1
|
Zhao J, Zheng M, Ma L, Guan T, Su L. From spear to trident: Upgrading arsenal of CAR-T cells in the treatment of multiple myeloma. Heliyon 2024; 10:e29997. [PMID: 38699030 PMCID: PMC11064441 DOI: 10.1016/j.heliyon.2024.e29997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Multiple myeloma (MM), marked by abnormal proliferation of plasma cells and production of monoclonal immunoglobulin heavy or light chains in the majority of patients, has traditionally been associated with poor survival, despite improvements achieved in median survival in all age groups since the introduction of novel agents. Survival has significantly improved with the development of new drugs and new treatment options, such as chimeric antigen receptor T-cell therapy (CAR-T), which have shown promise and given new hope in MM therapy. CARs are now classified as first-, second-, and third-generation CARs based on the number of monovalent to trivalent co-stimulatory molecules incorporated into their design. The scope of this review was relatively narrow because it was mainly about a comparison of the literature on the clinical application of CAR-T therapy in MM. Thus, our goal is to provide an overview of the new advances of CAR-T cells in the cure of MM, so in this review we looked at the progress of the clinical use of CAR-T cells in MM to try to provide a reference for their clinical use when managing MM.
Collapse
Affiliation(s)
| | | | - Li Ma
- Department of Hematology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, China
| | - Tao Guan
- Department of Hematology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, China
| | - Liping Su
- Department of Hematology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, China
| |
Collapse
|
2
|
Lodewijk I, Dueñas M, Paramio JM, Rubio C. CD44v6, STn & O-GD2: promising tumor associated antigens paving the way for new targeted cancer therapies. Front Immunol 2023; 14:1272681. [PMID: 37854601 PMCID: PMC10579806 DOI: 10.3389/fimmu.2023.1272681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Targeted therapies are the state of the art in oncology today, and every year new Tumor-associated antigens (TAAs) are developed for preclinical research and clinical trials, but few of them really change the therapeutic scenario. Difficulties, either to find antigens that are solely expressed in tumors or the generation of good binders to these antigens, represent a major bottleneck. Specialized cellular mechanisms, such as differential splicing and glycosylation processes, are a good source of neo-antigen expression. Changes in these processes generate surface proteins that, instead of showing decreased or increased antigen expression driven by enhanced mRNA processing, are aberrant in nature and therefore more specific targets to elicit a precise anti-tumor therapy. Here, we present promising TAAs demonstrated to be potential targets for cancer monitoring, targeted therapy and the generation of new immunotherapy tools, such as recombinant antibodies and chimeric antigen receptor (CAR) T cell (CAR-T) or Chimeric Antigen Receptor-Engineered Natural Killer (CAR-NK) for specific tumor killing, in a wide variety of tumor types. Specifically, this review is a detailed update on TAAs CD44v6, STn and O-GD2, describing their origin as well as their current and potential use as disease biomarker and therapeutic target in a diversity of tumor types.
Collapse
Affiliation(s)
- Iris Lodewijk
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Marta Dueñas
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Jesus M. Paramio
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Carolina Rubio
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| |
Collapse
|
3
|
Dagar G, Gupta A, Masoodi T, Nisar S, Merhi M, Hashem S, Chauhan R, Dagar M, Mirza S, Bagga P, Kumar R, Akil ASAS, Macha MA, Haris M, Uddin S, Singh M, Bhat AA. Harnessing the potential of CAR-T cell therapy: progress, challenges, and future directions in hematological and solid tumor treatments. J Transl Med 2023; 21:449. [PMID: 37420216 PMCID: PMC10327392 DOI: 10.1186/s12967-023-04292-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Traditional cancer treatments use nonspecific drugs and monoclonal antibodies to target tumor cells. Chimeric antigen receptor (CAR)-T cell therapy, however, leverages the immune system's T-cells to recognize and attack tumor cells. T-cells are isolated from patients and modified to target tumor-associated antigens. CAR-T therapy has achieved FDA approval for treating blood cancers like B-cell acute lymphoblastic leukemia, large B-cell lymphoma, and multiple myeloma by targeting CD-19 and B-cell maturation antigens. Bi-specific chimeric antigen receptors may contribute to mitigating tumor antigen escape, but their efficacy could be limited in cases where certain tumor cells do not express the targeted antigens. Despite success in blood cancers, CAR-T technology faces challenges in solid tumors, including lack of reliable tumor-associated antigens, hypoxic cores, immunosuppressive tumor environments, enhanced reactive oxygen species, and decreased T-cell infiltration. To overcome these challenges, current research aims to identify reliable tumor-associated antigens and develop cost-effective, tumor microenvironment-specific CAR-T cells. This review covers the evolution of CAR-T therapy against various tumors, including hematological and solid tumors, highlights challenges faced by CAR-T cell therapy, and suggests strategies to overcome these obstacles, such as utilizing single-cell RNA sequencing and artificial intelligence to optimize clinical-grade CAR-T cells.
Collapse
Affiliation(s)
- Gunjan Dagar
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Tariq Masoodi
- Laboratory of Cancer Immunology and Genetics, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, 3050, Doha, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Ravi Chauhan
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Manisha Dagar
- Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Sameer Mirza
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu and Kashmir, India
| | - Mohammad Haris
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
| |
Collapse
|
4
|
Yan X, Liu X, Zhao C, Chen GQ. Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduct Target Ther 2023; 8:199. [PMID: 37169742 PMCID: PMC10173249 DOI: 10.1038/s41392-023-01440-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Synthetic biology aims to design or assemble existing bioparts or bio-components for useful bioproperties. During the past decades, progresses have been made to build delicate biocircuits, standardized biological building blocks and to develop various genomic/metabolic engineering tools and approaches. Medical and pharmaceutical demands have also pushed the development of synthetic biology, including integration of heterologous pathways into designer cells to efficiently produce medical agents, enhanced yields of natural products in cell growth media to equal or higher than that of the extracts from plants or fungi, constructions of novel genetic circuits for tumor targeting, controllable releases of therapeutic agents in response to specific biomarkers to fight diseases such as diabetes and cancers. Besides, new strategies are developed to treat complex immune diseases, infectious diseases and metabolic disorders that are hard to cure via traditional approaches. In general, synthetic biology brings new capabilities to medical and pharmaceutical researches. This review summarizes the timeline of synthetic biology developments, the past and present of synthetic biology for microbial productions of pharmaceutics, engineered cells equipped with synthetic DNA circuits for diagnosis and therapies, live and auto-assemblied biomaterials for medical treatments, cell-free synthetic biology in medical and pharmaceutical fields, and DNA engineering approaches with potentials for biomedical applications.
Collapse
Affiliation(s)
- Xu Yan
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, 101309, Beijing, China
| | - Cuihuan Zhao
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
- MOE Key Lab for Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
5
|
Farooqui N, Sy-Go JPT, Miao J, Mehta R, Vaughan LE, Bennani NN, Wang Y, Bansal R, Hathcock MA, Hayman SR, Johnston PB, Villasboas JC, Paludo J, Ansell SM, Leung N, Lin Y, Herrmann SM. Incidence and Risk Factors for Acute Kidney Injury After Chimeric Antigen Receptor T-Cell Therapy. Mayo Clin Proc 2022; 97:1294-1304. [PMID: 35787856 PMCID: PMC9703303 DOI: 10.1016/j.mayocp.2022.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/17/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To evaluate the association of baseline and postinfusion patient characteristics with acute kidney injury (AKI) in the month after chimeric antigen receptor T-cell (CAR-T) therapy. METHODS We retrospectively reviewed records of 83 patients with non-Hodgkin lymphoma undergoing CAR-T therapy (axicabtagene ciloleucel) between June 2016 and November 2020. Patients were followed up to 1 month after treatment. Post-CAR-T AKI was defined as a more than 1.5-fold increase in serum creatinine concentration from baseline (on the day of CAR-T infusion) at any time up to 1 month after CAR-T therapy. RESULTS Of 83 patients, 14 (17%) developed AKI during follow-up. At 1 month after CAR-T infusion, 10 of 14 (71%) AKI events had resolved. Lower baseline estimated glomerular filtration rate, use of intravenous contrast material, tumor lysis prophylaxis, higher peak uric acid and creatine kinase levels during follow-up, and change in lactate dehydrogenase from baseline to peak level within 1 month after initiation of CAR-T therapy were significantly associated with AKI incidence during follow-up. Incidence of AKI was also higher in patients who received higher doses of corticosteroids and tocilizumab. CONCLUSION Acute kidney injury occurred in approximately 1 in 6 patients who received axicabtagene ciloleucel for non-Hodgkin lymphoma. Patients with high tumor burden receiving higher total doses of corticosteroids or tocilizumab should be closely monitored for development of AKI. Lower baseline kidney function at CAR-T initiation, exposure to contrast material, and progressive increase in levels of tumor lysis markers (uric acid, lactate dehydrogenase, creatine kinase) after CAR-T infusion may predict risk of AKI during the 1 month after infusion.
Collapse
Affiliation(s)
- Naba Farooqui
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | | | - Jing Miao
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Ramila Mehta
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Lisa E Vaughan
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | | | - Yucai Wang
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Radhika Bansal
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | | | | | | | | | - Jonas Paludo
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | - Nelson Leung
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Yi Lin
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN.
| |
Collapse
|
6
|
Hoda D, Richards R, Faber EA, Deol A, Hunter BD, Weber E, DiFilippo H, Henderson-Clark T, Meaux L, Crivera C, Riccobono C, Garrett A, Jackson CC, Fowler J, Theocharous P, Stewart R, Lorden AL, Porter DL, Berger A. Process, resource and success factors associated with chimeric antigen receptor T-cell therapy for multiple myeloma. Future Oncol 2022; 18:2415-2431. [PMID: 35583358 DOI: 10.2217/fon-2022-0162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Chimeric antigen receptor T-cell (CAR-T) therapy represents a new frontier in multiple myeloma. It is important to understand critical success factors (CSFs) that may optimize its use in this therapeutic area. Methods: We estimated the CAR-T process using time-driven activity-based costing. Information was obtained through interviews at four US oncology centers and with payer representatives, and through publicly available data. Results: The CAR-T process comprises 13 steps which take 177 days; it was estimated to include 46 professionals and ten care settings. CSFs included proactive collaboration, streamlined reimbursement and CAR-T administration in alternative settings when possible. Implementing CSFs may reduce episode time and costs by 14.4 and 13.2%, respectively. Conclusion: Our research provides a blueprint for improving efficiencies in CAR-T therapy, thereby increasing its sustainability for multiple myeloma.
Collapse
Affiliation(s)
- Daanish Hoda
- Intermountain Healthcare, Salt Lake City, UT, USA
| | - Robert Richards
- Cell Therapy & Transplant Program, Division of Hematology-Oncology & Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward A Faber
- Transplant & Cellular Therapy Program, Oncology/Hematology Care, USA.,Adult BMT & Cellular Therapy Program, University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH 45221, USA
| | - Abhinav Deol
- Karmanos Cancer Center, 4100 John R St, Detroit, MI 48201, USA
| | | | - Elizabeth Weber
- Cell Therapy & Transplant Program, Division of Hematology-Oncology & Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heather DiFilippo
- Cell Therapy & Transplant Program, Division of Hematology-Oncology & Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Linda Meaux
- Intermountain Healthcare, Salt Lake City, UT, USA
| | - Concetta Crivera
- Janssen Scientific Affairs, LLC, 1125 Trenton-Harbourton Road, Titusville, NJ 08560, USA
| | - Carrie Riccobono
- US Medical Affairs, Legend Biotech, 2101 Cottontail Lane Somerset, NJ 08873, USA
| | - Ashraf Garrett
- US Medical Affairs, Legend Biotech, 2101 Cottontail Lane Somerset, NJ 08873, USA
| | - Carolyn C Jackson
- Janssen Pharmaceutical Research & Development, 1125 Trenton-Harbourton Road, Titusville, NJ 08560, USA
| | - Jessica Fowler
- Janssen Scientific Affairs, LLC, 1125 Trenton-Harbourton Road, Titusville, NJ 08560, USA
| | | | - Raj Stewart
- Evidera
- PPD, 7101 Wisconsin AvenueSuite 1400Bethesda, MD 20814, USA
| | - Andrea L Lorden
- Evidera
- PPD, 7101 Wisconsin AvenueSuite 1400Bethesda, MD 20814, USA
| | - David L Porter
- Cell Therapy & Transplant Program, Division of Hematology-Oncology & Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ariel Berger
- Evidera
- PPD, 7101 Wisconsin AvenueSuite 1400Bethesda, MD 20814, USA
| |
Collapse
|
7
|
Zhang C, Fang L, Wang X, Yuan S, Li W, Tian W, Chen J, Zhang Q, Zhang Y, Zhang Q, Zheng J. Oncolytic adenovirus-mediated expression of decorin facilitates CAIX-targeting CAR-T therapy against renal cell carcinoma. Mol Ther Oncolytics 2022; 24:14-25. [PMID: 34977339 PMCID: PMC8688951 DOI: 10.1016/j.omto.2021.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022] Open
Abstract
Although chimeric antigen receptor T cell (CAR-T) therapy has been successful for hematological malignancies, it is less effective for solid tumors. The primary reason is that the immune microenvironment restricts CAR-T cells from infiltrating and proliferating in tumors. Oncolytic virotherapy has emerged as a novel immunogenic therapy to augment antitumor immune response. Here we combined an oncolytic adenovirus carrying decorin with a CAR-T targeting carbonic anhydrase IX (CAIX) to perform the antitumor activity for renal cancer cells. We found that OAV-Decorin combined with CAIX-CAR-T exhibited significantly reduced tumor burden, altered the composition of extracellular matrix (ECM) by inhibiting the distribution of collagen fibers, decreased the expression of TGF-β in tumor cells, enhanced IFN-γ secretion, and obtained higher numbers of CAR-T cells. The combination treatment modality showed prolonged mice survival. The intratumoral injection of OAV-Decorin into tumor-bearing immunocompetent mice activated the inflammatory immune status and resulted in tumor regression. These data supported further investigation of the combination of OAV-Decorin and CAIX-CAR-T cells in solid tumors.
Collapse
Affiliation(s)
- Chen Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Cancer Institute, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China.,Department of Oncology, The First People's Hospital of Yancheng, Yancheng 224001 Jiangsu, China
| | - Lin Fang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Cancer Institute, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xueyan Wang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Cancer Institute, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China
| | - Sen Yuan
- Jiangsu Key Laboratory of Biological Cancer Therapy, Cancer Institute, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China
| | - Wanjing Li
- Jiangsu Key Laboratory of Biological Cancer Therapy, Cancer Institute, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China
| | - Weiping Tian
- Jiangsu Key Laboratory of Biological Cancer Therapy, Cancer Institute, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China
| | - Jing Chen
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Qi Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Cancer Institute, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China
| | - Yuxin Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Cancer Institute, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China
| | - Qing Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Cancer Institute, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Junnian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Cancer Institute, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
8
|
Gu T, Hu K, Si X, Hu Y, Huang H. Mechanisms of immune effector cell-associated neurotoxicity syndrome after CAR-T treatment. WIREs Mech Dis 2022; 14:e1576. [PMID: 35871757 PMCID: PMC9787013 DOI: 10.1002/wsbm.1576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/05/2022] [Accepted: 06/22/2022] [Indexed: 12/30/2022]
Abstract
Chimeric antigen receptor T-cell (CAR-T) treatment has revolutionized the landscape of cancer therapy with significant efficacy on hematologic malignancy, especially in relapsed and refractory B cell malignancies. However, unexpected serious toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) still hamper its broad application. Clinical trials using CAR-T cells targeting specific antigens on tumor cell surface have provided valuable information about the characteristics of ICANS. With unclear mechanism of ICANS after CAR-T treatment, unremitting efforts have been devoted to further exploration. Clinical findings from patients with ICANS strongly indicated existence of overactivated peripheral immune response followed by endothelial activation-induced blood-brain barrier (BBB) dysfunction, which triggers subsequent central nervous system (CNS) inflammation and neurotoxicity. Several animal models have been built but failed to fully replicate the whole spectrum of ICANS in human. Hopefully, novel and powerful technologies like single-cell analysis may help decipher the precise cellular response within CNS from a different perspective when ICANS happens. Moreover, multidisciplinary cooperation among the subjects of immunology, hematology, and neurology will facilitate better understanding about the complex immune interaction between the peripheral, protective barriers, and CNS in ICANS. This review elaborates recent findings about ICANS after CAR-T treatment from bed to bench, and discusses the potential cellular and molecular mechanisms that may promote effective management in the future. This article is categorized under: Cancer > Biomedical Engineering Immune System Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Tianning Gu
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Kejia Hu
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Xiaohui Si
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Yongxian Hu
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - He Huang
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| |
Collapse
|
9
|
Editorial on Special Issue “Immunotherapy, Tumor Microenvironment and Survival Signaling”. Cancers (Basel) 2021; 14:cancers14010091. [PMID: 35008254 PMCID: PMC8750357 DOI: 10.3390/cancers14010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, novel types of immunotherapies such as CAR-T cell therapy demonstrated efficacy in leukemia, lymphoma, and multiple myeloma [...]
Collapse
|
10
|
Ma T, Shi J, Xiao Y, Bian T, Wang J, Hui L, Wang M, Liu H. Study on the Relationship Between the Expression of B Cell Mature Antigen and the Classification, Stage, and Prognostic Factors of Multiple Myeloma. Front Immunol 2021; 12:724411. [PMID: 34867949 PMCID: PMC8637449 DOI: 10.3389/fimmu.2021.724411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/19/2021] [Indexed: 01/12/2023] Open
Abstract
The expression level of BCMA in bone marrow of 54 MM patients was detected in this study to explore the relationship between the BCMA expression and the classification, stage, and prognostic factors of MM. The BCMA expression level of the stable group and remission group was lower than that of the newly diagnosed group and relapse group (P=0.001). There was no significant difference in BCMA expression of MM patients in different types and stages (P>0.05), but it was found that for the newly diagnosed MM patients, the BCMA expression level of IgG patients was higher than that of IgA or light-chain patients (rank average 11.20 vs 5.44, P=0.014). There was no significant correlation between the BCMA expression and the age and serum creatinine of MM patients (P>0.05). And there was no significant difference in BCMA expression between patients with different levels of age and serum creatinine (P>0.05). But it was found that the BCMA expression level of the newly diagnosed MM patients was moderately positively correlated with their age (P=0.025, r=0.595). There was no significant correlation between the BCMA expression and serum β2-microglobulin, serum lactate dehydrogenase, free kap/lam ratio, and urine β2-microglobulin (P>0.05). But we found that the BCMA expression of patients with high serum β2-microglobulin was higher than that of patients with low serum β2-microglobulin (rank average 28.89 vs 17.54, P=0.017). And the BCMA expression of patients with abnormal serum free kap/lam ratio was higher than that of patients with normal ratio (rank average 28.49 vs 13.55, P=0.004). The BCMA expression was strongly positively correlated with 24-h urine protein, was moderately positively correlated with serum M protein and the percentage of plasma cells in bone marrow, was moderately negatively correlated with albumin and hemoglobin count, and was weakly positively correlated with serum corrected calcium (P<0.05). And it was found that the BCMA expression of positive serum immunofixation electrophoresis patients was higher than that of negative patients (rank average 29.94 vs 16.75, P=0.017). And we try to clarify the relationship between the bone marrow BCMA expression and the peripheral blood sBCMA expression. However, we have not found a clear correlation between them so far (P>0.05).
Collapse
Affiliation(s)
- Tiantian Ma
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hematology, Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, China
| | - Jing Shi
- Department of Respiratory and Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuxia Xiao
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tianyue Bian
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jincheng Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lingyun Hui
- Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengchang Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huasheng Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Biobank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Anderson LD. Idecabtagene vicleucel (ide-cel) CAR T-cell therapy for relapsed and refractory multiple myeloma. Future Oncol 2021; 18:277-289. [PMID: 34854741 DOI: 10.2217/fon-2021-1090] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Idecabtagene vicleucel (ide-cel), a novel chimeric antigen receptor (CAR) T-cell therapy targeting B-cell maturation antigen (BCMA), has recently gained approval by the US FDA for relapsed and refractory multiple myeloma (RRMM) after multicenter trials have demonstrated unprecedented results in this difficult-to-treat subgroup of patients. As the first CAR T-cell product approved for myeloma, ide-cel is poised to become a practice-changing treatment option. This first-in-class therapeutic offers hope for more durable remissions, as well as better quality of life, following a single infusion in a group of patients that previously had little hope. This paper reviews the ide-cel product in terms of design, pharmacology, efficacy and toxicity as described in studies reported to date.
Collapse
Affiliation(s)
- Larry D Anderson
- Myeloma, Waldenstrom's & Amyloidosis Program, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390-8565, USA
| |
Collapse
|
12
|
Xiao BF, Zhang JT, Zhu YG, Cui XR, Lu ZM, Yu BT, Wu N. Chimeric Antigen Receptor T-Cell Therapy in Lung Cancer: Potential and Challenges. Front Immunol 2021; 12:782775. [PMID: 34790207 PMCID: PMC8591168 DOI: 10.3389/fimmu.2021.782775] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has exhibited a substantial clinical response in hematological malignancies, including B-cell leukemia, lymphoma, and multiple myeloma. Therefore, the feasibility of using CAR-T cells to treat solid tumors is actively evaluated. Currently, multiple basic research projects and clinical trials are being conducted to treat lung cancer with CAR-T cell therapy. Although numerous advances in CAR-T cell therapy have been made in hematological tumors, the technology still entails considerable challenges in treating lung cancer, such as on−target, of−tumor toxicity, paucity of tumor-specific antigen targets, T cell exhaustion in the tumor microenvironment, and low infiltration level of immune cells into solid tumor niches, which are even more complicated than their application in hematological tumors. Thus, progress in the scientific understanding of tumor immunology and improvements in the manufacture of cell products are advancing the clinical translation of these important cellular immunotherapies. This review focused on the latest research progress of CAR-T cell therapy in lung cancer treatment and for the first time, demonstrated the underlying challenges and future engineering strategies for the clinical application of CAR-T cell therapy against lung cancer.
Collapse
Affiliation(s)
- Bu-Fan Xiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jing-Tao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu-Ge Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xin-Run Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhe-Ming Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ben-Tong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
13
|
Li X, Feng Y, Shang F, Yu Z, Wang T, Zhang J, Song Z, Wang P, Shi B, Wang J. Characterization of the Therapeutic Effects of Novel Chimeric Antigen Receptor T Cells Targeting CD38 on Multiple Myeloma. Front Oncol 2021; 11:703087. [PMID: 34513682 PMCID: PMC8427526 DOI: 10.3389/fonc.2021.703087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/03/2021] [Indexed: 01/01/2023] Open
Abstract
Multiple myeloma (MM) is a tumor type characterized by the unregulated proliferation of clonal plasma cells in the bone marrow. Immunotherapy based on chimeric antigen receptor T cell (CAR-T) therapy has achieved exciting success in the treatment of hematological malignant tumors. CD38 is highly and evenly expressed in MM and is an attractive target for MM treatment. Here, we successfully constructed two novel second-generation CAR-T cells targeting CD38 by retroviral vector transduction. CD38 CAR-T cells could be activated effectively after stimulation with CD38-positive tumor cells and secrete cytokines such as IFN-γ and TNF-α to promote tumor cell apoptosis in in vitro experiments. Real-time fluorescence monitoring experiments, luciferase detection experiments and flow cytometry experiments revealed the efficient and specific killing abilities of CD38 CAR-T cells against CD38-positive tumor cells. The proliferation ability of CD38 CAR-T cells in vitro was higher than that of untransduced T cells. Further antitumor experiments in vivo showed that CD38 CAR-T cells could be quickly activated to secrete IFN-γ and eliminate tumors. Thus, novel CD38-targeted second-generation CAR-T cells have efficient and specific antitumor activity and may become a novel therapy for the clinical treatment of MM.
Collapse
Affiliation(s)
- Xiaorui Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yaru Feng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Fengqin Shang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuoying Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tieshan Wang
- Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiru Song
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bingjie Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jianxun Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.,Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
14
|
Chimeric Antigen Receptor-Engineered Natural Killer (CAR NK) Cells in Cancer Treatment; Recent Advances and Future Prospects. Stem Cell Rev Rep 2021; 17:2081-2106. [PMID: 34472037 PMCID: PMC8410173 DOI: 10.1007/s12015-021-10246-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 12/28/2022]
Abstract
Natural Killer (NK) cells are critical members of the innate immunity lymphocytes and have a critical role in host defense against malignant cells. Adoptive cell therapy (ACT) using chimeric antigen receptor (CAR) redirects the specificity of the immune cell against a target-specific antigen. ACT has recently created an outstanding opportunity for cancer treatment. Unlike CAR-armored T cells which hadnsome shortcomings as the CAR-receiving construct, Major histocompatibility complex (MHC)-independency, shorter lifespan, the potential to produce an off-the-shelf immune product, and potent anti-tumor properties of the NK cells has introduced NK cells as a potent alternative target for expression of CAR. Here, we aim to provide an updated overview on the current improvements in CAR NK design and immunobiology and describe the potential of CAR-modified NK cells as an alternative “off-the-shelf” carrier of CAR. We also provide lists for the sources of NK cells in the process of CAR NK cell production, different methods for transduction of the CAR genetic sequence to NK cells, the differences between CAR T and CAR NK, and CAR NK-targeted tumor antigens in current studies. Additionally, we provide data on recently published preclinical and clinical studies of CAR NK therapy and a list of finished and ongoing clinical trials. For achieving CAR NK products with higher efficacy and safety, we discuss current challenges in transduction and expansion of CAR NK cells, CAR NK therapy side effects, and challenges that limit the optimal efficacy of CAR NK cells and recommend possible solutions to enhance the persistence, function, safety, and efficacy of CAR NK cells with a special focus on solid tumors.
Collapse
|
15
|
Luan C, Zhou J, Wang H, Ma X, Long Z, Cheng X, Chen X, Huang Z, Zhang D, Xia R, Ge J. Case Report: Local Cytokine Release Syndrome in an Acute Lymphoblastic Leukemia Patient After Treatment With Chimeric Antigen Receptor T-Cell Therapy: A Possible Model, Literature Review and Perspective. Front Immunol 2021; 12:707191. [PMID: 34349766 PMCID: PMC8326907 DOI: 10.3389/fimmu.2021.707191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has achieved remarkable clinical efficacy in treatment of many malignancies especially for B-cell hematologic malignancies. However, the application of CAR-T cells is hampered by potentially adverse events, of which cytokine release syndrome (CRS) is one of the severest and the most studied. Local cytokine-release syndrome (L-CRS) at particular parts of the body has been reported once in a while in B-cell lymphoma or other compartmental tumors. The underlying mechanism of L-CRS is not well understood and the existing reports attempting to illustrate it only involve compartmental tumors, some of which even indicated L-CRS only happens in compartmental tumors. Acute lymphoblastic leukemia (ALL) is systemic and our center treated a B-cell ALL patient who exhibited life threatening dyspnea, L-CRS was under suspicion and the patient was successfully rescued with treatment algorithm of CRS. The case is the firstly reported L-CRS related to systemic malignancies and we tentatively propose a model to illustrate the occurrence and development of L-CRS of systemic malignancies inspired by the case and literature, with emphasis on the new recognition of L-CRS.
Collapse
Affiliation(s)
- Chengxin Luan
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junjie Zhou
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haixia Wang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoyu Ma
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhangbiao Long
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin Cheng
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaowen Chen
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenqi Huang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dagan Zhang
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ruixiang Xia
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian Ge
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Alhallak K, Sun J, Jeske A, Park C, Yavner J, Bash H, Lubben B, Adebayo O, Khaskiah A, Azab AK. Bispecific T Cell Engagers for the Treatment of Multiple Myeloma: Achievements and Challenges. Cancers (Basel) 2021; 13:2853. [PMID: 34201007 PMCID: PMC8228067 DOI: 10.3390/cancers13122853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022] Open
Abstract
MM is the second most common hematological malignancy and represents approximately 20% of deaths from hematopoietic cancers. The advent of novel agents has changed the therapeutic landscape of MM treatment; however, MM remains incurable. T cell-based immunotherapy such as BTCEs is a promising modality for the treatment of MM. This review article discusses the advancements and future directions of BTCE treatments for MM.
Collapse
Affiliation(s)
- Kinan Alhallak
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (K.A.); (J.S.); (A.J.); (C.P.); (J.Y.); (H.B.); (B.L.); (O.A.)
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, MO 63130, USA
| | - Jennifer Sun
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (K.A.); (J.S.); (A.J.); (C.P.); (J.Y.); (H.B.); (B.L.); (O.A.)
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, MO 63130, USA
| | - Amanda Jeske
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (K.A.); (J.S.); (A.J.); (C.P.); (J.Y.); (H.B.); (B.L.); (O.A.)
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, MO 63130, USA
| | - Chaelee Park
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (K.A.); (J.S.); (A.J.); (C.P.); (J.Y.); (H.B.); (B.L.); (O.A.)
| | - Jessica Yavner
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (K.A.); (J.S.); (A.J.); (C.P.); (J.Y.); (H.B.); (B.L.); (O.A.)
| | - Hannah Bash
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (K.A.); (J.S.); (A.J.); (C.P.); (J.Y.); (H.B.); (B.L.); (O.A.)
| | - Berit Lubben
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (K.A.); (J.S.); (A.J.); (C.P.); (J.Y.); (H.B.); (B.L.); (O.A.)
| | - Ola Adebayo
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (K.A.); (J.S.); (A.J.); (C.P.); (J.Y.); (H.B.); (B.L.); (O.A.)
| | - Ayah Khaskiah
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit 627, West Bank, Palestine;
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (K.A.); (J.S.); (A.J.); (C.P.); (J.Y.); (H.B.); (B.L.); (O.A.)
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, MO 63130, USA
| |
Collapse
|
17
|
Affiliation(s)
- Kamal Kant Sahu
- Department of Internal Medicine, Saint Vincent Hospital, Worcester, Massachusetts, USA
| |
Collapse
|