1
|
Huang J, Wang Z, Chen Z, Huang C, Wang Y, Li X, Lv W, Qi G, Liu H. Ultrasound-mediated multifunctional magnetic microbubbles for drug delivery of celastrol in VX2 liver transplant tumors. Drug Deliv Transl Res 2024; 14:555-570. [PMID: 37639148 DOI: 10.1007/s13346-023-01421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Celastrol (CST) has positive pharmacological effects on various cancers, but clinical application is limited because of poor water solubility and systemic toxicity. Ferric oxide (Fe3O4) has a large specific surface area and can be functionalized by inorganic modification to form complex magnetic drug delivery systems. Herein, Fe3O4 was surface-modified with citric acid and polyethylene glycol (PEG) (via) the Mitsunobu reaction and then covalently bound to CST. Finally, magnetic microbubbles (MMBs) containing perfluoropropane (C3F8) and Fe3O4-PEG2K-CST particles were constructed with poly(lactic-co-glycolic acid) (PLGA) as the shell membrane. In vitro studies showed that ultrasound-mediated MMBs exhibited improved inhibition of VX2 cell proliferation compared to inhibition achieved using MMBs without ultrasound mediation, blank MMBs, or free CST. In ultrasound mode, MMBs have favorable imaging properties. After the application of a high mechanical index, MMBs collapse through the cavitation effect, releasing their internal Fe3O4-PEG2K-CST. The CST is then delivered to the tumor microenvironment under acidic conditions. In magnetic resonance imaging T2 mode, a specific hypointense signal was observed in the tumor area compared with that before treatment, whereas no significant change occurred in the signal intensity of the surrounding organs. After treatment, pathological examination of tumor-bearing rabbit tissues showed that iron elements accumulated in several apoptosis cells in the tumor area, with no apparent abnormalities found in other areas. Thus, ultrasound-mediated MMBs could significantly improve the drug uptake of solid tumors and inhibit tumor growth with favorable biological safety.
Collapse
Affiliation(s)
- Jian Huang
- Qiqihar Medical University, Qiqihar, China
| | | | - Zihe Chen
- Qiqihar Medical University, Qiqihar, China
| | - Chunxin Huang
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Ying Wang
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xing Li
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Weiyang Lv
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | | | - Huilin Liu
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China.
| |
Collapse
|
2
|
Deepak P, Kumar P, Pandey P, Arya DK, Jaiswal S, Kumar A, Sonkar AB, Ali D, Alarifi S, Ramar M, Rajinikanth PS. Pentapeptide cRGDfK-Surface Engineered Nanostructured Lipid Carriers as an Efficient Tool for Targeted Delivery of Tyrosine Kinase Inhibitor for Battling Hepatocellular Carcinoma. Int J Nanomedicine 2023; 18:7021-7046. [PMID: 38046236 PMCID: PMC10693281 DOI: 10.2147/ijn.s438307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
Background Antitumor research aims to efficiently target hepatocarcinoma cells (HCC) for drug delivery. Nanostructured lipid carriers (NLCs) are promising for active tumour targeting. Cell-penetrating peptides are feasible ligands for targeted cancer treatment. Methods In this study, we optimized gefitinib-loaded NLCs (GF-NLC) for HCC treatment. The NLCs contained cholesterol, oleic acid, Pluronic F-68, and Phospholipon 90G. The NLC surface was functionalized to enhance targeting with the cRGDfK-pentapeptide, which binds to the αvβ3 integrin receptor overexpressed on hepatocarcinoma cells. Results GF-NLC formulation was thoroughly characterized for various parameters using differential scanning calorimetry and X-ray diffraction analysis. In-vitro and in-vivo studies on the HepG2 cell line showed cRGDfK@GF-NLC's superiority over GF-NLC and free gefitinib. cRGDfK@GF-NLC exhibited significantly higher cytotoxicity, growth inhibition, and cellular internalization. Biodistribution studies demonstrated enhanced tumour site accumulation without organ toxicity. The findings highlight cRGDfK@GF-NLC as a highly efficient carrier for targeted drug delivery, surpassing non-functionalized NLCs. These functionalized NLCs offer promising prospects for improving hepatocarcinoma therapy outcomes by specifically targeting HCC cells. Conclusion Based on these findings, cRGDfK@GF-NLC holds immense potential as a highly efficient carrier for targeted drug delivery of anticancer agents, surpassing the capabilities of non-functionalized NLCs. This research opens up new avenues for effective treatment strategies in hepatocarcinoma.
Collapse
Affiliation(s)
- Payal Deepak
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Praveen Kumar
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
- S.D College of Pharmacy and Vocational Studies, Muzaffarnagar, Uttar Pradesh, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Shweta Jaiswal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Archana Bharti Sonkar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohankumar Ramar
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Connecticut, Storrs, CT, 02903, USA
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Idris AH, Che Abdullah CA, Yusof NA, Asmawi AA, Abdul Rahman MB. Nanostructured Lipid Carrier Co-Loaded with Docetaxel and Magnetic Nanoparticles: Physicochemical Characterization and In Vitro Evaluation. Pharmaceutics 2023; 15:pharmaceutics15051319. [PMID: 37242561 DOI: 10.3390/pharmaceutics15051319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Lung cancer is currently the most prevalent cause of cancer mortality due to late diagnosis and lack of curative therapies. Docetaxel (Dtx) is clinically proven as effective, but poor aqueous solubility and non-selective cytotoxicity limit its therapeutic efficacy. In this work, a nanostructured lipid carrier (NLC) loaded with iron oxide nanoparticles (IONP) and Dtx (Dtx-MNLC) was developed as a potential theranostic agent for lung cancer treatment. The amount of IONP and Dtx loaded into the Dtx-MNLC was quantified using Inductively Coupled Plasma Optical Emission Spectroscopy and high-performance liquid chromatography. Dtx-MNLC was then subjected to an assessment of physicochemical characteristics, in vitro drug release, and cytotoxicity. Dtx loading percentage was determined at 3.98% w/w, and 0.36 mg/mL IONP was loaded into the Dtx-MNLC. The formulation showed a biphasic drug release in a simulated cancer cell microenvironment, where 40% of Dtx was released for the first 6 h, and 80% cumulative release was achieved after 48 h. Dtx-MNLC exhibited higher cytotoxicity to A549 cells than MRC5 in a dose-dependent manner. Furthermore, the toxicity of Dtx-MNLC to MRC5 was lower than the commercial formulation. In conclusion, Dtx-MNLC shows the efficacy to inhibit lung cancer cell growth, yet it reduced toxicity on healthy lung cells and is potentially capable as a theranostic agent for lung cancer treatment.
Collapse
Affiliation(s)
- Auni Hamimi Idris
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, Kuantan 26300, Pahang, Malaysia
| | - Che Azurahanim Che Abdullah
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor Azah Yusof
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Azren Aida Asmawi
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
4
|
Van NH, Vy NT, Van Toi V, Dao AH, Lee BJ. Nanostructured lipid carriers and their potential applications for versatile drug delivery via oral administration. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Mazumder A, Dwivedi A, Assawapanumat W, Saeeng R, Sungkarat W, Nasongkla N. In vitro galactose-targeted study of RSPP050-loaded micelles against liver hepatocellular carcinoma. Pharm Dev Technol 2022; 27:379-388. [PMID: 35388736 DOI: 10.1080/10837450.2022.2063891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Andrographolide is in a group of diterpenoid lactone isolated from Andrographis paniculata (Burm.f.) NEES. One of the analogs is 19-O-triphenylmethylandrographolide (RSPP050) which possesses anticancer activity. In seeking to capitalise on the last property, we have investigated the in vitro tumour targeting capabilities and MRI imaging for hepatocellular carcinoma. In this study, we have designed galactose-targeted and non-targeted micelles comprised of poly(ethylene glycol)-b-poly(lactide) that enveloped RSPP050 as an anticancer agent and superparamagnetic iron oxide (SPIO) as a contrast agent. The targeting abilities were endeavored by examining the cellular uptake with MTT assay, fluorescence microscopy, Prussian blue staining, and in vitro MRI. Targeted SPIO micelles as a T2* contrast agent decreased the relative T2* MRI intensity at 3 h. Results revealed that galactose micelles displayed 10.91 ± 0.19% drug loading content, -37.17 ± 0.63 mV zeta potential, and these micelles at the concentration of 0.5 µg/ml exhibited higher cytotoxicity than non-targeted micelles and free RSPP050 after incubation for 24 h. Fluorescence microscopy and Prussian blue staining at 3 h demonstrated significant cellular uptake by HepG2 cells. Thus, anticancer activity of RSPP050 could be improved using galactose as a targeting ligand and theranostic function was achieved using SPIO.
Collapse
Affiliation(s)
- Anisha Mazumder
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| | - Anupma Dwivedi
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| | - Wirat Assawapanumat
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| | - Rungnapha Saeeng
- Department of Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Witaya Sungkarat
- Department of Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Norased Nasongkla
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand.,Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Erratum to SPIO-loaded nanostructured lipid carriers as liver-targeted molecular T2-weighted MRI contrast agent. Quant Imaging Med Surg 2022; 12:1660-1662. [PMID: 35111659 DOI: 10.21037/qims-2021-05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 11/06/2022]
Abstract
[This corrects the article DOI: 10.21037/qims.2018.09.03.].
Collapse
|
7
|
Ong YS, Bañobre-López M, Costa Lima SA, Reis S. A multifunctional nanomedicine platform for co-delivery of methotrexate and mild hyperthermia towards breast cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111255. [PMID: 32806240 DOI: 10.1016/j.msec.2020.111255] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/07/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Methotrexate (MTX), an anti-neoplastic agent used for breast cancer treatment, has restricted clinical applications due to poor water solubility, non-specific targeting and adverse side effects. To overcome these limitations, MTX was co-encapsulated with an active-targeting platform known as superparamagnetic iron oxide nanoparticles (SPIONs) in a lipid-based homing system, nanostructured lipid carrier (NLC). This multi-modal therapeutic regime was successfully formulated with good colloidal stability, bio- and hemo-compatibility. MTX-SPIONs co-loaded NLC was time-dependent cytotoxic towards MDA-MB-231 breast cancer cell line with IC50 values of 137 μg/mL and 12 μg/mL at 48 and 72 h, respectively. The MTX-SPIONs co-loaded NLC was internalized in the MDA-MB-231 cells via caveolae-mediated endocytosis in a time-dependent manner, and the superparamagnetic properties were sufficient to induce, under a magnetic field, a localized temperature increase at cellular level resulting in apoptotic cell death. In conclusion, MTX-SPIONs co-loaded NLC is a potential magnetic guiding multi-modal therapeutic system for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yong Sze Ong
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Manuel Bañobre-López
- Advanced (magnetic) Theranostic Nanostructures Lab, Department of Life Sciences, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, Braga, Portugal
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
8
|
Synthesis and Investigation of the Curcumin-Loaded Magnetic Lipid Nanoparticles and Their Cytotoxicity Assessment on Human Breast Carcinoma Cell Line. Jundishapur J Nat Pharm Prod 2020. [DOI: 10.5812/jjnpp.91886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
9
|
Gauthier L, Varache M, Couffin AC, Lebrun C, Delangle P, Gateau C, Texier I. Quantification of Surface GalNAc Ligands Decorating Nanostructured Lipid Carriers by UPLC-ELSD. Int J Mol Sci 2019; 20:ijms20225669. [PMID: 31726778 PMCID: PMC6888163 DOI: 10.3390/ijms20225669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/16/2022] Open
Abstract
Nanoparticles have been extensively studied for drug delivery and targeting to specific organs. The functionalization of the nanoparticle surface by site-specific ligands (antibodies, peptides, saccharides) can ensure efficient recognition and binding with relevant biological targets. One of the main challenges in the development of these decorated nanocarriers is the accurate quantification of the amount of ligands on the nanoparticle surface. In this study, nanostructured lipid carriers (NLC) were functionalized with N-acetyl-D-galactosamine (GalNAc) units, known to target the asialoglycoprotein receptor (ASGPR). Different molar percentages of GalNAc-functionalized surfactant (0%, 2%, 5%, and 14%) were used in the formulation. Based on ultra-high-performance liquid chromatography separation and evaporative light-scattering detection (UPLC-ELSD), an analytical method was developed to specifically quantify the amount of GalNAc units present at the NLC surface. This method allowed the accurate quantification of GalNAc surfactant and therefore gave some insights into the structural parameters of these multivalent ligand systems. Our data show that the GalNAc decorated NLC possess large numbers of ligands at their surface and suitable distances between them for efficient multivalent interaction with the ASGPR, and therefore promising liver-targeting efficiency.
Collapse
Affiliation(s)
- Laura Gauthier
- Université Grenoble Alpes, CEA, LETI-DTBS, F-38000 Grenoble, France; (L.G.); (M.V.); (A.-C.C.)
- Université Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, F-38000 Grenoble, France; (C.L.); (P.D.)
| | - Mathieu Varache
- Université Grenoble Alpes, CEA, LETI-DTBS, F-38000 Grenoble, France; (L.G.); (M.V.); (A.-C.C.)
| | - Anne-Claude Couffin
- Université Grenoble Alpes, CEA, LETI-DTBS, F-38000 Grenoble, France; (L.G.); (M.V.); (A.-C.C.)
| | - Colette Lebrun
- Université Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, F-38000 Grenoble, France; (C.L.); (P.D.)
| | - Pascale Delangle
- Université Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, F-38000 Grenoble, France; (C.L.); (P.D.)
| | - Christelle Gateau
- Université Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, F-38000 Grenoble, France; (C.L.); (P.D.)
- Correspondence: (C.G.); (I.T.); Tel.: +33-438-786-041 (C.G.); +33-438-784-670 (I.T.)
| | - Isabelle Texier
- Université Grenoble Alpes, CEA, LETI-DTBS, F-38000 Grenoble, France; (L.G.); (M.V.); (A.-C.C.)
- Correspondence: (C.G.); (I.T.); Tel.: +33-438-786-041 (C.G.); +33-438-784-670 (I.T.)
| |
Collapse
|