1
|
Ai QYH, King AD, Tsang YM, Yu Z, Mao K, Mo FKF, Wong LM, Leung HS, So TY, Hui EP, Ma BBY, Chen W. Predictive markers for head and neck cancer treatment response: T1rho imaging in nasopharyngeal carcinoma. Eur Radiol 2024:10.1007/s00330-024-10948-5. [PMID: 39191996 DOI: 10.1007/s00330-024-10948-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVES To investigate the potential of T1rho, a new quantitative imaging sequence for cancer, for pre and early intra-treatment prediction of treatment response in nasopharyngeal carcinoma (NPC) and compare the results with those of diffusion-weighted imaging (DWI). MATERIALS AND METHODS T1rho and DWI imaging of primary NPCs were performed pre- and early intra-treatment in 41 prospectively recruited patients. The mean preT1rho, preADC, intraT1rho, intraADC, and % changes in T1rho (ΔT1rho%) and ADC (ΔADC%) were compared between residual and non-residual groups based on biopsy in all patients after chemoradiotherapy (CRT) with (n = 29) or without (n = 12) induction chemotherapy (IC), and between responders and non-responders to IC in the subgroup who received IC, using Mann-Whitney U-test. A p-value of < 0.05 indicated statistical significance. RESULTS Significant early intra-treatment changes in mean T1rho (p = 0.049) and mean ADC (p < 0.01) were detected (using paired t-test), most showing a decrease in T1rho (63.4%) and an increase in ADC (95.1%). Responders to IC (n = 17), compared to non-responders (n = 12), showed higher preT1rho (64.0 ms vs 66.5 ms) and a greater decrease in ΔT1rho% (- 7.5% vs 1.3%) (p < 0.05). The non-residual group after CRT (n = 35), compared to the residual group (n = 6), showed higher intraADC (0.96 vs 1.09 × 10-3 mm2/s) and greater increase in ΔADC% (11.7% vs 27.0%) (p = 0.02). CONCLUSION Early intra-treatment changes are detectable on T1rho and show potential to predict tumour shrinkage after IC. T1rho may be complementary to DWI, which, unlike T1rho, did not predict response to IC but did predict non-residual disease after CRT. CLINICAL RELEVANCE STATEMENT T1rho has the potential to complement DWI in the prediction of treatment response. Unlike DWI, it predicted shrinkage of the primary NPC after IC but not residual disease after CRT. KEY POINTS Changes in T1rho were detected early during cancer treatment for NPC. Pre-treatment and early intra-treatment change in T1rho predicted response to IC, but not residual disease after CRT. T1rho can be used to complement DWI with DWI predicting residual disease after CRT.
Collapse
Affiliation(s)
- Qi Yong H Ai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong S.A.R., P.R. China
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Ann D King
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China.
| | - Yip Man Tsang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Ziqiang Yu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Kaijing Mao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong S.A.R., P.R. China
| | - Frankie K F Mo
- Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong S.A.R., P.R. China
| | - Lun M Wong
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Ho Sang Leung
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Tiffany Y So
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Edwin P Hui
- Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong S.A.R., P.R. China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Brigette B Y Ma
- Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong S.A.R., P.R. China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| |
Collapse
|
2
|
Qian Y, Wong VWS, Wang YX, Hou J, Jiang B, Zhang X, Wong GLH, Chan Q, Yu SCH, Chu WCW, Chen W. Dynamic Glucose-Enhanced Imaging of the Liver Using Breath-Hold Black Blood Quantitative T 1ρ MRI at 3.0 T. J Magn Reson Imaging 2024; 59:1107-1109. [PMID: 37317614 DOI: 10.1002/jmri.28829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
Evidence Level1Technical Efficacy Stage3
Collapse
Affiliation(s)
- Yurui Qian
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincent W S Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi-Xiang Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian Hou
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Baiyan Jiang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
- Illuminatio Medical Technology Limited, Hong Kong, China
| | - Xinrong Zhang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Grace L H Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Simon C H Yu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Winnie C W Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Huang C, Wong VWS, Chan Q, Chu WCW, Chen W. An uncertainty aided framework for learning based liver T1ρmapping and analysis. Phys Med Biol 2023; 68:215019. [PMID: 37820639 DOI: 10.1088/1361-6560/ad027e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Objective. QuantitativeT1ρimaging has potential for assessment of biochemical alterations of liver pathologies. Deep learning methods have been employed to accelerate quantitativeT1ρimaging. To employ artificial intelligence-based quantitative imaging methods in complicated clinical environment, it is valuable to estimate the uncertainty of the predicatedT1ρvalues to provide the confidence level of the quantification results. The uncertainty should also be utilized to aid the post-hoc quantitative analysis and model learning tasks.Approach. To address this need, we propose a parametric map refinement approach for learning-basedT1ρmapping and train the model in a probabilistic way to model the uncertainty. We also propose to utilize the uncertainty map to spatially weight the training of an improvedT1ρmapping network to further improve the mapping performance and to remove pixels with unreliableT1ρvalues in the region of interest. The framework was tested on a dataset of 51 patients with different liver fibrosis stages.Main results. Our results indicate that the learning-based map refinement method leads to a relative mapping error of less than 3% and provides uncertainty estimation simultaneously. The estimated uncertainty reflects the actual error level, and it can be used to further reduce relativeT1ρmapping error to 2.60% as well as removing unreliable pixels in the region of interest effectively.Significance. Our studies demonstrate the proposed approach has potential to provide a learning-based quantitative MRI system for trustworthyT1ρmapping of the liver.
Collapse
Affiliation(s)
- Chaoxing Huang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
- CUHK Lab of AI in Radiology (CLAIR), Hong Kong Special Administrative Region of China, People's Republic of China
| | - Vincent Wai-Sun Wong
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Queenie Chan
- Philips Healthcare, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Winnie Chiu-Wing Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
- CUHK Lab of AI in Radiology (CLAIR), Hong Kong Special Administrative Region of China, People's Republic of China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
- CUHK Lab of AI in Radiology (CLAIR), Hong Kong Special Administrative Region of China, People's Republic of China
| |
Collapse
|
4
|
Bae WC, Malis V, Kassai Y, Miyazaki M. 3D T1rho sequences with FASE, UTE, and MAPSS acquisitions for knee evaluation. Jpn J Radiol 2023; 41:1308-1315. [PMID: 37247122 DOI: 10.1007/s11604-023-01453-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE For biochemical evaluation of soft tissues of the knee, T1rho magnetic resonance imaging (MRI) has been proposed. Purpose of this study was to compare three T1rho sequences based on fast advanced spin echo (FASE), ultrashort echo time (UTE), and magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots (MAPSS) acquisitions for the knee evaluation. MATERIALS AND METHODS We developed two T1rho sequences using 3D FASE or 3D radial UTE acquisitions. 3D MAPSS T1rho was provided by the manufacturer. Agarose phantoms with varying concentrations were imaged. Additionally, bilateral knees of asymptomatic subjects were imaged sagittally. T1rho values of the phantoms and 4 regions of interest (ROI) of the knees (i.e., anterior and posterior meniscus, femoral and tibial cartilage) were determined. RESULTS In phantoms, all T1rho values monotonically decreased with increasing agarose concentration. 3D MAPSS T1rho values of 51, 34, and 38 ms were found for 2, 3, and 4% agarose, respectively, similar to published values on another platform. In the knee, the raw images were detailed with good contrast. Cartilage and meniscus T1rho values varied with the pulse sequence, being the lowest in the 3D UTE T1rho sequence. Comparing different ROIs, menisci generally had lower T1rho values compared to cartilage, as expected in healthy knees. CONCLUSION We have successfully developed and implemented the new T1rho sequences and validated them using agarose phantoms and volunteer knees. All sequences were optimized to be clinically feasible (~ 5 min or less) and yielded satisfactory image quality and T1rho values consistent with the literature.
Collapse
Affiliation(s)
- Won C Bae
- Department of Radiology, University of California-San Diego, 9427 Health Sciences Drive, La Jolla, CA, USA.
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Vadim Malis
- Department of Radiology, University of California-San Diego, 9427 Health Sciences Drive, La Jolla, CA, USA
| | | | - Mitsue Miyazaki
- Department of Radiology, University of California-San Diego, 9427 Health Sciences Drive, La Jolla, CA, USA
| |
Collapse
|
5
|
Hou J, Wong VWS, Qian Y, Jiang B, Chan AWH, Leung HHW, Wong GLH, Yu SCH, Chu WCW, Chen W. Detecting Early-Stage Liver Fibrosis Using Macromolecular Proton Fraction Mapping Based on Spin-Lock MRI: Preliminary Observations. J Magn Reson Imaging 2023; 57:485-492. [PMID: 35753084 DOI: 10.1002/jmri.28308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Liver fibrosis is characterized by macromolecule depositions. Recently, a novel technology termed macromolecular proton fraction quantification based on spin-lock magnetic resonance imaging (MPF-SL) is reported to measure macromolecule levels. HYPOTHESIS MPF-SL can detect early-stage liver fibrosis by measuring macromolecule levels in the liver. STUDY TYPE Retrospective. SUBJECTS Fifty-five participants, including 22 with no fibrosis (F0) and 33 with early-stage fibrosis (F1-2), were recruited. FIELD STRENGTH/SEQUENCE 3 T; two-dimensional (2D) MPF-SL turbo spin-echo sequence, 2D spin-lock T1rho turbo spin-echo sequence, and multi-slice 2D gradient echo sequence. ASSESSMENT Macromolecular proton fraction (MPF), T1rho, liver iron concentration (LIC), and fat fraction (FF) biomarkers were quantified within regions of interest. STATISTICAL TESTS Group comparison of the biomarkers using Mann-Whitney U tests; correlation between the biomarkers assessed using Spearman's rank correlation coefficient and linear regression with goodness-of-fit; fibrosis stage differentiation using receiver operating characteristic curve (ROC) analysis. P-value < 0.05 was considered statistically significant. RESULTS Average T1rho was 41.76 ± 2.94 msec for F0 and 41.15 ± 3.73 msec for F1-2 (P = 0.60). T1rho showed nonsignificant correlation with either liver fibrosis (ρ = -0.07; P = 0.61) or FF (ρ = -0.14; P = 0.35) but indicated a negative correlation with LIC (ρ = -0.66). MPF was 4.73 ± 0.45% and 5.65 ± 0.81% for F0 and F1-2 participants, respectively. MPF showed a positive correlation with liver fibrosis (ρ = 0.59), and no significant correlations with LIC (ρ = 0.02; P = 0.89) or FF (ρ = 0.05; P = 0.72). The area under the ROC curve was 0.85 (95% confidence interval [CI] 0.75-0.95) and 0.55 (95% CI 0.39-0.71; P = 0.55) for MPF and T1rho to discriminate between F0 and F1-2 fibrosis, respectively. DATA CONCLUSION MPF-SL has the potential to diagnose early-stage liver fibrosis and does not appear to be confounded by either LIC or FF. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Jian Hou
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| | - Vincent W-S Wong
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong.,State Key Laboratory of Digestive Disease, Chinese University of Hong Kong, Hong Kong.,Medical Data Analytics Centre, Chinese University of Hong Kong, Hong Kong
| | - Yurui Qian
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| | - Baiyan Jiang
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| | - Anthony W-H Chan
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong
| | - Howard H-W Leung
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong
| | - Grace L-H Wong
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong.,State Key Laboratory of Digestive Disease, Chinese University of Hong Kong, Hong Kong.,Medical Data Analytics Centre, Chinese University of Hong Kong, Hong Kong
| | - Simon C-H Yu
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| | - Winnie C-W Chu
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
6
|
Huang C, Qian Y, Yu SCH, Hou J, Jiang B, Chan Q, Wong VWS, Chu WCW, Chen W. Uncertainty-aware self-supervised neural network for liver T1ρmapping with relaxation constraint. Phys Med Biol 2022; 67. [PMID: 36317270 DOI: 10.1088/1361-6560/ac9e3e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022]
Abstract
Objective.T1ρmapping is a promising quantitative MRI technique for the non-invasive assessment of tissue properties. Learning-based approaches can mapT1ρfrom a reduced number ofT1ρweighted images but requires significant amounts of high-quality training data. Moreover, existing methods do not provide the confidence level of theT1ρestimation. We aim to develop a learning-based liverT1ρmapping approach that can mapT1ρwith a reduced number of images and provide uncertainty estimation.Approach. We proposed a self-supervised neural network that learns aT1ρmapping using the relaxation constraint in the learning process. Epistemic uncertainty and aleatoric uncertainty are modelled for theT1ρquantification network to provide a Bayesian confidence estimation of theT1ρmapping. The uncertainty estimation can also regularize the model to prevent it from learning imperfect data. Main results. We conducted experiments onT1ρdata collected from 52 patients with non-alcoholic fatty liver disease. The results showed that when only collecting twoT1ρ-weighted images, our method outperformed the existing methods forT1ρquantification of the liver. Our uncertainty estimation can further regularize the model to improve the performance of the model and it is consistent with the confidence level of liverT1ρvalues.Significance. Our method demonstrates the potential for accelerating theT1ρmapping of the liver by using a reduced number of images. It simultaneously provides uncertainty ofT1ρquantification which is desirable in clinical applications.
Collapse
Affiliation(s)
- Chaoxing Huang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.,CUHK Lab of AI in Radiology (CLAIR), Hong Kong SAR, People's Republic of China
| | - Yurui Qian
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Simon Chun-Ho Yu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.,CUHK Lab of AI in Radiology (CLAIR), Hong Kong SAR, People's Republic of China
| | - Jian Hou
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Baiyan Jiang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.,Illuminatio Medical Technology Limited, Hong Kong SAR, People's Republic of China
| | - Queenie Chan
- Philips Healthcare, Hong Kong SAR, People's Republic of China
| | - Vincent Wai-Sun Wong
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Winnie Chiu-Wing Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.,CUHK Lab of AI in Radiology (CLAIR), Hong Kong SAR, People's Republic of China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.,CUHK Lab of AI in Radiology (CLAIR), Hong Kong SAR, People's Republic of China
| |
Collapse
|
7
|
Qian Y, Wong VWS, Hou J, Jiang B, Chu WCW, Chen W. Inhomogeneous liver fibrosis distribution revealed by macromolecular proton fraction quantification based on spin-lock MRI. Quant Imaging Med Surg 2022; 12:4341-4345. [PMID: 35919064 PMCID: PMC9338361 DOI: 10.21037/qims-22-302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022]
Affiliation(s)
- Yurui Qian
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent Wai-Sun Wong
- Department of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jian Hou
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Baiyan Jiang
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong SAR, China.,Illuminatio Medical Technology Limited, Hong Kong SAR, China
| | - Winnie Chiu-Wing Chu
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Peng Q, Wu C, Kim J, Li X. Efficient phase-cycling strategy for high-resolution 3D gradient-echo quantitative parameter mapping. NMR IN BIOMEDICINE 2022; 35:e4700. [PMID: 35068007 DOI: 10.1002/nbm.4700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 06/05/2023]
Abstract
Magnetization-prepared (MP) gradient-echo (GRE) sequences suffer from signal contaminations from T1 recovery during the readout train, which can be eliminated by paired RF phase cycling (PC) at the cost of doubling the scan time. The objective of this study was to develop and validate a novel unpaired PC strategy to eliminate the time penalty for high-resolution quantitative parameter mapping in 3D MP-GRE sequences. Based on the observation that the contaminating T1 recovery signal along the GRE readout train is independent of magnetization preparation, its impact can be eliminated using a novel curve-fitting approach with complex-valued data without needing paired PC acquisitions. Four new unpaired PC schemes were compared with two traditional paired PC schemes in both phantom and in vivo human knee studies at 3 T using a MP angle-modulated partitioned k-space spoiled gradient-echo snapshots (MAPSS) T1ρ mapping sequence. In the phantom study, all methods resulted in consistent T1ρ measurements (∆T1ρ < 0.5%) at the center slice when B0 /B1 values were uniform. Results were not consistent when off-center slices with nonideal B0 /B1 were included. Two unpaired PC schemes had comparable or significantly improved quantitative accuracy and scan-rescan reproducibility compared with the paired PC schemes. There was no significant T1ρ quantitative variability increase or spatial fidelity loss using the new unpaired PC schemes. Unpaired PC schemes also had different T1ρ spectral responses at different B0 frequency offsets, which can potentially be exploited to reduce sensitivity to B0 field inhomogeneities. The human knee study results were consistent with the phantom study findings. In conclusion, an unpaired PC strategy potentially allows more accurate quantitative parameter mapping with halved scan time compared with the paired PC approach to eliminate signal contaminations from T1 recovery. It therefore offers additional flexibility in SNR optimization, spatial resolution improvement, and choice of imaging sampling points to obtain more accurate quantitative parameter mapping.
Collapse
Affiliation(s)
- Qi Peng
- GRUSS Magnetic Resonance Research Center (MRRC), Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Can Wu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jeehun Kim
- Department of Biomedical Engineering, Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, Ohio, USA
| | - Xiaojuan Li
- Department of Biomedical Engineering, Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Qian Y, Hou J, Jiang B, Wong VWS, Lee J, Chan Q, Wang Y, Chu WCW, Chen W. Characterization and correction of the effects of hepatic iron on T 1ρ relaxation in the liver at 3.0T. Magn Reson Med 2022; 88:1828-1839. [PMID: 35608236 DOI: 10.1002/mrm.29310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE Quantitative T1ρ imaging is an emerging technique to assess the biochemical properties of tissues. In this paper, we report our observation that liver iron content (LIC) affects T1ρ quantification of the liver at 3.0T field strength and develop a method to correct the effect of LIC. THEORY AND METHODS On-resonance R1ρ (1/T1ρ ) is mainly affected by the intrinsic R2 (1/T2 ), which is influenced by LIC. As on-resonance R1ρ is closely related to the Carr-Purcell-Meiboom-Gill (CPMG) R2 , and because the calibration between CPMG R2 and LIC has been reported at 1.5T, a correction method was proposed to correct the R2 contribution to the R1ρ . The correction coefficient was obtained from the calibration results and related transformed factors. To compensate for the difference between CPMG R2 and R1ρ , a scaling factor was determined using the values of CPMG R2 and R1ρ , obtained simultaneously from a single breath-hold from volunteers. The livers of 110 subjects were scanned to validate the correction method. RESULTS LIC was significantly correlated with R1ρ in the liver. However, when the proposed correction method was applied to R1ρ , LIC and the iron-corrected R1ρ were not significantly correlated. CONCLUSION LIC can affect T1ρ in the liver. We developed an iron-correction method for the quantification of T1ρ in the liver at 3.0T.
Collapse
Affiliation(s)
- Yurui Qian
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong, China
| | - Jian Hou
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong, China
| | - Baiyan Jiang
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong, China.,Illuminatio Medical Technology Limited, Hong Kong, China
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
| | - Jack Lee
- Clinical Trials and Biostatistics Lab, CUHK Shenzhen Research Institute, Shenzhen, China.,Division of Biostatistics, Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Yixiang Wang
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong, China
| | - Winnie Chiu-Wing Chu
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong, China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Ai QYH, Zhang H, Jiang B, So TY, Mo FKF, Qamar S, Chen W, King AD. Test-retest repeatability of T1rho (T1ρ) MR imaging in the head and neck. Eur J Radiol 2020; 135:109489. [PMID: 33395595 DOI: 10.1016/j.ejrad.2020.109489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE T1rho imaging is a new quantitative MRI sequence for head and neck cancer and the repeatability for this region is unknown. This study aimed to evaluate the repeatability of quantitative T1rho imaging in the head and neck. MATERIALS AND METHODS T1rho imaging of the head and neck was prospectively performed in 15 healthy participants on three occasions. Scan 1 and 2 were performed with a time interval of 30 minutes (intra-session) and scan 3 was performed 14 days later (inter-session). T1rho values for normal tissues (parotid glands, palatine tonsils, pterygoid muscles, and tongue) were obtained on each scan. Intra-class coefficients (ICCs), within-subject coefficient of variances (wCoVs), and repeatability coefficient (RCs) of the intra-session scan (scan 1 vs 2) and inter-session scan (scan 1 vs 3) for the normal tissues were calculated. RESULTS The ICCs of T1rho values for normal tissues were almost perfect (0.83-0.97) for intra-session scans and were substantial (0.71-0.80) for inter-session scans. The wCoVs showed a small range (2.46%-3.30%) for intra-session scans, and slightly greater range (3.27%-6.51%) for inter-session scan. The greatest and lowest wCoVs of T1rho were found in the parotid gland and muscles, respectively. The T1rho RCs varied for all tissues between intra- and inter- sessions, and the greatest RC of 10.07 msec was observed for parotid gland on inter-session scan. CONCLUSION T1rho imaging is a repeatable quantitative MRI sequence in the head and neck but variances of T1rho values among tissues should be take into account during analysis.
Collapse
Affiliation(s)
- Qi Yong H Ai
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong.
| | - Huimin Zhang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
| | - Baiyan Jiang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
| | - Tiffany Y So
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
| | - Frankie K F Mo
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
| | - Sahrish Qamar
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
| | - Ann D King
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
| |
Collapse
|
11
|
Gram M, Seethaler M, Gensler D, Oberberger J, Jakob PM, Nordbeck P. Balanced spin-lock preparation for B 1 -insensitive and B 0 -insensitive quantification of the rotating frame relaxation time T 1ρ. Magn Reson Med 2020; 85:2771-2780. [PMID: 33166009 DOI: 10.1002/mrm.28585] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/04/2020] [Accepted: 10/13/2020] [Indexed: 01/04/2023]
Abstract
PURPOSE Accurate and artifact-free T1ρ quantification is still a major challenge due to a susceptibility of the spin-locking module to B0 and/or B1 field inhomogeneities. In this study, we present a novel spin-lock preparation module (B-SL) that enables an almost full compensation of both types of inhomogeneities. METHODS The new B-SL module contains a second 180° refocusing pulse to compensate each pulse in the preparation block by a corresponding pulse with opposite phase. For evaluation and validation of B-SL, extensive simulations as well as phantom measurements were performed. Furthermore, the new module was compared to three common established compensation methods. RESULTS Both simulations and measurements demonstrate a much lower susceptibility to artifacts for the B-SL module, therefore providing an improved accuracy in T1ρ quantification. In the presence of field inhomogeneities, measurements revealed an increased banding compensation by 79% compared with the frequently used composite module. The goodness of the mono-exponential T1ρ fitting procedure was improved by 58%. CONCLUSION The B-SL preparation enables the generation of accurate relaxation maps with significantly reduced artifacts, even in the case of large field imperfections. Therefore, the B-SL module is suggested to be highly beneficial for in vivo T1ρ quantification.
Collapse
Affiliation(s)
- Maximilian Gram
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Experimental Physics 5, University of Würzburg, Würzburg, Germany
| | - Michael Seethaler
- Experimental Physics 5, University of Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Daniel Gensler
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Oberberger
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Peter M Jakob
- Experimental Physics 5, University of Würzburg, Würzburg, Germany
| | - Peter Nordbeck
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Ai QYH, Chen W, So TY, Lam WKJ, Jiang B, Poon DMC, Qamar S, Mo FKF, Blu T, Chan Q, Ma BBY, Hui EP, Chan KCA, King AD. Quantitative T1ρ MRI of the Head and Neck Discriminates Carcinoma and Benign Hyperplasia in the Nasopharynx. AJNR Am J Neuroradiol 2020; 41:2339-2344. [PMID: 33122214 DOI: 10.3174/ajnr.a6828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE T1ρ imaging is a new quantitative MR imaging pulse sequence with the potential to discriminate between malignant and benign tissue. In this study, we evaluated the capability of T1ρ imaging to characterize tissue by applying T1ρ imaging to malignant and benign tissue in the nasopharynx and to normal tissue in the head and neck. MATERIALS AND METHODS Participants with undifferentiated nasopharyngeal carcinoma and benign hyperplasia of the nasopharynx prospectively underwent T1ρ imaging. T1ρ measurements obtained from the histogram analysis for nasopharyngeal carcinoma in 43 participants were compared with those for benign hyperplasia and for normal tissue (brain, muscle, and parotid glands) in 41 participants using the Mann-Whitney U test. The area under the curve of significant T1ρ measurements was calculated and compared using receiver operating characteristic analysis and the Delong test, respectively. A P < . 05 indicated statistical significance. RESULTS There were significant differences in T1ρ measurements between nasopharyngeal carcinoma and benign hyperplasia and between nasopharyngeal carcinoma and normal tissue (all, P < . 05). Compared with benign hyperplasia, nasopharyngeal carcinoma showed a lower T1ρ mean (62.14 versus 65.45 × ms), SD (12.60 versus 17.73 × ms), and skewness (0.61 versus 0.76) (all P < .05), but no difference in kurtosis (P = . 18). The T1ρ SD showed the highest area under the curve of 0.95 compared with the T1ρ mean (area under the curve = 0.72) and T1ρ skewness (area under the curve = 0.72) for discriminating nasopharyngeal carcinoma and benign hyperplasia (all, P < .05). CONCLUSIONS Quantitative T1ρ imaging has the potential to discriminate malignant from benign and normal tissue in the head and neck.
Collapse
Affiliation(s)
- Q Y H Ai
- From the Department of Imaging and Interventional Radiology (Q.Y.H.A., W.C., T.Y.S., B.J., S.Q., A.D.K.)
| | - W Chen
- From the Department of Imaging and Interventional Radiology (Q.Y.H.A., W.C., T.Y.S., B.J., S.Q., A.D.K.)
| | - T Y So
- From the Department of Imaging and Interventional Radiology (Q.Y.H.A., W.C., T.Y.S., B.J., S.Q., A.D.K.)
| | - W K J Lam
- Li Ka Shing Institute of Health Sciences (W.K.J.L., D.M.C.P., B.B.Y.M., E.P.H., K.C.A.C.).,State Key Laboratory of Translational Oncology (W.K.J.L., D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H., K.C.A.C.).,Department of Chemical Pathology (W.K.J.L., K.C.A.C.), State Key Laboratory in Oncology in South China, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR
| | - B Jiang
- From the Department of Imaging and Interventional Radiology (Q.Y.H.A., W.C., T.Y.S., B.J., S.Q., A.D.K.)
| | - D M C Poon
- Li Ka Shing Institute of Health Sciences (W.K.J.L., D.M.C.P., B.B.Y.M., E.P.H., K.C.A.C.).,Department of Clinical Oncology (D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H.), State Key Laboratory in Oncology in South China, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR.,State Key Laboratory of Translational Oncology (W.K.J.L., D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H., K.C.A.C.)
| | - S Qamar
- From the Department of Imaging and Interventional Radiology (Q.Y.H.A., W.C., T.Y.S., B.J., S.Q., A.D.K.)
| | - F K F Mo
- Department of Clinical Oncology (D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H.), State Key Laboratory in Oncology in South China, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR.,State Key Laboratory of Translational Oncology (W.K.J.L., D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H., K.C.A.C.)
| | - T Blu
- Department of Electrical Engineering (T.B.), The Chinese University of Hong Kong, Hong Kong, SAR
| | - Q Chan
- Philips Healthcare (Q.C.), Hong Kong, SAR
| | - B B Y Ma
- Li Ka Shing Institute of Health Sciences (W.K.J.L., D.M.C.P., B.B.Y.M., E.P.H., K.C.A.C.).,Department of Clinical Oncology (D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H.), State Key Laboratory in Oncology in South China, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR.,State Key Laboratory of Translational Oncology (W.K.J.L., D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H., K.C.A.C.)
| | - E P Hui
- Li Ka Shing Institute of Health Sciences (W.K.J.L., D.M.C.P., B.B.Y.M., E.P.H., K.C.A.C.).,Department of Clinical Oncology (D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H.), State Key Laboratory in Oncology in South China, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR.,State Key Laboratory of Translational Oncology (W.K.J.L., D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H., K.C.A.C.)
| | - K C A Chan
- Li Ka Shing Institute of Health Sciences (W.K.J.L., D.M.C.P., B.B.Y.M., E.P.H., K.C.A.C.).,State Key Laboratory of Translational Oncology (W.K.J.L., D.M.C.P., F.K.F.M., B.B.Y.M., E.P.H., K.C.A.C.).,Department of Chemical Pathology (W.K.J.L., K.C.A.C.), State Key Laboratory in Oncology in South China, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR
| | - A D King
- From the Department of Imaging and Interventional Radiology (Q.Y.H.A., W.C., T.Y.S., B.J., S.Q., A.D.K.)
| |
Collapse
|
13
|
Wyatt CR, Barbara TM, Guimaraes AR. T 1ρ magnetic resonance fingerprinting. NMR IN BIOMEDICINE 2020; 33:e4284. [PMID: 32125050 PMCID: PMC8818303 DOI: 10.1002/nbm.4284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 05/15/2023]
Abstract
T1ρ relaxation imaging is a quantitative imaging technique that has been used to assess cartilage integrity, liver fibrosis, tumors, cardiac infarction, and Alzheimer's disease. T1 , T2 , and T1ρ relaxation time constants have each demonstrated different degrees of sensitivity to several markers of fibrosis and inflammation, allowing for a potential multi-parametric approach to tissue quantification. Traditional magnetic resonance fingerprinting (MRF) has been shown to provide quick, quantitative mapping of T1 and T2 relaxation time constants. In this study, T1ρ relaxation is added to the MRF framework using spin lock preparations. An MRF sequence involving an RF-spoiled sequence with TR , flip angle, T1ρ , and T2 preparation variation is described. The sequence is then calibrated against conventional T1 , T2 , and T1ρ relaxation mapping techniques in agar phantoms and the abdomens of four healthy volunteers. Strong intraclass correlation coefficients (ICC > 0.9) were found between conventional and MRF sequences in phantoms and also in healthy volunteers (ICC > 0.8). The highest ICC correlation values were seen in T1 , followed by T1ρ and then T2 . In this study, T1ρ relaxation has been incorporated into the MRF framework by using spin lock preparations, while still fitting for T1 and T2 relaxation time constants. The acquisition of these parameters within a single breath hold in the abdomen alleviates the issues of movement between breath holds in conventional techniques.
Collapse
Affiliation(s)
- Cory R. Wyatt
- Advanced Imaging Research Center, Oregon Health & Sciences University, Portland, OR 97239
- Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR 97239
| | - Thomas M. Barbara
- Advanced Imaging Research Center, Oregon Health & Sciences University, Portland, OR 97239
| | - Alexander R. Guimaraes
- Advanced Imaging Research Center, Oregon Health & Sciences University, Portland, OR 97239
- Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR 97239
| |
Collapse
|
14
|
Xie S, Qi H, Li Q, Zhang K, Zhang L, Cheng Y, Shen W. Liver injury monitoring, fibrosis staging and inflammation grading using T1rho magnetic resonance imaging: an experimental study in rats with carbon tetrachloride intoxication. BMC Gastroenterol 2020; 20:14. [PMID: 31941457 PMCID: PMC6964054 DOI: 10.1186/s12876-020-1161-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022] Open
Abstract
Background To investigate the merit of T1rho relaxation for the evaluation of liver fibrosis, inflammatory activity, and liver injury monitoring in a carbon tetrachloride (CCl4)-induced rat model. Methods Model rats from CCl4-induced liver fibrosis (fibrosis group: n = 41; regression group: n = 20) and control (n = 11) groups underwent black blood T1rho magnetic resonance (MR) imaging (MRI). Injection of CCl4 was done twice weekly for up to 12 weeks in the fibrosis group and for up to 6 weeks in the regression group. MR scanning time points were at baseline and at 2, 4, 6, 8, 10 and 12 weeks after CCl4 injection in the fibrosis group and at baseline and at 2, 4, 6 (CCl4 withdrawal), 7, 8, 10 and 12 weeks in the regression group. Results In the fibrosis group, liver T1rho values increased gradually within week 8 and then decreased. In the regression group, T1rho values dropped gradually after the withdrawal of CCl4 and fell below those at baseline. The T1rho values at S0 were lower than those at any other stage (all P < 0.05). The T1rho values at G0 were significantly lower than those at any other grade, and G1 was lower than G2 (all P < 0.01). The T1rho values mildly correlated with fibrosis stages (r = 0.362) and moderately correlated with grades of inflammation (r = 0.568). The T1rho values of rats with the same inflammation grades showed no significant difference among different fibrosis stages, and the T1rho values at S3 showed a significant difference among different grades of inflammation (P = 0.024). Inflammation grade was an independent variable associated with T1rho values (P < 0.001). Conclusion T1rho MRI can be used to monitor CCl4-induced liver injury, and inflammatory activity had a greater impact on liver T1rho values than fibrosis.
Collapse
Affiliation(s)
- Shuangshuang Xie
- Department of Radiology, First Central Hospital Clinical Institute, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Hanxiong Qi
- Department of Radiology, Tianjin First Central Hospital, Tianjin medical imaging institute, 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Qing Li
- Department of Radiology, Tianjin First Central Hospital, Tianjin medical imaging institute, 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Kun Zhang
- Department of Radiology, Tianjin First Central Hospital, Tianjin medical imaging institute, 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Longjiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Yue Cheng
- Department of Radiology, Tianjin First Central Hospital, Tianjin medical imaging institute, 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, Tianjin medical imaging institute, 24 Fukang Road, Nankai District, Tianjin, 300192, China.
| |
Collapse
|
15
|
Sharafi A, Baboli R, Zibetti M, Shanbhogue K, Olsen S, Block T, Chandarana H, Regatte R. Volumetric multicomponent T 1ρ relaxation mapping of the human liver under free breathing at 3T. Magn Reson Med 2019; 83:2042-2050. [PMID: 31724246 DOI: 10.1002/mrm.28061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE To develop a 3D sequence for T1ρ relaxation mapping using radial volumetric encoding (3D-T1ρ -RAVE) and to evaluate the multi relaxation components in the liver of healthy controls and chronic liver disease (CLD) patients. METHODS Fat saturation and T1ρ preparation modules were followed by a train of gradient-echo acquisitions and T1 restoration delay. The series of T1ρ -weighted images were fitted using mono-exponential, bi-exponential, and stretched-exponential models. The repeatability and reproducibility of the proposed technique were evaluated on National Institute of Standards and Technology phantom by calculating the coefficient of variation between test-retest scans on the same scanner and between two different 3T scanners, respectively. Mann-Whitney U-test was performed to assess differences in T1ρ components among patients (n = 3) and a control group (n = 10). RESULTS The phantom study showed an error of 8.9% and 11.5% in mono T2 relaxation time measurement relative to the reference on 2 different scanners. The coefficient of variation for test-retest scans performed on the same scanner was 5.7% and 2.4% for scans performed on 2 scanners. The comparison between healthy controls and CLD patients showed a significant difference (P < .05) in mono relaxation time (P = .002), stretched-exponential relaxation parameter (P = .04). The Akaike information criteria C criterion showed 2.53 ± 0.9% (2.3 ± 0.3% for CLD) of the voxels are bi-exponential while in 65.3 ± 5.8% (81.2 ± 0.06% for CLD) of the liver voxels, the stretched-exponential model was preferred. CONCLUSION The 3D-T1ρ -RAVE sequence allows volumetric, multicomponent T1ρ assessment of the liver during free breathing and can distinguish between healthy volunteers and CLD patients.
Collapse
Affiliation(s)
- Azadeh Sharafi
- Department of Radiology, New York University School of Medicine, New York, New York
| | - Rahman Baboli
- Department of Radiology, New York University School of Medicine, New York, New York
| | - Marcelo Zibetti
- Department of Radiology, New York University School of Medicine, New York, New York
| | - Krishna Shanbhogue
- Department of Radiology, New York University School of Medicine, New York, New York
| | - Sonja Olsen
- Department of Medicine, New York University School of Medicine, New York, New York
| | - Tobias Block
- Department of Radiology, New York University School of Medicine, New York, New York.,Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Hersh Chandarana
- Department of Radiology, New York University School of Medicine, New York, New York
| | - Ravinder Regatte
- Department of Radiology, New York University School of Medicine, New York, New York
| |
Collapse
|
16
|
Chen W, Karampinos DC. Chemical-shift encoding-based water-fat separation with multifrequency fat spectrum modeling in spin-lock MRI. Magn Reson Med 2019; 83:1608-1624. [PMID: 31592557 DOI: 10.1002/mrm.28026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/18/2019] [Accepted: 09/09/2019] [Indexed: 01/19/2023]
Abstract
PURPOSE Chemical exchange saturation transfer is used commonly to generate MRI contrast based on the chemical exchange effect. The spin-lock techniques can also be used to probe the chemical exchange and other molecular motion processes in tissues. The presence of fat can cause errors in spin-lock MRI. Signals from fat are typically suppressed based on spectral selectivity or T1 nulling approaches in spin-lock imaging. However, these methods cannot be used to suppress fat signals from multiple fat peaks. To address this problem, we report chemical-shift encoding-based water-fat separation approaches with multifrequency fat spectrum modeling. METHODS Both the conventional spin-lock and the adiabatic continuous-wave constant-amplitude spin lock (ACCSL) with multi-echo acquisitions are investigated for chemical-shift encoding-based water-fat separation in spin-lock imaging. A comparison is made of reconstructions based on 3 models: a single-peak fat spectrum model, a standard precalibrated proton density 6-peak fat spectrum model, and the self-calibrated relaxation-dependent 3-peak fat spectrum model. Comparisons were performed using Bloch simulations, phantom, and in vivo experiments at 3 T. RESULTS Conventional spin-lock acquisitions cannot be used for reliable water-fat separation with a multipeak fat spectrum model. Water-fat separation based on ACCSL acquisitions achieves superior performance compared with the use of conventional spin-lock acquisitions. The best result is achieved from ACCSL acquisition with self-calibrated relaxation-dependent multipeak fat spectrum modeling. CONCLUSION The ACCSL acquisition can be used for chemical-shift encoding-based water-fat separation with multipeak fat spectrum modeling. This approach has the potential to improve quantitative analysis using spin-lock MRI for assessing the biochemical properties of tissues.
Collapse
Affiliation(s)
- Weitian Chen
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| |
Collapse
|
17
|
Jiang B, Chen W. On-resonance and off-resonance continuous wave constant amplitude spin-lock and T 1ρ quantification in the presence of B 1 and B 0 inhomogeneities. NMR IN BIOMEDICINE 2018; 31:e3928. [PMID: 29693744 DOI: 10.1002/nbm.3928] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/06/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Spin-lock MRI is a valuable diagnostic imaging technology, as it can be used to probe the macromolecule environment of tissues. Quantitative T1ρ imaging is one application of spin-lock MRI that is reported to be promising for a number of clinical applications. Spin-lock is often performed with a continuous RF wave at a constant RF amplitude either on resonance or off resonance. However, both on- and off-resonance spin-lock approaches are susceptible to B1 and B0 inhomogeneities, which results in image artifacts and quantification errors. In this work, we report a continuous wave constant amplitude spin-lock approach that can achieve negligible image artifacts in the presence of B1 and B0 inhomogeneities for both on- and off-resonance spin-lock. Under the adiabatic condition, by setting the maximum B1 amplitude of the adiabatic pulses equal to the B1 amplitude of spin-lock RF pulse, the spins are ensured to align along the effective field throughout the spin-lock process. We show that this results in simultaneous compensation of B1 and B0 inhomogeneities for both on- and off-resonance spin-lock. The relaxation effect during the entire adiabatic half passage (AHP) and reverse AHP, and the stationary solution of the Bloch-McConnell equation present at off-resonance frequency offset, are considered in the revised relaxation model. We demonstrate that these factors create a direct current component to the conventional relaxation model. In contrast to the previously reported dual-acquisition method, the revised relaxation model just requires one acquisition to perform quantification. The simulation, phantom, and in vivo experiments demonstrate that the proposed approach achieves superior image quality compared with the existing methods, and the revised relaxation model can perform T1ρ quantification with one acquisition instead of two.
Collapse
Affiliation(s)
- Baiyan Jiang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| |
Collapse
|
18
|
Wáng YXJ, Deng M, Lo GG, Liang D, Yuan J, Chen W. Breath-hold black-blood T1rho mapping improves liver T1rho quantification in healthy volunteers. Acta Radiol 2018; 59:257-265. [PMID: 28679324 DOI: 10.1177/0284185117717764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Recent researches suggest that T1rho may be a non-invasive and quantitative technique for detecting and grading liver fibrosis. Purpose To compare a multi-breath-hold bright-blood fast gradient echo (GRE) imaging and a single breath-hold single-shot fast spin echo (FSE) imaging with black-blood effect for liver parenchyma T1rho measurement and to study liver physiological T1rho value in healthy volunteers. Material and Methods The institutional Ethics Committee approved this study. 28 healthy participants (18 men, 10 women; age = 29.6 ± 5.1 years) underwent GRE liver T1rho imaging, and 20 healthy participants (10 men, 10 women; age = 36.9 ± 10.3 years) underwent novel black-blood FSE liver T1rho imaging, both at 3T with spin-lock frequency of 500 Hz. The FSE technique allows simultaneous acquisition of four spin lock times (TSLs; 1 ms, 10 ms, 30 ms, 50msec) in 10 s. Results For FSE technique the intra-scan repeatability intraclass correlation coefficient (ICC) was 0.98; while the inter-scan reproducibility ICC was 0.82 which is better than GRE technique's 0.76. Liver T1rho value in women tended to have a higher value than T1rho values in men (FSE: 42.28 ± 4.06 ms for women and 39.13 ± 2.12 ms for men; GRE: 44.44 ± 1.62 ms for women and 42.36 ± 2.00 ms for men) and FSE technique showed liver T1rho value decreased slightly as age increased. Conclusion Single breath-hold black-blood FSE sequence has better scan-rescan reproducibility than multi-breath-hold bright-blood GRE sequence. Gender and age dependence of liver T1rho in healthy participants is observed, with young women tending to have a higher T1rho measurement.
Collapse
Affiliation(s)
- Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR
| | - Min Deng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR
| | - Gladys G Lo
- Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR
| | - Dong Liang
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Jing Yuan
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR
| |
Collapse
|
19
|
Wáng YXJ, Deng M, Lin J, Kwok AWL, Liu EKW, Chen W. Age- and Gender-Associated Liver Physiological T1rho Dynamics Demonstrated with a Clinically Applicable Single-Breathhold Acquisition. SLAS Technol 2017; 23:179-187. [PMID: 29241024 DOI: 10.1177/2472630317747198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To understand women's and men's physiological ranges of liver T1rho relaxation time measured with a single breathhold black blood sequence, this healthy volunteer study was conducted in 62 women (mean age, 38.9 y; range, 18-75 y) and 34 men (mean age, 44.7 y; range, 24-80 y). Approval from the institutional ethics committee was obtained. Magnetic resonance imaging was performed with a 3.0T scanner with six spin-lock times of 0, 10, 20, 25, 35, and 50 ms and a single breathhold of 12 s per slice acquisition. Six slices were acquired for each examination. The results demonstrated that the female liver T1rho value ranged between 35.07 and 51.97 ms and showed an age-dependent decrease, with younger women having a higher measurement. The male liver T1rho value ranged between 34.94 and 43.39 ms, with no evidential age dependence. Postmenopausal women had similar liver T1rho values as men. For women, there was a trend that the liver T1rho value could be 4% to 5% lower during the menstrual phase than during the nonmenstrual phase. For both women and men, no evidential association was seen between body mass index and liver T1rho.
Collapse
Affiliation(s)
- Yì Xiáng J Wáng
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR
| | - Min Deng
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR
| | - Jiang Lin
- 2 Department of Radiology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anthony W L Kwok
- 3 Department of Orthopedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR
| | - Eric K W Liu
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR
| | - Weitian Chen
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR
| |
Collapse
|
20
|
Quantitative assessment of liver function with whole-liver T1rho mapping at 3.0T. Magn Reson Imaging 2017; 46:75-80. [PMID: 29109053 DOI: 10.1016/j.mri.2017.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/20/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To assess the segmental liver function in healthy subjects and liver cirrhosis (LC) patients with different Child-Pugh grades using whole-liver T1rho mapping at 3.0T. METHODS Thirty-three healthy volunteers and 33 patients with clinically diagnosed LC were examined using a three-dimensional (3D) whole-liver coverage T1rho mapping. T1rho maps were calculated from five respiratory-triggered sequences with different spin-lock durations (0, 10, 20, 40, and 60ms). The patients were classified into group A with Child-Pugh A cirrhosis and group B with Child-Pugh B or C cirrhosis. The hepatic T1rho values in different segments of the healthy volunteers and LC patients were compared, and receiver operating characteristic curves (ROC) were plotted to determine the performance of T1rho. RESULTS The median T1rho value of the patients (Child-Pugh class A: 47.07ms; Child-Pugh classes B and C: 51.09ms) was significantly higher than that of the healthy volunteers (39.37ms, P<0.001). No remarkable variations among different hepatic segments in LC patients with various Child-Pugh grades were found (P>0.05). The T1rho values of the liver parenchyma were significantly correlated with albumin (r=-0.590, P<0.001) and prothrombin time (r=0.601, P<0.001). The T1rho values in patients increased with an increase in the Child-Pugh classification (r=0.574, P<0.001). CONCLUSIONS The whole-liver coverage T1rho sequence at 3.0T was feasible for the assessment of segmental liver function. T1rho relaxation might be a potential biomarker for the estimation of liver function in LC patients.
Collapse
|
21
|
Xie S, Li Q, Cheng Y, Zhang Y, Zhuo Z, Zhao G, Shen W. Impact of Liver Fibrosis and Fatty Liver on T1rho Measurements: A Prospective Study. Korean J Radiol 2017; 18:898-905. [PMID: 29089822 PMCID: PMC5639155 DOI: 10.3348/kjr.2017.18.6.898] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 04/15/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To investigate the liver T1rho values for detecting fibrosis, and the potential impact of fatty liver on T1rho measurements. MATERIALS AND METHODS This study included 18 healthy subjects, 18 patients with fatty liver, and 18 patients with liver fibrosis, who underwent T1rho MRI and mDIXON collections. Liver T1rho, proton density fat fraction (PDFF) and T2* values were measured and compared among the three groups. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the T1rho values for detecting liver fibrosis. Liver T1rho values were correlated with PDFF, T2* values and clinical data. RESULTS Liver T1rho and PDFF values were significantly different (p < 0.001), whereas the T2* (p = 0.766) values were similar, among the three groups. Mean liver T1rho values in the fibrotic group (52.6 ± 6.8 ms) were significantly higher than those of healthy subjects (44.9 ± 2.8 ms, p < 0.001) and fatty liver group (45.0 ± 3.5 ms, p < 0.001). Mean liver T1rho values were similar between healthy subjects and fatty liver group (p = 0.999). PDFF values in the fatty liver group (16.07 ± 10.59%) were significantly higher than those of healthy subjects (1.43 ± 1.36%, p < 0.001) and fibrosis group (1.07 ± 1.06%, p < 0.001). PDFF values were similar in healthy subjects and fibrosis group (p = 0.984). Mean T1rho values performed well to detect fibrosis at a threshold of 49.5 ms (area under the ROC curve, 0.855), had a moderate correlation with liver stiffness (r = 0.671, p = 0.012), and no correlation with PDFF, T2* values, subject age, or body mass index (p > 0.05). CONCLUSION T1rho MRI is useful for noninvasive detection of liver fibrosis, and may not be affected with the presence of fatty liver.
Collapse
Affiliation(s)
- Shuangshuang Xie
- Department of Radiology, Tianjin First Center Hospital, Tianjin 300192, China
| | - Qing Li
- Department of Radiology, Tianjin First Center Hospital, Tianjin 300192, China
| | - Yue Cheng
- Department of Radiology, Tianjin First Center Hospital, Tianjin 300192, China
| | - Yu Zhang
- Clinical Science, Philips Healthcare, Beijing 100600, China
| | - Zhizheng Zhuo
- Clinical Science, Philips Healthcare, Beijing 100600, China
| | - Guiming Zhao
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China
| | - Wen Shen
- Department of Radiology, Tianjin First Center Hospital, Tianjin 300192, China
| |
Collapse
|
22
|
Li YT, Huang H, Zhuo Z, Lu PX, Chen W, Wáng YXJ. Bi-phase age-related brain gray matter magnetic resonance T1ρ relaxation time change in adults. Magn Reson Imaging 2017; 39:200-205. [DOI: 10.1016/j.mri.2017.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/02/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022]
|
23
|
Chen W. Artifacts correction for T1rho imaging with constant amplitude spin-lock. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 274:13-23. [PMID: 27842257 DOI: 10.1016/j.jmr.2016.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/16/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
T1rho imaging with constant amplitude spin-lock is prone to artifacts in the presence of B1 RF and B0 field inhomogeneity. Despite significant technological progress, improvements on the robustness of constant amplitude spin-lock are necessary in order to use it for routine clinical practice. This work proposes methods to simultaneously correct for B1 RF and B0 field inhomogeneity in constant amplitude spin-lock. By setting the maximum B1 amplitude of the excitation adiabatic pulses equal to the expected constant amplitude spin-lock frequency, the spins become aligned along the effective field throughout the spin-lock process. This results in T1rho-weighted images free of artifacts, despite the spatial variation of the effective field caused by B1 RF and B0 field inhomogeneity. When the pulse is long, the relaxation effect during the adiabatic half passage may result in a non-negligible error in the mono-exponential relaxation model. A two-acquisition approach is presented to solve this issue. Simulation, phantom, and in-vivo scans demonstrate the proposed methods achieve superior image quality compared to existing methods, and that the two-acquisition method is effective in resolving the relaxation effect during the adiabatic half passage.
Collapse
Affiliation(s)
- Weitian Chen
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region.
| |
Collapse
|
24
|
Koon CM, Zhang X, Chen W, Chu ESH, San Lau CB, Wáng YXJ. Black blood T1rho MR imaging may diagnose early stage liver fibrosis: a proof-of-principle study with rat biliary duct ligation model. Quant Imaging Med Surg 2016; 6:353-363. [PMID: 27709071 DOI: 10.21037/qims.2016.08.11] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND To explore black blood T1rho (T1ρ) liver imaging and investigate the earliest stage when biliary duct ligation (BDL) induced liver fibrosis can be diagnosed. METHODS MR was performed at 3 Tesla. A T1ρ prepared 2D fast spin echo (FSE) sequence with acquisition of four spin lock times (TSLs: 1, 10, 30, and 50 msec) and spin-lock frequency of 500 Hz was applied. Inherent black blood effect of FSE and double inversion recovery (DIR) achieved blood signal suppression, and 3 axial sections per liver were obtained. Male Sprague-Dawley rats were scanned at baseline (n=32), and on day-3 (n=13), day-5 (n=11), day-7 (n=10), day-10 (n=4) respectively after BDL. Hematoxylin-eosin (HE) and picrosirius red staining liver histology was obtained at these time points. RESULTS The physiological liver parenchyma T1ρ was 38.38±1.53 msec (range, 36.05-41.53 msec). Liver T1ρ value elevated progressively after BDL. On day-10 after BDL all experimental animals can be separated from normal liver based on T1ρ measurement with lowest value being 42.82 msec. Day-7 and day-10 liver resembled METAVIR stage-F1/F2 fibrosis, and fibrous area counted for 0.22%±0.13% and 0.38%±0.44% of liver parenchyma area, respectively. CONCLUSIONS This study provides the first proof-of-principle that T1ρ might diagnose early stage liver fibrosis.
Collapse
Affiliation(s)
- Chi-Man Koon
- Institute of Chinese Medicine, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China;; State Key Laboratory of Phytochemistry and Plant Resources in West China, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Xin Zhang
- Institute of Chinese Medicine, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China;; State Key Laboratory of Phytochemistry and Plant Resources in West China, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Eagle Siu Hong Chu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Clara Bik San Lau
- Institute of Chinese Medicine, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China;; State Key Laboratory of Phytochemistry and Plant Resources in West China, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yì-Xiáng J Wáng
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|