1
|
Cho E, Baek HJ, Szczepankiewicz F, An HJ, Jung EJ. Imaging evaluation focused on microstructural tissue changes using tensor-valued diffusion encoding in breast cancers after neoadjuvant chemotherapy: is it a promising way forward? Gland Surg 2024; 13:1387-1399. [PMID: 39282030 PMCID: PMC11399009 DOI: 10.21037/gs-24-124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024]
Abstract
Background Single diffusion encoding is a widely used, noninvasive technique for probing the tissue microstructure in breast tumors. However, it does not provide detailed information about the microenvironmental complexity. This study investigated the clinical utility of tensor-valued diffusion encoding for evaluating microstructural changes in breast cancer after neoadjuvant chemotherapy (NAC). Methods We retrospectively included patients underwent chemotherapy for histologically proven invasive breast cancer between July 2020 and June 2023 and monitored the tumor response with breast magnetic resonance imaging (MRI), including tensor-valued diffusion encoding. We reviewed pre- and post-NAC MRIs regarding chemotherapy in 23 breast cancers. Q-space trajectory imaging (QTI) parameters were estimated at each time-point, and were compared with histopathological parameters. Results The mean total mean kurtosis (MKT), anisotropic mean kurtosis (MKA), and microscopic fractional anisotropy (µFA) were significantly decreased on post-NAC MRI compared with pre-NAC MRI, with the large effect size (ES) in MKA and µFA (0.81±0.41 vs. 0.99±0.33, ES: 0.48, P=0.03; 0.48±0.30 vs. 0.73±0.27, ES: 0.88, P<0.001; 0.58±0.14 vs. 0.68±0.11, ES: 0.79, P=0.003; respectively). Regarding prognostic factors, tumors with high Ki-67 expression showed significantly lower pre-NAC mean diffusivity (MD) and higher pre-NAC µFA compared to tumors with low Ki-67 expression (0.98±0.09 vs. 1.25±0.20, P=0.002; and 0.72±0.07 vs. 0.57±0.10, P=0.005; respectively). And negative progesterone receptor (PR) group revealed significantly lower MKT, MKA, and isotropic mean kurtosis than positive PR group on the post-NAC MRI (0.60±0.31 vs. 1.03±0.40, P=0.008; 0.36±0.21 vs. 0.61±0.33, P=0.04; and 0.23±0.17 vs. 0.42±0.25, P=0.046; respectively). Conclusions QTI parameters reflected the microstructural changes in breast cancer treated with NAC and can be used as noninvasive imaging biomarkers correlated with prognostic factors.
Collapse
Affiliation(s)
- Eun Cho
- Department of Radiology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Hye Jin Baek
- Department of Radiology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
- FRIENDS Imaging Center, Busan, Republic of Korea
| | - Filip Szczepankiewicz
- Department of Diagnostic Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Hyo Jung An
- Department of Pathology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Eun Jung Jung
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| |
Collapse
|
2
|
Teh I, Shelley D, Boyle JH, Zhou F, Poenar A, Sharrack N, Foster RJ, Yuldasheva NY, Parker GJM, Dall'Armellina E, Plein S, Schneider JE, Szczepankiewicz F. Cardiac q-space trajectory imaging by motion-compensated tensor-valued diffusion encoding in human heart in vivo. Magn Reson Med 2023; 90:150-165. [PMID: 36941736 PMCID: PMC10952623 DOI: 10.1002/mrm.29637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/25/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE Tensor-valued diffusion encoding can probe more specific features of tissue microstructure than what is available by conventional diffusion weighting. In this work, we investigate the technical feasibility of tensor-valued diffusion encoding at high b-values with q-space trajectory imaging (QTI) analysis, in the human heart in vivo. METHODS Ten healthy volunteers were scanned on a 3T scanner. We designed time-optimal gradient waveforms for tensor-valued diffusion encoding (linear and planar) with second-order motion compensation. Data were analyzed with QTI. Normal values and repeatability were investigated for the mean diffusivity (MD), fractional anisotropy (FA), microscopic FA (μFA), isotropic, anisotropic and total mean kurtosis (MKi, MKa, and MKt), and orientation coherence (Cc ). A phantom, consisting of two fiber blocks at adjustable angles, was used to evaluate sensitivity of parameters to orientation dispersion and diffusion time. RESULTS QTI data in the left ventricular myocardium were MD = 1.62 ± 0.07 μm2 /ms, FA = 0.31 ± 0.03, μFA = 0.43 ± 0.07, MKa = 0.20 ± 0.07, MKi = 0.13 ± 0.03, MKt = 0.33 ± 0.09, and Cc = 0.56 ± 0.22 (mean ± SD across subjects). Phantom experiments showed that FA depends on orientation dispersion, whereas μFA was insensitive to this effect. CONCLUSION We demonstrated the first tensor-valued diffusion encoding and QTI analysis in the heart in vivo, along with first measurements of myocardial μFA, MKi, MKa, and Cc . The methodology is technically feasible and provides promising novel biomarkers for myocardial tissue characterization.
Collapse
Affiliation(s)
- Irvin Teh
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - David Shelley
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
- Leeds Teaching Hospitals TrustLeedsUK
| | - Jordan H. Boyle
- Faculty of Industrial Design EngineeringDelft University of TechnologyDelftNetherlands
| | - Fenglei Zhou
- Center for Medical Image Computing, Department of Medical Physics & Biomedical Engineering and Department of NeuroinflammationUniversity College LondonLondonUK
- Astrea BioseparationCombertonUK
| | - Ana‐Maria Poenar
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Noor Sharrack
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Richard J. Foster
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Nadira Y. Yuldasheva
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Geoff J. M. Parker
- Center for Medical Image Computing, Department of Medical Physics & Biomedical Engineering and Department of NeuroinflammationUniversity College LondonLondonUK
- Bioxydyn LimitedManchesterUK
| | - Erica Dall'Armellina
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Jürgen E. Schneider
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | | |
Collapse
|
3
|
Huang C, Zhan C, Hu Y, Yin T, Grimm R, Ai T. Histogram analysis of breast diffusion kurtosis imaging: a comparison between readout-segmented and single-shot echo-planar imaging sequence. Quant Imaging Med Surg 2023; 13:735-746. [PMID: 36819265 PMCID: PMC9929405 DOI: 10.21037/qims-22-475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023]
Abstract
Background Histogram analysis of the diffusion-weighted imaging (DWI) parameters is widely used to differentiate the breast lesions. However, histogram analysis of the diffusion-kurtosis imaging (DKI) parameters for the single-shot echo-planar imaging (ss-EPI) and readout-segmented echo planar imaging (rs-EPI) sequences has not been compared in breast cancer. Thus, this study is to investigate the diagnostic accuracy and reliability of the histogram parameters derived from the rs-EPI and ss-EPI sequences of DKI parameters in distinguishing between the benign and malignant breast lesions. Methods This single-center, retrospective cohort study enrolled 205 consecutive patients with breast lesions (65 benign and 140 malignant). The patients underwent breast magnetic resonance imaging (MRI) with a 3T scanner using the rs-EPI and ss-EPI sequences with 4 b values (0, 50, 1,000, and 2,000 s/mm2). The regions of interest (ROIs) were manually delineated for all the lesion images from both the sequences, and the histogram parameters were extracted from the apparent diffusion coefficient (ADC) and apparent diffusional kurtosis (Kapp) maps. Statistical analysis was performed using the Kolmogorov-Smirnov test, the student's t-test, and the receiver operating characteristic (ROC) curves. Results The mean, 25th, 50th, 75th, and 100th percentiles, skewness, and kurtosis values derived from apparent diffusion for non-Gaussian distribution (Dapp) and Kapp maps showed good or excellent intra-observer agreement (ICC: 0.695 to 0.863).The mean and the 25th, 50th, 75th, and 100th percentile values for Dapp were significantly lower and the mean and the 25th, 50th, 75th, and 100th percentile values for Kapp were significantly higher in the malignant breast lesions compared with those in the benign breast lesions for both the rs-EPI and ss-EPI sequences (all P<0.05). The majority of the histogram Kapp and Dapp parameters (except skewness and kurtosis) for the benign and malignant lesions showed significant differences between the ss-EPI and the rs-EPI sequences (P<0.05). ROC curve analysis showed that the AUC values for the 75th percentile of Kapp (0.854 for rs-EPI, 0.844 for ss-EPI) and the 25th percentile of Dapp (0.866 for rs-EPI, 0.858 for ss-EPI) were highest for both DKI sequences. The diagnostic performance of the rs-EPI sequence was better than the ss-EPI sequence for all the histogram parameters except the skewness value of Dapp. Conclusions Histogram parameters from the rs-EPI sequence were more reliable and accurate in differentiating malignant and benign breast lesions than those from the ss-EPI sequence.
Collapse
Affiliation(s)
- Cicheng Huang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenao Zhan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqi Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Yin
- MR Collaborations, Siemens Healthcare Ltd., Chengdu, China
| | - Robert Grimm
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Tao Ai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Shahbazi-Gahrouei D, Aminolroayaei F, Nematollahi H, Ghaderian M, Gahrouei SS. Advanced Magnetic Resonance Imaging Modalities for Breast Cancer Diagnosis: An Overview of Recent Findings and Perspectives. Diagnostics (Basel) 2022; 12:2741. [PMID: 36359584 PMCID: PMC9689118 DOI: 10.3390/diagnostics12112741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 08/28/2023] Open
Abstract
Breast cancer is the most prevalent cancer among women and the leading cause of death. Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are advanced magnetic resonance imaging (MRI) procedures that are widely used in the diagnostic and treatment evaluation of breast cancer. This review article describes the characteristics of new MRI methods and reviews recent findings on breast cancer diagnosis. This review study was performed on the literature sourced from scientific citation websites such as Google Scholar, PubMed, and Web of Science until July 2021. All relevant works published on the mentioned scientific citation websites were investigated. Because of the propensity of malignancies to limit diffusion, DWI can improve MRI diagnostic specificity. Diffusion tensor imaging gives additional information about diffusion directionality and anisotropy over traditional DWI. Recent findings showed that DWI and DTI and their characteristics may facilitate earlier and more accurate diagnosis, followed by better treatment. Overall, with the development of instruments and novel MRI modalities, it may be possible to diagnose breast cancer more effectively in the early stages.
Collapse
Affiliation(s)
- Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Fahimeh Aminolroayaei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Hamide Nematollahi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Mohammad Ghaderian
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Sogand Shahbazi Gahrouei
- Department of Management, School of Humanities, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
| |
Collapse
|
5
|
Zhang R, Xu M, Zhou C, Ding X, Lu H, Ge M, Du L, Bu Y. The value of noncontrast MRI in evaluating breast imaging reporting and data system category 0 lesions on digital mammograms. Quant Imaging Med Surg 2022; 12:4069-4080. [PMID: 35919041 PMCID: PMC9338372 DOI: 10.21037/qims-21-968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/23/2022] [Indexed: 11/06/2022]
Abstract
Background Benign and malignant diagnosis of nonpalpable breast imaging reporting and data system (BI-RADS) category 0 lesions on digital mammograms (DMs) is very important. We compared the diagnostic performance of non-contrast-enhanced magnetic resonance imaging (MRI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for them. We sought to evaluate BI-RADS category 0 lesions using 3 MRI sequences: short tau inversion recovery (STIR), STIR combined with high b value diffusion-weighted imaging (STIR-DWI), and DCE-MRI. Methods We retrospectively reviewed 114 breast DMs rated as nonpalpable BI-RADS category 0 lesions in 112 patients from January 2014 to June 2019. STIR, high b value DWI, and DCE-MRI were performed for all patients. Two breast radiologists read individual sequences (STIR, DWI, DCE-MRI) and pairs of sequences (STIR-DWI) to detect BI-RADS category 0 lesions in DMs. Receiver operating characteristic (ROC) curve analysis was used to assess diagnostic performance according to a best valuable comparator that combined MRI imaging, clinical, and pathological data. Results Among of 114 lesions (the median age of patients was 47 years; the median size of the lesion was 19 mm), 32 (48.5%) malignant lesions were missed by STIR, 9 (13.6%) malignant lesions were missed by STIR-DWI, and 3 (4.5%) malignant lesions were missed by DCE-MRI. The principal finding of our study was that STIR-DWI and DCE-MRI showed higher diagnostic accuracy than did STIR (P<0.01). STIR-DWI showed higher accuracy [area under the curve (AUC) =0.858; sensitivity =87.8%] for BI-RADS category 0 lesions in DMs than did STIR (AUC =0.754; sensitivity =51.5%), while the performance was comparable to that of DCE-MRI (AUC =0.884; sensitivity =95.5%). Conclusions Using pairs of sequences (STIR-DWI) is a non-contrast-enhanced MRI technique and had an equal diagnostic performance in distinguishing benign from malignant lesions among nonpalpable BI-RADS category 0 lesions to that of DCE-MRI. As a result, STIR-DWI as having the potential to improve the safety and efficacy in of breast cancer screening, especially in nonpalpable BI-RADS category 0 lesions at in DMs.
Collapse
Affiliation(s)
- Ruixin Zhang
- Department of Radiology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China.,The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Maosheng Xu
- Department of Radiology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China.,The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Changyu Zhou
- Department of Radiology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China.,The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuewei Ding
- Department of Radiology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China.,The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan Lu
- Department of Radiology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China.,The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Ge
- Department of Radiology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China.,The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liang Du
- Department of Radiology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Yangyang Bu
- Department of Radiology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China.,The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Syed Nasser N, Rajan S, Venugopal VK, Lasič S, Mahajan V, Mahajan H. A review on investigation of the basic contrast mechanism underlying multidimensional diffusion MRI in assessment of neurological disorders. J Clin Neurosci 2022; 102:26-35. [PMID: 35696817 DOI: 10.1016/j.jocn.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Multidimensional diffusion MRI (MDD MRI) is a novel diffusion technique that uses advanced gradient waveforms for microstructural tissue characterization to provide information about average rate, anisotropy and orientation of the diffusion and to disentangle the signal fraction from specific cell types i.e., elongated cells, isotropic cells and free water. AIM To review the diagnostic potential of MDD MRI in the clinical setting for microstructural tissue characterization in patients with neurological disorders to aid in patient care and treatment. METHOD A scoping review on the clinical applications of MDD MRI was conducted from original articles published in PubMed and Scopus from 2015 to 2021 using the keywords "Multidimensional diffusion MRI" OR "diffusion tensor distribution" OR "Tensor-Valued Diffusion" OR "b-tensor encoding" OR "microscopic diffusion anisotropy" OR "microscopic anisotropy" OR "microscopic fractional anisotropy" OR "double diffusion encoding" OR "triple diffusion encoding" OR "double pulsed field gradients" OR "double wave vector" OR "correlation tensor imaging" AND "brain" OR "axons". RESULTS Initially 145 articles were screened and after applying inclusion and exclusion criteria, nine articles were included in the final analysis. In most of these studies, microscopic diffusion anisotropy within the lesion showed deviation from the normal-appearing tissue. CONCLUSION Multidimensional diffusion MRI can provide better quantification and visualization of tissue microstructure than conventional diffusion MRI and can be used in the clinical setting for diagnosis of neurological disorders.
Collapse
Affiliation(s)
| | - Sriram Rajan
- Department of Radiology, Mahajan Imaging, New Delhi, India
| | | | | | | | - Harsh Mahajan
- CARPL.ai, New Delhi, India; Department of Radiology, Mahajan Imaging, New Delhi, India
| |
Collapse
|