1
|
Santos DS, Fernandes LDC, Rissatto-Lago MR, Costa ACN. Auditory Pathway Maturation in Full-term Small for Gestational Age Children: A Systematic Review with Meta-analysis. Int Arch Otorhinolaryngol 2023; 27:e744-e750. [PMID: 37876702 PMCID: PMC10593533 DOI: 10.1055/s-0042-1758215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/01/2022] [Indexed: 10/26/2023] Open
Abstract
Introduction Factors of intrauterine growth restriction have been responsible for the births of full-term babies small for their gestational age (SGA). Scientific evidence points that this restriction can cause changes in the neural maturation process. Objectives To analyze the absolute latencies and interpeak intervals of brainstem auditory evoked potential waves in full-term and SGA children to investigate whether there are changes of neural maturation in this population. Data Synthesis The search for articles that reported the assessment of brainstem auditory evoked potential in SGA newborns compared with a control, appropriate for their gestational age, both born full-term, for the entire period available in the database research until October 31, 2021 was performed based on the MEDLINE/PubMed Central and on the Latin America and the Caribbean Health Sciences Literature and Virtual Health Library electronic databases. A total of 311 studies were found in the database research. Out of this total, 10 studies were included in the review, 5 of which were eligible for the meta-analysis, involving a total of 473 participants of both genders, with 193 participants belonging to the study group and 280 to the control group. Differences between the groups were only observed in the absolute latency of wave V (95% confidence interval [CI]: 0.02-0.15; p < 0.01). Conclusion The SGA condition is responsible for the appearance of brainstem neural conduction dysfunction measured by the brainstem auditory evoked potentials, probably by the maturation process of the auditory pathway of this population.
Collapse
Affiliation(s)
| | - Luciene da Cruz Fernandes
- Multidisciplinary Institute of Rehabilitation in Health, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Ana Caline Nóbrega Costa
- Multidisciplinary Institute of Rehabilitation in Health, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
2
|
Qi Y, Lin Z, Lu H, Mao J, Zhang H, Zhao P, Hou Y. Cerebral Hemodynamic and Metabolic Abnormalities in Neonatal Hypocalcemia: Findings from Advanced MRI. AJNR Am J Neuroradiol 2023; 44:1224-1230. [PMID: 37709354 PMCID: PMC10549950 DOI: 10.3174/ajnr.a7994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND AND PURPOSE Neonatal hypocalcemia is the most common metabolic disorder, and whether asymptomatic disease should be treated with calcium supplements remains controversial. We aimed to quantify neonatal hypocalcemia's global CBF and cerebral metabolic rate of oxygen (CMRO2) using physiologic MR imaging and elucidate the pathophysiologic vulnerabilities of neonatal hypocalcemia. MATERIALS AND METHODS A total of 37 consecutive patients with neonatal hypocalcemia were enrolled. They were further divided into subgroups with and without structural MR imaging abnormalities, denoted as neonatal hypocalcemia-a (n = 24) and neonatal hypocalcemia-n (n = 13). Nineteen healthy neonates were enrolled as a control group. Brain physiologic parameters determined using phase-contrast MR imaging, T2-relaxation-under-spin-tagging MR imaging, and brain volume were compared between patients with neonatal hypocalcemia (their subgroups) and controls. Predictors for neonatal hypocalcemia-related brain injuries were identified using multivariate logistic regression analysis and expressed as ORs with 95% CIs. RESULTS Patients with neonatal hypocalcemia showed significantly lower CBF and CMRO2 compared with controls. Furthermore, the neonatal hypocalcemia-a subset (versus controls or neonatal hypocalcemia-n) had significantly lower CBF and CMRO2. There was no obvious difference in CBF and CMRO2 between the neonatal hypocalcemia-n subset and controls. CBF and CMRO2 were independently associated with neonatal hypocalcemia. The ORs were 0.80 (95% CI, 0.65-0.99) and 0.97 (95% CI, 0.89-1.05) for CBF and CMRO2, respectively. CONCLUSIONS Neonatal hypocalcemia with structural damage may exhibit lower hemodynamics and cerebral metabolism. CBF may be useful in assessing the need for calcium supplementation in asymptomatic neonatal hypocalcemia to prevent brain injury.
Collapse
Affiliation(s)
- Ying Qi
- From the Department of Radiology (Y.Q., H.Z., Y.H.), Shengjing Hospital of China Medical University, Shenyang, China
| | - Zixuan Lin
- Key Laboratory for Biomedical Engineering of Ministry of Education (Z.L.), Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Hanzhang Lu
- Department of Radiology (H.L.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jian Mao
- Department of Pediatrics (J.M.), Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongyang Zhang
- From the Department of Radiology (Y.Q., H.Z., Y.H.), Shengjing Hospital of China Medical University, Shenyang, China
| | - Pengfei Zhao
- Department of Pharmacology (P.Z.), School of Pharmaceutical Sciences, China Medical University, Shenyang, China
| | - Yang Hou
- From the Department of Radiology (Y.Q., H.Z., Y.H.), Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Yao XD, Li Y, Jiang H, Ma J, Wen J. COVID-19 pandemic and neonatal birth weight: a systematic review and meta-analysis. Public Health 2023; 220:10-17. [PMID: 37201437 DOI: 10.1016/j.puhe.2023.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/16/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVES Lockdown was implemented in many countries during the pandemic, which led to myriad changes in pregnant women's lives. However, the potential impacts of the COVID-19 pandemic on neonatal outcomes remain unclear. We aimed to evaluate the association between the pandemic and neonatal birth weight. STUDY DESIGN This was a systematic review and meta-analysis of the previous literature. METHODS We searched the MEDLINE and Embase databases up to May 2022 and extracted 36 eligible studies that compared neonatal birth weight between the pandemic and the prepandemic period. The following outcomes were included: mean birth weight, low birth weight (LBW), very low birth weight (VLBW), macrosomia, small for gestational age (SGA), very small for gestational age (VSGA), and large for gestational age (LGA). Statistical heterogeneity among studies was assessed to determine whether a random effects model or fixed effects model was conducted. RESULTS Of the 4514 studies identified, 36 articles were eligible for inclusion. A total of 1,883,936 neonates during the pandemic and 4,667,133 neonates during the prepandemic were reported. We identified a significant increase in mean birth weight (pooled mean difference [95% confidence interval (CI)] = 15.06 [10.36, 19.76], I2 = 0.0%, 12 studies) and a reduction in VLBW (pooled OR [95% CI] = 0.86 [0.77, 0.97], I2 = 55.4%, 12 studies). No overall effect was identified for other outcomes: LBW, macrosomia, SGA, VSGA, and LGA. There was publication bias for mean birth weight with a borderline significance (Egger's P = 0.050). CONCLUSION Pooled results showed the pandemic was significantly associated with an increase in mean birth weight and a reduction in VLBW, but not for other outcomes. This review provided clues about the indirect effects of the pandemic on neonatal birth weight and more healthcare measures needed to improve neonatal long-term health.
Collapse
Affiliation(s)
- X D Yao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China; Department of Obstetrics and Gynaecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Y Li
- Department of Obstetrics and Gynaecology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - H Jiang
- Department of Obstetrics and Gynaecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - J Ma
- Department of Obstetrics and Gynaecology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - J Wen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| |
Collapse
|
4
|
Wang Y, Song J, Zhang X, Kang W, Li W, Yue Y, Zhang S, Xu F, Wang X, Zhu C. The Impact of Different Degrees of Intraventricular Hemorrhage on Mortality and Neurological Outcomes in Very Preterm Infants: A Prospective Cohort Study. Front Neurol 2022; 13:853417. [PMID: 35386416 PMCID: PMC8978798 DOI: 10.3389/fneur.2022.853417] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveIntraventricular hemorrhage (IVH) is a common complication in preterm infants and is related to neurodevelopmental outcomes. Infants with severe IVH are at higher risk of adverse neurological outcomes and death, but the effect of low-grade IVH remains controversial. The purpose of this study was to evaluate the impact of different degrees of IVH on mortality and neurodevelopmental outcomes in very preterm infants.MethodsPreterm infants with a gestational age of <30 weeks admitted to neonatal intensive care units were included. Cerebral ultrasound was examined repeatedly until discharge or death. All infants were followed up to 18–24 months of corrected age. The impact of different grades of IVH on death and neurodevelopmental disability was assessed by multiple logistic regression.ResultsA total of 1,079 preterm infants were included, and 380 (35.2%) infants had grade I-II IVH, 74 (6.9%) infants had grade III-IV IVH, and 625 (57.9%) infants did not have IVH. The mortality in the non-IVH, I-II IVH, and III-IV IVH groups was 20.1, 19.7, and 55.2%, respectively (p < 0.05), and the incidence of neurodevelopmental disabilities was 13.9, 16.1, and 43.3%, respectively (p < 0.05), at 18–24 months of corrected age. After adjusting for confounding factors, preterm infants with III-IV IVH had higher rates of cerebral palsy [26.7 vs. 2.4%, OR = 6.10, 95% CI (1.840–20.231), p = 0.003], disability [43.3 vs. 13.9%, OR = 2.49, 95% CI (1.059–5.873), p = 0.037], death [55.2 vs. 20.1%, OR = 3.84, 95% CI (2.090–7.067), p < 0.001], and disability + death [73.7 vs. 28.7%, OR = 4.77, 95% CI (2.518–9.021), p < 0.001] compared to those without IVH. However, the mortality and the incidence of neurodevelopmental disability in infants with I-II IVH were similar to those without IVH (p > 0.05).ConclusionsSevere IVH but not mild IVH increased the risk of mortality and neurodevelopmental disability in very preterm infants.
Collapse
Affiliation(s)
- Yong Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenqing Kang
- Department of Neonatology, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenhua Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuyang Yue
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shan Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Falin Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- *Correspondence: Changlian Zhu ;
| |
Collapse
|