1
|
Cohen-Nowak AJ, Hill VB, Kumthekar P. Diagnostics and Screening in Breast Cancer with Brain and Leptomeningeal Metastasis: A Review of the Literature. Cancers (Basel) 2024; 16:3686. [PMID: 39518124 PMCID: PMC11545036 DOI: 10.3390/cancers16213686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Brain and leptomeningeal metastases are complications of breast cancer with high rates of morbidity and mortality and have an estimated incidence of up to 30%. While National Comprehensive Cancer Network (NCCN) guidelines recommend screening for central nervous system metastasis in other neurotropic cancers such as non-small cell lung cancer, there are no such recommendations for asymptomatic breast cancer patients at any stage of disease. This review highlights ongoing studies into screening and diagnostics for breast cancer with brain and leptomeningeal metastasis (BCBLM) as they relate to patient outcomes and prognostication. These include imaging methods such as MRI with novel contrast agents with or without PET/CT, as well as 'liquid biopsy' testing of the cerebrospinal fluid and serum to analyze circulating tumor cells, genomic material, proteins, and metabolites. Given recent advances in radiation, neurosurgery, and systemic treatments for BCBLM, screening for CNS involvement should be considered in patients with advanced breast cancer as it may impact treatment decisions and overall survival.
Collapse
Affiliation(s)
- Adam J. Cohen-Nowak
- Department of Internal Medicine, McGaw Medical Center of Northwestern University, Chicago, IL 60611, USA;
| | - Virginia B. Hill
- Neuroradiology Section, Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Priya Kumthekar
- Department of Neurology, Northwestern Memorial Hospital, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Aghdam MA, Bozdag S, Saeed F. PVTAD: ALZHEIMER'S DISEASE DIAGNOSIS USING PYRAMID VISION TRANSFORMER APPLIED TO WHITE MATTER OF T1-WEIGHTED STRUCTURAL MRI DATA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567617. [PMID: 38045324 PMCID: PMC10690181 DOI: 10.1101/2023.11.17.567617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, and timely diagnosis is crucial for early interventions. AD is known to have disruptive local and global brain neural connections that may be instrumental in understanding and extracting specific biomarkers. Previous machine-learning approaches are mostly based on convolutional neural network (CNN) and standard vision transformer (ViT) models which may not sufficiently capture the multidimensional local and global patterns that may be indicative of AD. Therefore, in this paper, we propose a novel approach called PVTAD to classify AD and cognitively normal (CN) cases using pretrained pyramid vision transformer (PVT) and white matter (WM) of T1-weighted structural MRI (sMRI) data. Our approach combines the advantages of CNN and standard ViT to extract both local and global features indicative of AD from the WM coronal middle slices. We performed experiments on subjects with T1-weighed MPRAGE sMRI scans from the ADNI dataset. Our results demonstrate that the PVTAD achieves an average accuracy of 97.7% and F1-score of 97.6%, outperforming the single and parallel CNN and standard ViT architectures based on sMRI data for AD vs. CN classification.
Collapse
Affiliation(s)
- Maryam Akhavan Aghdam
- School of Computing and Information Sciences, Florida International University, Miami, FL, United States
| | - Serdar Bozdag
- Department of Computer Science and Engineering, University of North Texas, Denton, TX, United States
- Department of Mathematics, University of North Texas, Denton, TX, United States
- BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Fahad Saeed
- School of Computing and Information Sciences, Florida International University, Miami, FL, United States
| |
Collapse
|
3
|
Chkili S, Lefebvre Y, Chao SL, Bali MA, Lemort M, Coquelet N. Optimization of workflow for detection of brain metastases at 3T: is a black-blood MTC prepared 3D T1 used alone robust enough to replace the combination of conventional 3D T1 and the black-blood 3D T1 MTC? Neuroradiology 2023:10.1007/s00234-023-03143-8. [PMID: 36995375 DOI: 10.1007/s00234-023-03143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
PURPOSE Sampling perfection with application-optimized contrasts by using different flip angle evolutions (SPACE) is a black-blood 3D T1-weighted (T1w) magnetic resonance imaging (MRI) sequence that has shown robust performance for brain metastases detection. However, this could generate false positive results due to suboptimal blood signal suppression. For that reason, SPACE is used in our institution alongside a non-black-blood T1w sequence: volumetric interpolated breath-hold examination (VIBE). Our study aims to (i) evaluate the diagnostic accuracy of SPACE compared to its use in combination with VIBE, (ii) investigate the effect of radiologist's experience in the sequence's performance, and (iii) analyze causes of discordants results. METHODS Four hundred seventy-three 3T MRI scans were retrospectively analyzed following a monocentric study design. Two studies were formed: one including SPACE alone and one combining both sequences (SPACE + VIBE, the reference). An experienced neuroradiologist and a radiology trainee independently reviewed the images of each study and reported the number of brain metastases. The sensitivity (Se) and specificity (Sp) of SPACE compared to SPACE + VIBE in metastases detection were reported. Diagnostic accuracy of SPACE compared to SPACE + VIBE was assessed by using McNemar's test. Significance was set at p < 0.05. Cohen's kappa was used for inter-method and inter-observer variability. RESULTS No significant difference was found between the two methods, with SPACE having a Se > 93% and a Sp > 87%. No effect of readers' experience was disclosed. CONCLUSION Independently of radiologist's experience, SPACE alone is robust enough to replace SPACE + VIBE for brain metastases detection.
Collapse
Affiliation(s)
- Sophia Chkili
- Department of Radiology, Institut Jules Bordet, 90 Rue Meylemeersch, 1070, Brussels, Belgium.
| | - Yolène Lefebvre
- Department of Radiology, Institut Jules Bordet, 90 Rue Meylemeersch, 1070, Brussels, Belgium
| | - Shih-Li Chao
- Department of Radiology, Institut Jules Bordet, 90 Rue Meylemeersch, 1070, Brussels, Belgium
| | - Maria Antonietta Bali
- Department of Radiology, Institut Jules Bordet, 90 Rue Meylemeersch, 1070, Brussels, Belgium
| | - Marc Lemort
- Department of Radiology, Institut Jules Bordet, 90 Rue Meylemeersch, 1070, Brussels, Belgium
| | - Nicolas Coquelet
- Department of Radiology, Institut Jules Bordet, 90 Rue Meylemeersch, 1070, Brussels, Belgium
| |
Collapse
|
4
|
Mano S. [Evaluation of Enhanced 3D Brain Image Using Ultrashort TE Sequence with Inversion Recovery for Preoperative Examination of Brain Tumor: Phantom Study Compared with MPRAGE]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2023; 79:52-61. [PMID: 36567109 DOI: 10.6009/jjrt.2023-1287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It is important to obtain accurate anatomical information with little distortion in preoperative examination of brain tumors. Using PETRA, which is an ultrashort echo time (UTE) sequence that is less affected by magnetic susceptibility artifacts, we determined the optimal imaging conditions (radial views [RV] and inversion time [TI]) for IR-PETRA using the inversion recovery (IR) method and compared it with MPRAGE. IR-PETRA was found to be slightly inferior to MPRAGE in sharpness under the optimum conditions (RV=100,000 and TI=500 ms), but it was significantly improved by using a high RV value, and SNR and CNR were higher than or equal to MPRAGE. It is suggested that IR-PETRA may be an alternative sequence of MPRAGE in preoperative examination of brain tumors.
Collapse
Affiliation(s)
- Shinobu Mano
- Department of Diagnostic Imaging, Ube-Industries Central Hospital
| |
Collapse
|
5
|
Cao X, Lv K, Yin X, Cao Y, Xu S, Feng Z, Han Y, Tang Y, Geng D, Zhang J. Preoperative Assessment of Blood Vessels and Intratumoral Microbleeds in Brain Tumors Based on a 3D Contrast-Enhanced T 1 -Weighted Flow-Sensitive Black-Blood Sequence. J Magn Reson Imaging 2022; 57:1543-1551. [PMID: 36054465 DOI: 10.1002/jmri.28415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Three-dimensional (3D) contrast-enhanced T1 -weighted flow-sensitive black-blood (CE-T1 WI FSBB) is a newly developed black blood sequence by adding motion probing gradient pulses to gradient echo (GRE) sequences, which has important value for the preoperative assessment of tumor brain blood supply vessels and intratumoral microbleeds. PURPOSE To compare 3D CE-T1 WI FSBB and 3D contrast-enhanced fast spin echo (FSE) sequence for T1 WI for preoperative assessment of blood vessels and microbleeds in brain tumors and to investigate the correlation between visible vessels and microbleeds. STUDY TYPE Prospective. SUBJECTS One hundred and seventy-five patients with brain tumors, 65 were male, 110 were female. Including histologically confirmed 73 meningiomas, 23 schwannomas, 20 gliomas, 7 hemangioblastomas, 5 metastases, 2 lymphomas, 2 hemangiopericytomas, 2 germ cell tumors, 1 craniopharyngioma, and 1 cholesteatoma. FIELD STRENGTH/SEQUENCE A 3-T, CE-T1 WI FSBB, GRE; 3-T, CE-T1 WI, FSE. ASSESSMENT Three neuroradiologists counted the number of intratumoral vessels on CE-T1 WI and CE-T1 WI FSBB images separately, and they counted the number of intratumoral microbleeds on CE-T1 WI FSBB images. Brain tumors were classified into grade I, grade II, and grade IV according to the World Health Organization (WHO) grading. Differences in the ability of CE-T1 WI FSBB and CE-T1 WI to display intratumoral vessels were compared. The mean counts of three observers were used to study the correlation between vessels and microbleeds. STATISTICAL TESTS Two-way random intraclass correlation coeficient (ICC) was used for inter-reader agreement regarding intratumoral vessel and microbleed counts, and the linear regression analysis (with F-test) was used to study the correlation between intratumoral vessels and microbleeds based on CE-T1 WI FSBB (α = 0.05). RESULTS Inter-reader agreements for intratumoral vessel count on CE-T1 WI (ICC = 0.93) and CE-T1 WI FSBB (ICC = 0.92), and the agreement for intratumoral microbleed count on CE-T1 WI FSBB (ICC = 0.99) were excellent. There were statistically significant differences in intratumoral vessel counts between CE-T1 WI and CE-T1 WI FSBB using Mann-Whitney U -test: image readers could identify more intratumoral vessels on CE-T1 WI FSBB images, particularly for meningiomas, schwannomas, gliomas, and WHO grade I tumors. The number of intratumoral vessels had a significant positive effect on the number of intratumoral microbleeds (microbleeds = 5.024 + 1.665 × vessels; F = 11.51). DATA CONCLUSION More intratumoral vessels could potentially be identified using a 3D CE-T1 WI FSBB sequence compared to a CE-T1 WI sequence, and the number of intratumoral vessels showed a positive linear relationship with the number of intratumoral microbleeds, which might suggest that brain tumors with rich blood supply were more prone to intratumoral microbleeds. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Xin Cao
- Department of Radiology,Huashan Hospital,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Reasearch, Shanghai, China
| | - Kun Lv
- Department of Radiology,Huashan Hospital,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Xuyang Yin
- Department of Radiology,Huashan Hospital,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yunxi Cao
- College of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong Province, China
| | - Siting Xu
- Department of Radiology,Huashan Hospital,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Zhe Feng
- Department of Radiology,Huashan Hospital,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Yan Han
- Department of Radiology,Huashan Hospital,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Ye Tang
- Department of Radiology,Huashan Hospital,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Daoying Geng
- Department of Radiology,Huashan Hospital,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Reasearch, Shanghai, China
| | - Jun Zhang
- Department of Radiology,Huashan Hospital,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Reasearch, Shanghai, China
| |
Collapse
|