1
|
Grafton-Clarke C, Ramachenderam L, Matthews G, Broncano J, Garg P. How can Four-Dimensional Magnetic Resonance Imaging Improve the Diagnosis of Heart Disease? Br J Hosp Med (Lond) 2024; 85:1-18. [PMID: 39618231 DOI: 10.12968/hmed.2024.0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
This review describes the evolution and enhanced diagnostic capabilities introduced by four-dimensional (4D) flow cardiac magnetic resonance (CMR) in cardiovascular imaging. It charts the historical advancements from echocardiography through to two-dimensional phase-contrast magnetic resonance imaging (2D-PC MRI), culminating in the adoption of 4D flow MRI. This technique affords exhaustive, time-resolved, three-dimensional visualisations of intracardiac and vascular blood flow, refining the accuracy of cardiovascular assessments over traditional methods, especially in complex anatomical settings. The review elaborates on the capacity of 4D flow MRI to offer unparalleled insights into flow dynamics, vessel wall interactions, and cardiac function, thereby enhancing disease detection, risk stratification, and therapeutic evaluations. It accentuates the impact of 4D flow MRI on modern cardiological practices, highlighting its pivotal role in advancing diagnostics and patient management in the context of diverse cardiovascular pathologies.
Collapse
Affiliation(s)
- Ciaran Grafton-Clarke
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk and Norwich University Hospitals, Norwich, UK
| | | | - Gareth Matthews
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk and Norwich University Hospitals, Norwich, UK
| | | | - Pankaj Garg
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk and Norwich University Hospitals, Norwich, UK
| |
Collapse
|
2
|
Pola K, Ashkir Z, Myerson S, Arheden H, Watkins H, Neubauer S, Arvidsson PM, Raman B. Flow inefficiencies in non-obstructive HCM revealed by kinetic energy and hemodynamic forces on 4D-flow CMR. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2024; 2:qyae074. [PMID: 39210991 PMCID: PMC11350944 DOI: 10.1093/ehjimp/qyae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Aims Patients with non-obstructive hypertrophic cardiomyopathy (HCM) exhibit myocardial changes which may cause flow inefficiencies not detectable on echocardiogram. We investigated whether left ventricular (LV) kinetic energy (KE) and hemodynamic forces (HDF) on 4D-flow cardiovascular magnetic resonance (CMR) can provide more sensitive measures of flow in non-obstructive HCM. Methods and results Ninety participants (70 with non-obstructive HCM and 20 healthy controls) underwent 4D-flow CMR. Patients were categorized as phenotype positive (P+) based on maximum wall thickness (MWT) ≥ 15 mm or ≥13 mm for familial HCM, or pre-hypertrophic sarcomeric variant carriers (P-). LV KE and HDF were computed from 4D-flow CMR. Stroke work was computed using a previously validated non-invasive method. P+ and P- patients and controls had comparable diastolic velocities and LV outflow gradients on echocardiography, LV ejection fraction, and stroke volume on CMR. P+ patients had greater stroke work than P- patients, higher systolic KE compared with controls (5.8 vs. 4.1 mJ, P = 0.0009), and higher late diastolic KE relative to P- patients and controls (2.6 vs. 1.4 vs. 1.9 mJ, P < 0.0001, respectively). MWT was associated with systolic KE (r = 0.5, P < 0.0001) and diastolic KE (r = 0.4, P = 0.005), which also correlated with stroke work. Systolic HDF ratio was increased in P+ patients compared with controls (1.0 vs. 0.8, P = 0.03) and correlated with MWT (r = 0.3, P = 0.004). Diastolic HDF was similar between groups. Sarcomeric variant status was not associated with KE or HDF. Conclusion Despite normal flow velocities on echocardiography, patients with non-obstructive HCM exhibited greater stroke work, systolic KE and HDF ratio, and late diastolic KE relative to controls. 4D-flow CMR provides more sensitive measures of haemodynamic inefficiencies in HCM, holding promise for clinical trials of novel therapies and clinical surveillance of non-obstructive HCM.
Collapse
Affiliation(s)
- K Pola
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lund University, Skåne University Hospital Lund, Department of Clinical Sciences Lund, Clinical Physiology, Lund, Sweden
| | - Z Ashkir
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - S Myerson
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - H Arheden
- Lund University, Skåne University Hospital Lund, Department of Clinical Sciences Lund, Clinical Physiology, Lund, Sweden
| | - H Watkins
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - S Neubauer
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - P M Arvidsson
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lund University, Skåne University Hospital Lund, Department of Clinical Sciences Lund, Clinical Physiology, Lund, Sweden
| | - B Raman
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Shah SM, Shah J, Lakey SM, Garg P, Ripley DP. Pathophysiology, emerging techniques for the assessment and novel treatment of aortic stenosis. Open Heart 2023; 10:e002244. [PMID: 36963766 PMCID: PMC10040005 DOI: 10.1136/openhrt-2022-002244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
Our perspectives on aortic stenosis (AS) are changing. Evolving from the traditional thought of a passive degenerative disease, developing a greater understanding of the condition's mechanistic underpinning has shifted the paradigm to an active disease process. This advancement from the 'wear and tear' model is a result of the growing economic and health burden of AS, particularly within industrialised countries, prompting further research. The pathophysiology of calcific AS (CAS) is complex, yet can be characterised similarly to that of atherosclerosis. Progressive remodelling involves lipid-protein complexes, with lipoprotein(a) being of particular interest for diagnostics and potential future treatment options.There is an unmet clinical need for asymptomatic patient management; no pharmacotherapies are proven to slow progression and intervention timing varies. Novel approaches are developing to address this through: (1) screening with circulating biomarkers; (2) development of drugs to slow disease progression and (3) early valve intervention guided by medical imaging. Existing biomarkers (troponin and brain natriuretic peptide) are non-specific, but cost-effective predictors of ventricular dysfunction. In addition, their integration with cardiovascular MRI can provide accurate risk stratification, aiding aortic valve replacement decision making. Currently, invasive intervention is the only treatment for AS. In comparison, the development of lipoprotein(a) lowering therapies could provide an alternative; slowing progression of CAS, preventing left ventricular dysfunction and reducing reliance on surgical intervention.The landscape of AS management is rapidly evolving. This review outlines current understanding of the pathophysiology of AS, its management and future perspectives for the condition's assessment and treatment.
Collapse
Affiliation(s)
- Syed Muneeb Shah
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Jay Shah
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Samuel Mark Lakey
- Department of Cardiology, Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| | - Pankaj Garg
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
- Department of Cardiology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, Norfolk, UK
| | - David Paul Ripley
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
- Department of Cardiology, Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| |
Collapse
|
4
|
Wang L, Liu M, Zhang PY, Dai JZ, Ma HY, Tao XC, Xie WM, Wan J, Jing A. Analysis of right ventricular flow with 4-dimensional flow cardiovascular magnetic resonance imaging in patients with pulmonary arterial hypertension. Quant Imaging Med Surg 2021; 11:3655-3665. [PMID: 34341739 DOI: 10.21037/qims-20-1267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/09/2021] [Indexed: 01/19/2023]
Abstract
Background Cardiac flow closely interact with function, however, the correlation of right ventricular (RV) flow and function remains unknown, thus our objective is to observe right ventricular flow with four-dimensional phase-contrast cardiovascular magnetic resonance imaging (4D flow CMR) in patients with pulmonary arterial hypertension (PAH) and to analyze flow components with RV function and hemodynamics. Methods This study retrospectively enrolled 30 patients with PAH (mean age: 49±13 years, 16 females) and 14 age- and sex-matched healthy volunteers as controls (mean age: 44±12 years, 9 females). All patients who underwent CMR and right heart catheterization (RHC) within 1 week between January 2019 and July 2020 were included. Hemodynamics were measured with RHC. RV flow components, including the percentages of direct flow (RVPDF), retained inflow (RVPRI), delayed ejection flow (RVPDEF) and residual volume (RVPRVo) were quantified using 4D flow CMR. The associations between RV flow components and other CMR metrics, clinical data, and hemodynamics were analyzed by Spearman's correlation analysis. Results In patients with PAH, RVPDF was decreased and RVPRVo was increased compared with the normal control group. The sum of RVPDF and RVPDEF RV was significantly correlated with RV ejection fraction (RVEF) (r=0.802, P<0.001), and there was no notable difference between RVEF and the sum of RVPDF and RVPDEF (t=0.251, P=0.831). Both RVPDF and RVPRVo were correlated (in opposite directions) with the RV end-diastolic volume index, RV end-systolic volume index, RV global longitudinal strain, and RVEF. RVPDF was negatively correlated with pulmonary vascular resistance (PVR), and positively correlated with cardiac output and cardiac index. RVPRVo was positively correlated with PVR and negatively correlated with cardiac output and cardiac index. Conclusions RV blood flow components qualified with 4D flow CMR is a valuable noninvasive method for the assessment of RV function and hemodynamics in patients with PAH.
Collapse
Affiliation(s)
- Lei Wang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Pei Yao Zhang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Jin Zhu Dai
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Hai Yi Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Xin Cao Tao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Wan Mu Xie
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jun Wan
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - An Jing
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| |
Collapse
|