1
|
Chatzipanagiotou OP, Loukas C, Vailas M, Machairas N, Kykalos S, Charalampopoulos G, Filippiadis D, Felekouras E, Schizas D. Artificial intelligence in hepatocellular carcinoma diagnosis: a comprehensive review of current literature. J Gastroenterol Hepatol 2024; 39:1994-2005. [PMID: 38923550 DOI: 10.1111/jgh.16663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND AIM Hepatocellular carcinoma (HCC) diagnosis mainly relies on its pathognomonic radiological profile, obviating the need for biopsy. The project of incorporating artificial intelligence (AI) techniques in HCC aims to improve the performance of image recognition. Herein, we thoroughly analyze and evaluate proposed AI models in the field of HCC diagnosis. METHODS A comprehensive review of the literature was performed utilizing MEDLINE/PubMed and Web of Science databases with the end of search date being the 30th of September 2023. The MESH terms "Artificial Intelligence," "Liver Cancer," "Hepatocellular Carcinoma," "Machine Learning," and "Deep Learning" were searched in the title and/or abstract. All references of the obtained articles were also evaluated for any additional information. RESULTS Our search resulted in 183 studies meeting our inclusion criteria. Across all diagnostic modalities, reported area under the curve (AUC) of most developed models surpassed 0.900. A B-mode US and a contrast-enhanced US model achieved AUCs of 0.947 and 0.957, respectively. Regarding the more challenging task of HCC diagnosis, a 2021 deep learning model, trained with CT scans, classified hepatic malignant lesions with an AUC of 0.986. Finally, a MRI machine learning model developed in 2021 displayed an AUC of 0.975 when differentiating small HCCs from benign lesions, while another MRI-based model achieved HCC diagnosis with an AUC of 0.970. CONCLUSIONS AI tools may lead to significant improvement in diagnostic management of HCC. Many models fared better or comparable to experienced radiologists while proving capable of elevating radiologists' accuracy, demonstrating promising results for AI implementation in HCC-related diagnostic tasks.
Collapse
Affiliation(s)
- Odysseas P Chatzipanagiotou
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Constantinos Loukas
- Laboratory of Medical Physics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Vailas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nikolaos Machairas
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Stylianos Kykalos
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Georgios Charalampopoulos
- Second Department of Radiology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Dimitrios Filippiadis
- Second Department of Radiology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Evangellos Felekouras
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| |
Collapse
|
2
|
Brooks JA, Kallenbach M, Radu IP, Berzigotti A, Dietrich CF, Kather JN, Luedde T, Seraphin TP. Artificial Intelligence for Contrast-Enhanced Ultrasound of the Liver: A Systematic Review. Digestion 2024:1-18. [PMID: 39312896 DOI: 10.1159/000541540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION The research field of artificial intelligence (AI) in medicine and especially in gastroenterology is rapidly progressing with the first AI tools entering routine clinical practice, for example, in colorectal cancer screening. Contrast-enhanced ultrasound (CEUS) is a highly reliable, low-risk, and low-cost diagnostic modality for the examination of the liver. However, doctors need many years of training and experience to master this technique and, despite all efforts to standardize CEUS, it is often believed to contain significant interrater variability. As has been shown for endoscopy, AI holds promise to support examiners at all training levels in their decision-making and efficiency. METHODS In this systematic review, we analyzed and compared original research studies applying AI methods to CEUS examinations of the liver published between January 2010 and February 2024. We performed a structured literature search on PubMed, Web of Science, and IEEE. Two independent reviewers screened the articles and subsequently extracted relevant methodological features, e.g., cohort size, validation process, machine learning algorithm used, and indicative performance measures from the included articles. RESULTS We included 41 studies with most applying AI methods for classification tasks related to focal liver lesions. These included distinguishing benign versus malignant or classifying the entity itself, while a few studies tried to classify tumor grading, microvascular invasion status, or response to transcatheter arterial chemoembolization directly from CEUS. Some articles tried to segment or detect focal liver lesions, while others aimed to predict survival and recurrence after ablation. The majority (25/41) of studies used hand-picked and/or annotated images as data input to their models. We observed mostly good to high reported model performances with accuracies ranging between 58.6% and 98.9%, while noticing a general lack of external validation. CONCLUSION Even though multiple proof-of-concept studies for the application of AI methods to CEUS examinations of the liver exist and report high performance, more prospective, externally validated, and multicenter research is needed to bring such algorithms from desk to bedside.
Collapse
Affiliation(s)
- James A Brooks
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich-Heine-University, Dusseldorf, Germany
| | - Michael Kallenbach
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich-Heine-University, Dusseldorf, Germany
| | - Iuliana-Pompilia Radu
- Department for Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Annalisa Berzigotti
- Department for Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem and Permanence, Bern, Switzerland
| | - Jakob N Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich-Heine-University, Dusseldorf, Germany
| | - Tobias P Seraphin
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich-Heine-University, Dusseldorf, Germany
| |
Collapse
|
3
|
Wang L, Fatemi M, Alizad A. Artificial intelligence techniques in liver cancer. Front Oncol 2024; 14:1415859. [PMID: 39290245 PMCID: PMC11405163 DOI: 10.3389/fonc.2024.1415859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular Carcinoma (HCC), the most common primary liver cancer, is a significant contributor to worldwide cancer-related deaths. Various medical imaging techniques, including computed tomography, magnetic resonance imaging, and ultrasound, play a crucial role in accurately evaluating HCC and formulating effective treatment plans. Artificial Intelligence (AI) technologies have demonstrated potential in supporting physicians by providing more accurate and consistent medical diagnoses. Recent advancements have led to the development of AI-based multi-modal prediction systems. These systems integrate medical imaging with other modalities, such as electronic health record reports and clinical parameters, to enhance the accuracy of predicting biological characteristics and prognosis, including those associated with HCC. These multi-modal prediction systems pave the way for predicting the response to transarterial chemoembolization and microvascular invasion treatments and can assist clinicians in identifying the optimal patients with HCC who could benefit from interventional therapy. This paper provides an overview of the latest AI-based medical imaging models developed for diagnosing and predicting HCC. It also explores the challenges and potential future directions related to the clinical application of AI techniques.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Engineering, School of Technology, Reykjavık University, Reykjavík, Iceland
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
4
|
Urhuț MC, Săndulescu LD, Streba CT, Mămuleanu M, Ciocâlteu A, Cazacu SM, Dănoiu S. Diagnostic Performance of an Artificial Intelligence Model Based on Contrast-Enhanced Ultrasound in Patients with Liver Lesions: A Comparative Study with Clinicians. Diagnostics (Basel) 2023; 13:3387. [PMID: 37958282 PMCID: PMC10650544 DOI: 10.3390/diagnostics13213387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Contrast-enhanced ultrasound (CEUS) is widely used in the characterization of liver tumors; however, the evaluation of perfusion patterns using CEUS has a subjective character. This study aims to evaluate the accuracy of an automated method based on CEUS for classifying liver lesions and to compare its performance with that of two experienced clinicians. The system used for automatic classification is based on artificial intelligence (AI) algorithms. For an interpretation close to the clinical setting, both clinicians knew which patients were at high risk for hepatocellular carcinoma (HCC), but only one was aware of all the clinical data. In total, 49 patients with 59 liver tumors were included. For the benign and malignant classification, the AI model outperformed both clinicians in terms of specificity (100% vs. 93.33%); still, the sensitivity was lower (74% vs. 93.18% vs. 90.91%). In the second stage of multiclass diagnosis, the automatic model achieved a diagnostic accuracy of 69.93% for HCC and 89.15% for liver metastases. Readers demonstrated greater diagnostic accuracy for HCC (83.05% and 79.66%) and liver metastases (94.92% and 96.61%) compared to the AI system; however, both were experienced sonographers. The AI model could potentially assist and guide less-experienced clinicians to discriminate malignant from benign liver tumors with high accuracy and specificity.
Collapse
Affiliation(s)
- Marinela-Cristiana Urhuț
- Department of Gastroenterology, Emergency County Hospital of Craiova, Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Larisa Daniela Săndulescu
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.T.S.); (A.C.); (S.M.C.)
| | - Costin Teodor Streba
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.T.S.); (A.C.); (S.M.C.)
- Department of Pulmonology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Oncometrics S.R.L., 200677 Craiova, Romania;
| | - Mădălin Mămuleanu
- Oncometrics S.R.L., 200677 Craiova, Romania;
- Department of Automatic Control and Electronics, University of Craiova, 200585 Craiova, Romania
| | - Adriana Ciocâlteu
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.T.S.); (A.C.); (S.M.C.)
| | - Sergiu Marian Cazacu
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.T.S.); (A.C.); (S.M.C.)
| | - Suzana Dănoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
5
|
Wei W, Ma Q, Feng H, Wei T, Jiang F, Fan L, Zhang W, Xu J, Zhang X. Deep learning radiomics for prediction of axillary lymph node metastasis in patients with clinical stage T1-2 breast cancer. Quant Imaging Med Surg 2023; 13:4995-5011. [PMID: 37581073 PMCID: PMC10423344 DOI: 10.21037/qims-22-1257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/16/2023] [Indexed: 08/16/2023]
Abstract
Background This study investigates whether deep learning radiomics of conventional ultrasound images can predict preoperative axillary lymph node (ALN) status in patients with clinical stages T1-2 breast cancer (BC). Methods This study retrospectively analyzed the preoperative ultrasound data of 892 patients with BC, who were classified into training (n=535), validation (n=178), and test (n=179) cohorts. Linear combinations of the selected features were weighted by their coefficients to obtain the predicted score. Then, deep learning radiomic features were extracted from the ultrasound images to evaluate the ALN status. Receiver-operating characteristic curves were drawn, followed by the calculation of the area under the curve (AUC) to assess the accuracy of the prediction model in predicting axillary lymph node metastasis (ALNM) in the three cohorts. Results Deep learning radiomics combined with radiomics and clinical parameters was the optimal diagnostic predictor of the ALN status in the absence and presence of ALNM, with the AUC of 0.920 (95% confidence interval: 0.872 and 0.968, respectively). Additionally, this combination could also differentiate low-load ALNM [N + (1-2)] from heavy-load ALNM with ≥3 positive nodes [N + (≥3)] in the test cohort, with the AUC of 0.819 (95% confidence interval: 0.568 and 1.00, respectively). Conclusions Conclusively, deep learning radiomics of ultrasound images is a non-invasive approach to predicting preoperative ALNM in BC.
Collapse
Affiliation(s)
- Wei Wei
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Qiang Ma
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Huijun Feng
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Tianjun Wei
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Feng Jiang
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Lifang Fan
- School of Medical Imaging, Wannan Medical College, Wuhu, China
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Jingya Xu
- Department of Radiology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Xia Zhang
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| |
Collapse
|
6
|
Niu X, Huang Y, Li X, Yan W, Lu X, Jia X, Li J, Hu J, Sun T, Jing W, Guo J. Development and validation of a fully automated system using deep learning for opportunistic osteoporosis screening using low-dose computed tomography scans. Quant Imaging Med Surg 2023; 13:5294-5305. [PMID: 37581046 PMCID: PMC10423368 DOI: 10.21037/qims-22-1438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/09/2023] [Indexed: 08/16/2023]
Abstract
Background Bone density measurement is an important examination for the diagnosis and screening of osteoporosis. The aim of this study was to develop a deep learning (DL) system for automatic measurement of bone mineral density (BMD) for osteoporosis screening using low-dose computed tomography (LDCT) images. Methods This retrospective study included 500 individuals who underwent LDCT scanning from April 2018 to July 2021. All images were manually annotated by a radiologist for the cancellous bone of target vertebrae and post-processed using quantitative computed tomography (QCT) software to identify osteoporosis. Patients were divided into the training, validation, and testing sets in a ratio of 6:2:2 using a 4-fold cross validation method. A localization model using faster region-based convolutional neural network (R-CNN) was trained to identify and locate the target vertebrae (T12-L2), then a 3-dimensional (3D) AnatomyNet was trained to finely segment the cancellous bone of target vertebrae in the localized image. A 3D DenseNet was applied for calculating BMD. The Dice coefficient was used to evaluate segmentation performance. Linear regression and Bland-Altman (BA) analyses were performed to compare the calculated BMD values using the proposed system with QCT. The diagnostic performance of the system for osteoporosis and osteopenia was evaluated with receiver operating characteristic (ROC) curve analysis. Results Our segmentation model achieved a mean Dice coefficient of 0.95, with Dice coefficients greater than 0.9 accounting for 96.6%. The correlation coefficient (R2) and mean errors between the proposed system and QCT in the testing set were 0.967 and 2.21 mg/cm3, respectively. The area under the curve (AUC) of the ROC was 0.984 for detecting osteoporosis and 0.993 for distinguishing abnormal BMD (osteopenia and osteoporosis). Conclusions The fully automated DL-based system is able to perform automatic BMD calculation for opportunistic osteoporosis screening with high accuracy using LDCT scans.
Collapse
Affiliation(s)
- Xinyi Niu
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yilin Huang
- School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China
| | - Xinyu Li
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenming Yan
- School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China
| | - Xuanyu Lu
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoqian Jia
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianying Li
- GE HealthCare China, Computed Tomography Research Center, Beijing, China
| | - Jieliang Hu
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tianze Sun
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenfeng Jing
- School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China
| | - Jianxin Guo
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
7
|
Shao Y, Dang Y, Cheng Y, Gui Y, Chen X, Chen T, Zeng Y, Tan L, Zhang J, Xiao M, Yan X, Lv K, Zhou Z. Predicting the Efficacy of Neoadjuvant Chemotherapy for Pancreatic Cancer Using Deep Learning of Contrast-Enhanced Ultrasound Videos. Diagnostics (Basel) 2023; 13:2183. [PMID: 37443577 DOI: 10.3390/diagnostics13132183] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Contrast-enhanced ultrasound (CEUS) is a promising imaging modality in predicting the efficacy of neoadjuvant chemotherapy for pancreatic cancer, a tumor with high mortality. In this study, we proposed a deep-learning-based strategy for analyzing CEUS videos to predict the prognosis of pancreatic cancer neoadjuvant chemotherapy. Pre-trained convolutional neural network (CNN) models were used for binary classification of the chemotherapy as effective or ineffective, with CEUS videos collected before chemotherapy as the model input, and with the efficacy after chemotherapy as the reference standard. We proposed two deep learning models. The first CNN model used videos of ultrasound (US) and CEUS (US+CEUS), while the second CNN model only used videos of selected regions of interest (ROIs) within CEUS (CEUS-ROI). A total of 38 patients with strict restriction of clinical factors were enrolled, with 76 original CEUS videos collected. After data augmentation, 760 and 720 videos were included for the two CNN models, respectively. Seventy-six-fold and 72-fold cross-validations were performed to validate the classification performance of the two CNN models. The areas under the curve were 0.892 and 0.908 for the two models. The accuracy, recall, precision and F1 score were 0.829, 0.759, 0.786, and 0.772 for the first model. Those were 0.864, 0.930, 0.866, and 0.897 for the second model. A total of 38.2% and 40.3% of the original videos could be clearly distinguished by the deep learning models when the naked eye made an inaccurate classification. This study is the first to demonstrate the feasibility and potential of deep learning models based on pre-chemotherapy CEUS videos in predicting the efficacy of neoadjuvant chemotherapy for pancreas cancer.
Collapse
Affiliation(s)
- Yuming Shao
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yingnan Dang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yuejuan Cheng
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yang Gui
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xueqi Chen
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tianjiao Chen
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yan Zeng
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Li Tan
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jing Zhang
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mengsu Xiao
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoyi Yan
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ke Lv
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhuhuang Zhou
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
8
|
Jin H, Cai Y, Zhang M, Huang L, Bao W, Hu Q, Chen X, Zhou L, Ling W. LI-RADS LR-5 on contrast-enhanced ultrasonography has satisfactory diagnostic specificity for hepatocellular carcinoma: a systematic review and meta-analysis. Quant Imaging Med Surg 2023; 13:957-969. [PMID: 36819240 PMCID: PMC9929373 DOI: 10.21037/qims-22-591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 12/18/2022] [Indexed: 01/12/2023]
Abstract
Background The Liver Imaging Reporting and Data System (LI-RADS) for contrast-enhanced ultrasonography (CEUS) was invented to define suspected liver nodules based on their imaging characteristics. Among the categories of nodules of LI-RADS for CEUS, LR-5 is generally considered to be definitely malignant; however, the exact diagnostic performance of this liver nodule category has varied between different studies. Therefore, we performed this systematic review and meta-analysis to calculate the pooled diagnostic sensitivity, specificity based on important data extracted from some influential clinical studies. Methods A preliminary search of national and international databases, including PubMed/Ovid Medline, Embase, Cochrane Library, Web of Science, and Wan Fang Data, for relevant studies on CEUS LI-RADS LR-5 published between January 2017 and June 2021 was conducted. A literature screening and selection process was undertaken to evaluate the relevance of the articles, and studies deemed eligible for inclusion in the review were subsequently identified. The updated Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was applied as the main method to assess the risk of bias and applicability of the studies. A meta-analysis of the diagnostic sensitivity and specificity of CEUS LI-RADS LR-5 was performed using the free software, Meta-DiSc 1.4 (Ramóny Cajal Hospital, Madrid, Spain). The area under curve (AUC) was calculated to help determine the diagnostic efficiency. A meta-regression analysis was also performed to identify factors that could have contributed to heterogeneity between the studies. Results Twelve studies with 20 observations focused on investigating the relative diagnostic performance of the CEUS LI-RADS LR-5 category for hepatocellular carcinoma (HCC) detection were finally recruited into the systematic review and meta-analysis. The pooled diagnostic sensitivity was 0.71 [95% confidence interval (CI): 0.69-0.72], with heterogeneity (I2) of 88.4%, and the pooled specificity was 0.93 (95% CI: 0.92-0.95), with an I2 of 71.2%. Study heterogeneity was observed and statistically correlated with the number of centers and the reference standard. Conclusions The CEUS LI-RADS LR-5 category has satisfactory diagnostic efficacy for HCC, as evidenced by an acceptable diagnostic sensitivity of 0.71 and a good diagnostic specificity of 0.93.
Collapse
Affiliation(s)
- Hongyu Jin
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yunshi Cai
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Man Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Libin Huang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Wanying Bao
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Qibo Hu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xuan Chen
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Lingyun Zhou
- Department of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Wenwu Ling
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|