Ray I, Goswami S. Circadian rhythm genes in cancer: insight into their functions and regulation involving noncoding RNAs.
Chronobiol Int 2021;
38:1231-1243. [PMID:
34024245 DOI:
10.1080/07420528.2021.1928157]
[Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The 24-h circadian rhythm handles a wide variety of physiological needs. Clock genes, in coordination with other tissue-specific factors regulate various processes and often turns responsible for the pathological conditions when altered. Cancer is one such disease where the clock genes have been shown to contribute at multiple levels modulating key hallmarks of cancer. Most importantly, adding to this complication, noncoding RNAs (ncRNAs) have emerged as one of the major post-transcriptional regulators of gene expression and many recent studies have indicated about involvement of microRNAs or long noncoding RNAs in the process. In this review, we have described how do circadian pathway genes participated in oncogenesis and also updated the latest status of ncRNA involvement. We also try to address the existing gaps to have a more comprehensive understanding of the phenomenon in future.Abbreviations: HIFs: hypoxia-inducible factors; VEGF: Vascular endothelial growth factor; Mdm2: Mouse double minute 2 homolog; ATM: Ataxia telangiectasia mutated; Chk2: Checkpoint kinase 2; Bcl-Xl: B-cell lymphoma-extra-large; Bcl-2: B-cell lymphoma 2; DGCR8: DiGeorge syndrome chromosomal region 8; PPAR-γ: Peroxisome proliferator-activated receptor gamma.
Collapse