1
|
Villegas F, Dal Bello R, Alvarez-Andres E, Dhont J, Janssen T, Milan L, Robert C, Salagean GAM, Tejedor N, Trnková P, Fusella M, Placidi L, Cusumano D. Challenges and opportunities in the development and clinical implementation of artificial intelligence based synthetic computed tomography for magnetic resonance only radiotherapy. Radiother Oncol 2024; 198:110387. [PMID: 38885905 DOI: 10.1016/j.radonc.2024.110387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Synthetic computed tomography (sCT) generated from magnetic resonance imaging (MRI) can serve as a substitute for planning CT in radiation therapy (RT), thereby removing registration uncertainties associated with multi-modality imaging pairing, reducing costs and patient radiation exposure. CE/FDA-approved sCT solutions are nowadays available for pelvis, brain, and head and neck, while more complex deep learning (DL) algorithms are under investigation for other anatomic sites. The main challenge in achieving a widespread clinical implementation of sCT lies in the absence of consensus on sCT commissioning and quality assurance (QA), resulting in variation of sCT approaches across different hospitals. To address this issue, a group of experts gathered at the ESTRO Physics Workshop 2022 to discuss the integration of sCT solutions into clinics and report the process and its outcomes. This position paper focuses on aspects of sCT development and commissioning, outlining key elements crucial for the safe implementation of an MRI-only RT workflow.
Collapse
Affiliation(s)
- Fernanda Villegas
- Department of Oncology-Pathology, Karolinska Institute, Solna, Sweden; Radiotherapy Physics and Engineering, Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Emilie Alvarez-Andres
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Jennifer Dhont
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Institut Jules Bordet, Department of Medical Physics, Brussels, Belgium; Université Libre De Bruxelles (ULB), Radiophysics and MRI Physics Laboratory, Brussels, Belgium
| | - Tomas Janssen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lisa Milan
- Medical Physics Unit, Imaging Institute of Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Charlotte Robert
- UMR 1030 Molecular Radiotherapy and Therapeutic Innovations, ImmunoRadAI, Paris-Saclay University, Institut Gustave Roussy, Inserm, Villejuif, France; Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Ghizela-Ana-Maria Salagean
- Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania; Department of Radiation Oncology, TopMed Medical Centre, Targu Mures, Romania
| | - Natalia Tejedor
- Department of Medical Physics and Radiation Protection, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Petra Trnková
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Marco Fusella
- Department of Radiation Oncology, Abano Terme Hospital, Italy
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Rome, Italy.
| | - Davide Cusumano
- Mater Olbia Hospital, Strada Statale Orientale Sarda 125, Olbia, Sassari, Italy
| |
Collapse
|
2
|
Wang CK, Wang TW, Yang YX, Wu YT. Deep Learning for Nasopharyngeal Carcinoma Segmentation in Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. Bioengineering (Basel) 2024; 11:504. [PMID: 38790370 PMCID: PMC11118180 DOI: 10.3390/bioengineering11050504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Nasopharyngeal carcinoma is a significant health challenge that is particularly prevalent in Southeast Asia and North Africa. MRI is the preferred diagnostic tool for NPC due to its superior soft tissue contrast. The accurate segmentation of NPC in MRI is crucial for effective treatment planning and prognosis. We conducted a search across PubMed, Embase, and Web of Science from inception up to 20 March 2024, adhering to the PRISMA 2020 guidelines. Eligibility criteria focused on studies utilizing DL for NPC segmentation in adults via MRI. Data extraction and meta-analysis were conducted to evaluate the performance of DL models, primarily measured by Dice scores. We assessed methodological quality using the CLAIM and QUADAS-2 tools, and statistical analysis was performed using random effects models. The analysis incorporated 17 studies, demonstrating a pooled Dice score of 78% for DL models (95% confidence interval: 74% to 83%), indicating a moderate to high segmentation accuracy by DL models. Significant heterogeneity and publication bias were observed among the included studies. Our findings reveal that DL models, particularly convolutional neural networks, offer moderately accurate NPC segmentation in MRI. This advancement holds the potential for enhancing NPC management, necessitating further research toward integration into clinical practice.
Collapse
Affiliation(s)
- Chih-Keng Wang
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan; (C.-K.W.)
- Department of Otolaryngology-Head and Neck Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Ting-Wei Wang
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan; (C.-K.W.)
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan
| | - Ya-Xuan Yang
- Department of Otolaryngology-Head and Neck Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan
| |
Collapse
|
3
|
Liu X, Yang R, Xiong T, Yang X, Li W, Song L, Zhu J, Wang M, Cai J, Geng L. CBCT-to-CT Synthesis for Cervical Cancer Adaptive Radiotherapy via U-Net-Based Model Hierarchically Trained with Hybrid Dataset. Cancers (Basel) 2023; 15:5479. [PMID: 38001738 PMCID: PMC10670900 DOI: 10.3390/cancers15225479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
PURPOSE To develop a deep learning framework based on a hybrid dataset to enhance the quality of CBCT images and obtain accurate HU values. MATERIALS AND METHODS A total of 228 cervical cancer patients treated in different LINACs were enrolled. We developed an encoder-decoder architecture with residual learning and skip connections. The model was hierarchically trained and validated on 5279 paired CBCT/planning CT images and tested on 1302 paired images. The mean absolute error (MAE), peak signal to noise ratio (PSNR), and structural similarity index (SSIM) were utilized to access the quality of the synthetic CT images generated by our model. RESULTS The MAE between synthetic CT images generated by our model and planning CT was 10.93 HU, compared to 50.02 HU for the CBCT images. The PSNR increased from 27.79 dB to 33.91 dB, and the SSIM increased from 0.76 to 0.90. Compared with synthetic CT images generated by the convolution neural networks with residual blocks, our model had superior performance both in qualitative and quantitative aspects. CONCLUSIONS Our model could synthesize CT images with enhanced image quality and accurate HU values. The synthetic CT images preserved the edges of tissues well, which is important for downstream tasks in adaptive radiotherapy.
Collapse
Affiliation(s)
- Xi Liu
- School of Physics, Beihang University, Beijing 102206, China; (X.L.); (X.Y.)
- Department of Radiation Oncology, Cancer Center, Peking University Third Hospital, Beijing 100191, China; (R.Y.)
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China; (T.X.)
| | - Ruijie Yang
- Department of Radiation Oncology, Cancer Center, Peking University Third Hospital, Beijing 100191, China; (R.Y.)
| | - Tianyu Xiong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China; (T.X.)
| | - Xueying Yang
- School of Physics, Beihang University, Beijing 102206, China; (X.L.); (X.Y.)
- Department of Radiation Oncology, Cancer Center, Peking University Third Hospital, Beijing 100191, China; (R.Y.)
| | - Wen Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China; (T.X.)
| | - Liming Song
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China; (T.X.)
| | - Jiarui Zhu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China; (T.X.)
| | - Mingqing Wang
- Department of Radiation Oncology, Cancer Center, Peking University Third Hospital, Beijing 100191, China; (R.Y.)
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China; (T.X.)
| | - Lisheng Geng
- School of Physics, Beihang University, Beijing 102206, China; (X.L.); (X.Y.)
- Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 102206, China
- Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, China
| |
Collapse
|
4
|
McNaughton J, Fernandez J, Holdsworth S, Chong B, Shim V, Wang A. Machine Learning for Medical Image Translation: A Systematic Review. Bioengineering (Basel) 2023; 10:1078. [PMID: 37760180 PMCID: PMC10525905 DOI: 10.3390/bioengineering10091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND CT scans are often the first and only form of brain imaging that is performed to inform treatment plans for neurological patients due to its time- and cost-effective nature. However, MR images give a more detailed picture of tissue structure and characteristics and are more likely to pick up abnormalities and lesions. The purpose of this paper is to review studies which use deep learning methods to generate synthetic medical images of modalities such as MRI and CT. METHODS A literature search was performed in March 2023, and relevant articles were selected and analyzed. The year of publication, dataset size, input modality, synthesized modality, deep learning architecture, motivations, and evaluation methods were analyzed. RESULTS A total of 103 studies were included in this review, all of which were published since 2017. Of these, 74% of studies investigated MRI to CT synthesis, and the remaining studies investigated CT to MRI, Cross MRI, PET to CT, and MRI to PET. Additionally, 58% of studies were motivated by synthesizing CT scans from MRI to perform MRI-only radiation therapy. Other motivations included synthesizing scans to aid diagnosis and completing datasets by synthesizing missing scans. CONCLUSIONS Considerably more research has been carried out on MRI to CT synthesis, despite CT to MRI synthesis yielding specific benefits. A limitation on medical image synthesis is that medical datasets, especially paired datasets of different modalities, are lacking in size and availability; it is therefore recommended that a global consortium be developed to obtain and make available more datasets for use. Finally, it is recommended that work be carried out to establish all uses of the synthesis of medical scans in clinical practice and discover which evaluation methods are suitable for assessing the synthesized images for these needs.
Collapse
Affiliation(s)
- Jake McNaughton
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds Street, Auckland 1010, New Zealand; (J.M.)
| | - Justin Fernandez
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds Street, Auckland 1010, New Zealand; (J.M.)
- Department of Engineering Science and Biomedical Engineering, University of Auckland, 3/70 Symonds Street, Auckland 1010, New Zealand
| | - Samantha Holdsworth
- Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Mātai Medical Research Institute, 400 Childers Road, Tairāwhiti Gisborne 4010, New Zealand
| | - Benjamin Chong
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds Street, Auckland 1010, New Zealand; (J.M.)
- Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds Street, Auckland 1010, New Zealand; (J.M.)
- Mātai Medical Research Institute, 400 Childers Road, Tairāwhiti Gisborne 4010, New Zealand
| | - Alan Wang
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds Street, Auckland 1010, New Zealand; (J.M.)
- Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| |
Collapse
|
5
|
Eidex Z, Ding Y, Wang J, Abouei E, Qiu RL, Liu T, Wang T, Yang X. Deep Learning in MRI-guided Radiation Therapy: A Systematic Review. ARXIV 2023:arXiv:2303.11378v2. [PMID: 36994167 PMCID: PMC10055493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
MRI-guided radiation therapy (MRgRT) offers a precise and adaptive approach to treatment planning. Deep learning applications which augment the capabilities of MRgRT are systematically reviewed. MRI-guided radiation therapy offers a precise, adaptive approach to treatment planning. Deep learning applications which augment the capabilities of MRgRT are systematically reviewed with emphasis placed on underlying methods. Studies are further categorized into the areas of segmentation, synthesis, radiomics, and real time MRI. Finally, clinical implications, current challenges, and future directions are discussed.
Collapse
Affiliation(s)
- Zach Eidex
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Yifu Ding
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Jing Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Elham Abouei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Richard L.J. Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Tian Liu
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tonghe Wang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
6
|
Liu C, Li M, Xiao H, Li T, Li W, Zhang J, Teng X, Cai J. Advances in MRI‐guided precision radiotherapy. PRECISION RADIATION ONCOLOGY 2022. [DOI: 10.1002/pro6.1143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Chenyang Liu
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| | - Mao Li
- Department of Radiation Oncology Philips Healthcare Chengdu China
| | - Haonan Xiao
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| | - Tian Li
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| | - Wen Li
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| | - Jiang Zhang
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| | - Xinzhi Teng
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| | - Jing Cai
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| |
Collapse
|