting and selected region-tracking methods, we established a cyclic workflow involving IF staining, tissue clearing, 3D confocal microscopy, and LED photobleaching. By registering microscope channel images generated through three work cycles, we produced 8-plex image data from individual 400 μm-thick tumor macrosections that visualize various vascular, immune, and cancer cells in the same TME at tissue-wide and cellular levels in 3D. Our method was also validated for quantitative 3D spatial analysis of cellular remodeling in the TME after immunotherapy. These results demonstrate that our LED photobleaching system and its workflow offer a novel approach to increase the multiplexing power of 3D IF microscopy for studying tumor heterogeneity and response to therapy.
Collapse
|
3
|
Slaney CY, Kershaw MH. Challenges and Opportunities for Effective Cancer Immunotherapies. Cancers (Basel) 2020; 12:E3164. [PMID: 33126513 PMCID: PMC7693360 DOI: 10.3390/cancers12113164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
Using immunotherapy to treat cancers can be traced back to the 1890s, where a New York physician William Coley used heat-killed bacteria to treat cancer patients, which became known as "Coley's toxin" [...].
Collapse
Affiliation(s)
- Clare Y. Slaney
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3000, Australia
| | - Michael H. Kershaw
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3000, Australia
| |
Collapse
|
4
|
Oliver AJ, Keam SP, von Scheidt B, Zanker DJ, Harrison AJ, Tantalo DG, Darcy PK, Kershaw MH, Slaney CY. Primary and metastatic breast tumors cross-talk to influence immunotherapy responses. Oncoimmunology 2020; 9:1802979. [PMID: 32939322 PMCID: PMC7470186 DOI: 10.1080/2162402x.2020.1802979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The presence of a tumor can alter host immunity systematically. The immune-tumor interaction in one site may impact the local immune microenvironment in distal tissues through the circulation, and therefore influence the efficacy of immunotherapies to distant metastases. Improved understanding of the immune-tumor interactions during immunotherapy treatment in a metastatic setting may enhance the efficacy of current immunotherapies. Here we investigate the response to αPD-1/αCTLA4 and trimAb (αDR5, α4-1BB, αCD40) of 67NR murine breast tumors grown simultaneously in the mammary fat pad (MFP) and lung, a common site of breast cancer metastasis, and compared to tumors grown in isolation. Lung tumors present in isolation were resistant to both therapies. However, in MFP and lung tumor-bearing mice, the presence of a MFP tumor could increase lung tumor response to immunotherapy and decrease the number of lung metastases, leading to complete eradication of lung tumors in a proportion of mice. The MFP tumor influence on lung metastases was mediated by CD8+ T cells, as CD8+ T cell depletion abolished the difference in lung metastases. Furthermore, mice with concomitant MFP and lung tumors had increased tumor specific, effector CD8+ T cells infiltration in the lungs. Thus, we propose a model where tumors in an immunogenic location can give rise to systemic anti-tumor CD8+ T cell responses that could be utilized to target metastatic tumors. These results highlight the requirement for clinical consideration of cross-talk between primary and metastatic tumors for effective immunotherapy for cancers otherwise resistant to immunotherapy.
Collapse
Affiliation(s)
- Amanda J Oliver
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Simon P Keam
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Bianca von Scheidt
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Damien J Zanker
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Aaron J Harrison
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Daniela Gm Tantalo
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Phillip K Darcy
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Michael H Kershaw
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Clare Y Slaney
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| |
Collapse
|