1
|
Sun P, Wu X, Gao M, Zhang X, Ma D, Liu H, Zhang Q, Wu J, Ma M, Dong Y, Liu R. Improved visualization of electron-density dual-energy computed tomography for lumbar disc disease over the standard gray-scale type and virtual noncalcium imaging. Quant Imaging Med Surg 2025; 15:2296-2308. [PMID: 40160662 PMCID: PMC11948433 DOI: 10.21037/qims-24-1760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/20/2025] [Indexed: 04/02/2025]
Abstract
Background Dual-energy computed tomography (DECT) enhances tissue imaging characterization. However, no studies have evaluated the diagnostic accuracy of electron density (ED) for simultaneously displaying the lumbar disc and disc calcification. This retrospective study aimed to investigate the ability of ED to visualize lumbar disc disease as compared with standard computed tomography (SC) and virtual noncalcium (VNCa) imaging in order to provide a viable alternative for lumbar disc disease. Methods From October 2023 to February 2024, we retrospectively analyzed data from 53 patients who underwent DECT and 3.0-T magnetic resonance imaging (MRI) within 2 weeks. The randomized SC, VNCa, and ED image sets were independently evaluated by four radiologists for visualization of the lumbar disc and disc calcification with an 8-week interval. Final disc calcification results were obtained by consensus, with the SC results serving as the reference standard. Two other experienced radiologists performed MRI evaluations as the lumbar disc reference standard. Diagnostic performance was compared for each image. Results Among the 298 included lumbar discs, 183 lumbar disc herniations and bulges were revealed on MRI. As compared with VNCa and SC, ED showed higher overall sensitivity (91.3% vs. 88.9% vs. 78.0%), specificity (94.8% vs. 93.3% vs. 88.0%), and accuracy (92.6% vs. 90.6% vs. 81.9%) in visualizing lumbar disc herniation and bulging. The ED area under the curve (AUC) was higher than that of VNCa and SC (all P values <0.05), and ED identified all 40 (40/183) calcified discs shown on SC. In addition, diagnostic confidence and image quality of ED were higher than those of VNCa and SC (all P values <0.001). Conclusions ED demonstrated higher diagnostic accuracy and confidence for visualizing the lumbar disc and disc calcification on the computed tomography (CT) images as compared to VNCa and SC.
Collapse
Affiliation(s)
- Pengfeng Sun
- Department of Radiology, The Affiliated Xi’an Central Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoping Wu
- Department of Radiology, The Affiliated Xi’an Central Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ming Gao
- Department of Radiology, The Affiliated Xi’an Central Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoyue Zhang
- Department of Clinical Science, Philips Healthcare China, Xi’an, China
| | - Duo Ma
- Department of Radiology, The Affiliated Xi’an Central Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hongsheng Liu
- Department of Radiology, The Affiliated Xi’an Central Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qiaoying Zhang
- Department of Radiology, The Affiliated Xi’an Central Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiayu Wu
- Department of Radiology, The Affiliated Xi’an Central Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mingyue Ma
- Department of Radiology, The Affiliated Xi’an Central Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yan Dong
- Department of Radiology, The Affiliated Xi’an Central Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Run Liu
- Department of Radiology, The Affiliated Xi’an Central Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
2
|
Ren J, Wang Y, Cai A, Wang S, Liang N, Li L, Yan B. MISD-IR: material-image subspace decomposition-based iterative reconstruction with spectrum estimation for dual-energy computed tomography. Quant Imaging Med Surg 2024; 14:4155-4176. [PMID: 38846275 PMCID: PMC11151249 DOI: 10.21037/qims-23-1681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/08/2024] [Indexed: 06/09/2024]
Abstract
Background Dual-energy computed tomography (DECT) is a promising technique, which can provide unique capability for material quantification. The iterative reconstruction of material maps requires spectral information and its accuracy is affected by spectral mismatch. Simultaneously estimating the spectra and reconstructing material maps avoids extra workload on spectrum estimation and the negative impact of spectral mismatch. However, existing methods are not satisfactory in image detail preservation, edge retention, and convergence rate. The purpose of this paper was to mine the similarity between the reconstructed images and the material images to improve the imaging quality, and to design an effective iteration strategy to improve the convergence efficiency. Methods The material-image subspace decomposition-based iterative reconstruction (MISD-IR) with spectrum estimation was proposed for DECT. MISD-IR is an optimized model combining spectral estimation and material reconstruction with fast convergence speed and promising noise suppression capability. We proposed to reconstruct the material maps based on extended simultaneous algebraic reconstruction techniques and estimation of the spectrum with model spectral. To stabilize the iteration and alleviate the influence of errors, we introduced a weighted proximal operator based on the block coordinate descending algorithm (WP-BCD). Furthermore, the reconstructed computed tomography (CT) images were introduced to suppress the noise based on subspace decomposition, which relies on non-local regularization to prevent noise accumulation. Results In numerical experiments, the results of MISD-IR were closer to the ground truth compared with other methods. In real scanning data experiments, the results of MISD-IR showed sharper edges and details. Compared with other one-step iterative methods in the experiment, the running time of MISD-IR was reduced by 75%. Conclusions The proposed MISD-IR can achieve accurate material decomposition (MD) without known energy spectrum in advance, and has good retention of image edges and details. Compared with other one-step iterative methods, it has high convergence efficiency.
Collapse
Affiliation(s)
- Junru Ren
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Yizhong Wang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Ailong Cai
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Shaoyu Wang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Ningning Liang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Lei Li
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Bin Yan
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| |
Collapse
|
3
|
Ren J, Zhang W, Wang Y, Liang N, Wang L, Cai A, Wang S, Zheng Z, Li L, Yan B. A dual-energy CT reconstruction method based on anchor network from dual quarter scans. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:229-252. [PMID: 38306088 DOI: 10.3233/xst-230245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Compared with conventional single-energy computed tomography (CT), dual-energy CT (DECT) provides better material differentiation but most DECT imaging systems require dual full-angle projection data at different X-ray spectra. Relaxing the requirement of data acquisition is an attractive research to promote the applications of DECT in wide range areas and reduce the radiation dose as low as reasonably achievable. In this work, we design a novel DECT imaging scheme with dual quarter scans and propose an efficient method to reconstruct the desired DECT images from the dual limited-angle projection data. We first study the characteristics of limited-angle artifacts under dual quarter scans scheme, and find that the negative and positive artifacts of DECT images are complementarily distributed in image domain because the corresponding X-rays of high- and low-energy scans are symmetric. Inspired by this finding, a fusion CT image is generated by integrating the limited-angle DECT images of dual quarter scans. This strategy enhances the true image information and suppresses the limited-angle artifacts, thereby restoring the image edges and inner structures. Utilizing the capability of neural network in the modeling of nonlinear problem, a novel Anchor network with single-entry double-out architecture is designed in this work to yield the desired DECT images from the generated fusion CT image. Experimental results on the simulated and real data verify the effectiveness of the proposed method. This work enables DECT on imaging configurations with half-scan and largely reduces scanning angles and radiation doses.
Collapse
Affiliation(s)
- Junru Ren
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, P.R. China
| | - Wenkun Zhang
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, P.R. China
| | - YiZhong Wang
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, P.R. China
| | - Ningning Liang
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, P.R. China
| | - Linyuan Wang
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, P.R. China
| | - Ailong Cai
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, P.R. China
| | - Shaoyu Wang
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, P.R. China
| | - Zhizhong Zheng
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, P.R. China
| | - Lei Li
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, P.R. China
| | - Bin Yan
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, P.R. China
| |
Collapse
|
4
|
Wang S, Wu W, Cai A, Xu Y, Vardhanabhuti V, Liu F, Yu H. Image-spectral decomposition extended-learning assisted by sparsity for multi-energy computed tomography reconstruction. Quant Imaging Med Surg 2023; 13:610-630. [PMID: 36819292 PMCID: PMC9929415 DOI: 10.21037/qims-22-235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022]
Abstract
Background Multi-energy computed tomography (CT) provides multiple channel-wise reconstructed images, and they can be used for material identification and k-edge imaging. Nonetheless, the projection datasets are frequently corrupted by various noises (e.g., electronic, Poisson) in the acquisition process, resulting in lower signal-noise-ratio (SNR) measurements. Multi-energy CT images have local sparsity, nonlocal self-similarity in spatial dimension, and correlation in spectral dimension. Methods In this paper, we propose an image-spectral decomposition extended-learning assisted by sparsity (IDEAS) method to fully exploit these intrinsic priors for multi-energy CT image reconstruction. Particularly, a nonlocal low-rank Tucker decomposition (TD) is employed to utilize the correlation and nonlocal self-similarity priors. Moreover, considering the advantages of multi-task tensor dictionary learning (TDL) in sparse representation, an adaptive spatial dictionary and an adaptive spectral dictionary are trained during the iterative reconstruction process. Furthermore, a weighted total variation (TV) regularization term is employed to encourage local sparsity. Results Numerical simulation, physical phantom, and preclinical mouse experiments are performed to validate the proposed IDEAS algorithm. Specifically, in the simulation experiments, the proposed IDEAS reconstructed high-quality images that are very close to the references. For example, the root mean square error (RMSE) of IDEAS image in energy bin 1 is as low as 0.0672, while the RMSE of other methods are higher than 0.0843. Besides, the structural similarity (SSIM) of IDEAS reconstructed image in energy bin 1 is greater than 0.98. For material decomposition, the RMSE of IDEAS bone component is as low as 0.0152, and other methods are higher than 0.0199. In addition, the computational cost of IDEAS is as low as 98.8 s for one iteration, and the competing tensor decomposition method is higher than 327 s. Conclusions To further improve the quality of the reconstructed multi-energy CT images, multiple prior regularizations are introduced to the multi-energy CT reconstructed model, leading to an IDEAS method. Both qualitative and quantitative evaluation of our results confirm the outstanding performance of the proposed algorithm compared to the state-of-the-arts.
Collapse
Affiliation(s)
- Shaoyu Wang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China;,Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, China;,Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, USA
| | - Weiwen Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, China
| | - Ailong Cai
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Yongshun Xu
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, USA
| | - Varut Vardhanabhuti
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
| | - Fenglin Liu
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, China
| | - Hengyong Yu
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, USA
| |
Collapse
|
5
|
TIME-Net: Transformer-Integrated Multi-Encoder Network for limited-angle artifact removal in dual-energy CBCT. Med Image Anal 2023; 83:102650. [PMID: 36334394 DOI: 10.1016/j.media.2022.102650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 08/25/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022]
Abstract
Dual-energy cone-beam computed tomography (DE-CBCT) is a promising imaging technique with foreseeable clinical applications. DE-CBCT images acquired with two different spectra can provide material-specific information. Meanwhile, the anatomical consistency and energy-domain correlation result in significant information redundancy, which could be exploited to improve image quality. In this context, this paper develops the Transformer-Integrated Multi-Encoder Network (TIME-Net) for DE-CBCT to remove the limited-angle artifacts. TIME-Net comprises three encoders (image encoder, prior encoder, and transformer encoder), two decoders (low- and high-energy decoders), and one feature fusion module. Three encoders extract various features for image restoration. The feature fusion module compresses these features into more compact shared features and feeds them to the decoders. Two decoders perform differential learning for DE-CBCT images. By design, TIME-Net could obtain high-quality DE-CBCT images using two complementary quarter-scans, holding great potential to reduce radiation dose and shorten the acquisition time. Qualitative and quantitative analyses based on simulated data and real rat data have demonstrated the promising performance of TIME-Net in artifact removal, subtle structure restoration, and reconstruction accuracy preservation. Two clinical applications, virtual non-contrast (VNC) imaging and iodine quantification, have proved the potential utility of the DE-CBCT images provided by TIME-Net.
Collapse
|