1
|
Antar RM, Fawaz C, Gonzalez D, Xu VE, Drouaud AP, Krastein J, Pio F, Murdock A, Youssef K, Sobol S, Whalen MJ. The Evolving Molecular Landscape and Actionable Alterations in Urologic Cancers. Curr Oncol 2024; 31:6909-6937. [PMID: 39590142 PMCID: PMC11593205 DOI: 10.3390/curroncol31110511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
The genetic landscape of urologic cancers has evolved with the identification of actionable mutations that impact diagnosis, prognosis, and therapeutic strategies. This narrative review consolidates existing literature on genetic mutations across key urologic cancers, including bladder, renal, prostate, upper tract urothelial, testicular, and penile. The review highlights mutations in DNA damage repair genes, such as BRCA1/2 and PTEN, as well as pathway alterations like FGFR and PD-L1 overexpression. These mutations influence tumor behavior and therapeutic outcomes, emphasizing the need for precision oncology approaches. Molecular profiling, through tools like next-generation sequencing, has revolutionized patient care by enabling targeted treatment strategies, especially in cancers with distinct molecular subtypes such as luminal or basal bladder cancer and clear cell renal carcinoma. Emerging therapies, including FGFR inhibitors and immune checkpoint blockade, offer new treatment avenues, although resistance mechanisms remain a challenge. We also emphasize the importance of biomarker identification for personalized management, especially in metastatic settings where treatment intensification is often required. Future research is needed to further elucidate our understanding of the genetics affecting urologic cancers, which will help develop novel, individualized therapies to enhance oncologic outcomes.
Collapse
Affiliation(s)
- Ryan Michael Antar
- Department of Urology, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA (M.J.W.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Spinos T, Zografos E, Koutsoukos K, Zagouri F, Kosmas C, Driva TS, Goutas D, Gakiopoulou C, Agrogiannis G, Theochari E, Tzavara C, Lazaris AC. Predictive tissue markers in testicular germ cell tumors: Immunohistochemical expression of MLH1 and REV-7 proteins. Int Urol Nephrol 2024; 56:1887-1898. [PMID: 38285100 PMCID: PMC11090952 DOI: 10.1007/s11255-023-03933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE Testicular Germ Cell Tumors (TGCTs) are the most frequent solid malignancies in young adult men. Regardless of differences in their cell of origin, all TGCTs are considered highly curable malignancies. However, approximately 3-5% of all TGCTs do not respond to platinum-based chemotherapies. The purpose of our paper is to investigate whether immunohistochemical expression of MLH1 and REV-7 can be used as predictive tissue markers for TGCTs. MATERIAL AND METHODS The main demographic and clinicopathological characteristics of 64 male patients with TGCTs who underwent orchiectomy from 2007 to 2022 were retrospectively obtained from two large Oncology Clinics in Greece. Both patients with chemosensitive and chemoresistant disease were included. Immunohistochemical staining for MLH1 and REV-7 proteins was applied in specimens of these patients. RESULTS 31 seminomas and 33 non-seminomas were included. 48 patients had chemosensitive disease, while 16 had chemoresistant disease. 53 specimens showed preserved MLH1 expression, while 11 specimens had lost MLH1 expression. Expression of MLH1 was only significantly associated with patients' age. 16 specimens showed positive REV-7 expression, while 48 specimens were REV-7 negative. Interestingly, 50% of patients with chemoresistant disease and 16,7% of patients with chemosensitive disease were REV-7 positive. This difference was statistically significant. Moreover, REV-7 positivity was significantly associated with chemoresistance, various clinicopathological parameters and patients' prognosis and survival. CONCLUSION Loss of MLH1 expression was only found to be significantly associated with lower patients' age. Positive immunohistochemical REV-7 expression was significantly associated with various clinicopathological parameters, while it was also associated with significantly lower survival and greater hazard. REV-7 positive percentages were significantly higher in patients with chemoresistant disease. Our findings imply that immunohistochemical staining for REV-7 could potentially be used as a predictive tissue marker for TGCT tumors. Moreover, targeting of REV-7 protein, could represent a potential therapeutic strategy for chemoresistant TGCT cases. The implementation of well-designed studies on a larger scale is of utmost importance, in order to draw safer conclusions. Additional studies are needed so as to draw safer conclusions.
Collapse
Affiliation(s)
- Theodoros Spinos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 115 27, Goudi, Athens, Greece.
| | - Eleni Zografos
- Oncology Unit, Department of Clinical Therapeutics, National and Apodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - Konstantinos Koutsoukos
- Oncology Unit, Department of Clinical Therapeutics, National and Apodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - Flora Zagouri
- Oncology Unit, Department of Clinical Therapeutics, National and Apodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - Christos Kosmas
- Department of Medical Oncology, Hematopoietic Cell Transplant Unit, Metaxa Memorial Cancer Hospital, Piraeus, Greece
| | - Tatiana S Driva
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 115 27, Goudi, Athens, Greece
| | - Dimitrios Goutas
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 115 27, Goudi, Athens, Greece
| | - Charikleia Gakiopoulou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 115 27, Goudi, Athens, Greece
| | - George Agrogiannis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 115 27, Goudi, Athens, Greece
| | - Eirini Theochari
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 115 27, Goudi, Athens, Greece
| | - Chara Tzavara
- Department of Biostatistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas C Lazaris
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 115 27, Goudi, Athens, Greece
| |
Collapse
|
3
|
Strakova-Peterikova A, Slisarenko M, Skopal J, Pivovarcikova K, Pitra T, Farcas M, Michal M, Michal M, Michalova K. Familial syndromes associated with testicular and paratesticular neoplasms: a comprehensive review. Virchows Arch 2024; 484:723-731. [PMID: 38619599 DOI: 10.1007/s00428-024-03803-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
A syndromic association between a subset of testicular/paratesticular neoplasms is well established. Such examples include Carney complex and large cell calcifying Sertoli cell tumor, Peutz-Jeghers syndrome and intratubular large cell hyalinizing Sertoli cell neoplasia, and VHL syndrome and clear cell papillary cystadenoma of the epididymis.However, recent studies proposed potential novel links between some testicular and paratesticular neoplasms with certain tumor syndromes. While more studies are still needed to solidify these associations, recent research suggests that a subset of Leydig cell tumors may arise in patients with hereditary leiomyomatosis and renal cell carcinoma syndrome or that some seminomas may occur in Lynch syndrome patients. Additionally, an association between testicular sex cord stromal tumors and paratesticular sarcomas with Familial adenomatous polyposis syndrome and DICER1 syndrome, respectively, has been proposed as well. This review provides a comprehensive overview of the intricate relationship between familial syndromes and associated testicular and paratesticular tumors, shedding light on their clinicopathological and molecular characteristics.
Collapse
Affiliation(s)
- Andrea Strakova-Peterikova
- Department of Pathology, Faculty of Medicine in Plzeň, Charles University, Czech Republic, Bioptical Laboratory, Ltd, Plzeň, Czech Republic
| | - Maryna Slisarenko
- Department of Pathology, Faculty of Medicine in Plzeň, Charles University, Czech Republic, Bioptical Laboratory, Ltd, Plzeň, Czech Republic
- Medical Laboratory CSD, Ltd, Kiev, Ukraine
| | - Josef Skopal
- Department of Pathology, Faculty of Medicine in Plzeň, Charles University, Czech Republic, Bioptical Laboratory, Ltd, Plzeň, Czech Republic
| | - Kristyna Pivovarcikova
- Department of Pathology, Faculty of Medicine in Plzeň, Charles University, Czech Republic, Bioptical Laboratory, Ltd, Plzeň, Czech Republic
| | - Tomas Pitra
- Department of Urology, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| | - Mihaela Farcas
- Department of Pathology, Faculty of Medicine in Plzeň, Charles University, Czech Republic, Bioptical Laboratory, Ltd, Plzeň, Czech Republic
- Onco Team Diagnostic, Bucharest, Romania
| | - Michael Michal
- Department of Pathology, Faculty of Medicine in Plzeň, Charles University, Czech Republic, Bioptical Laboratory, Ltd, Plzeň, Czech Republic
| | - Michal Michal
- Department of Pathology, Faculty of Medicine in Plzeň, Charles University, Czech Republic, Bioptical Laboratory, Ltd, Plzeň, Czech Republic
| | - Kvetoslava Michalova
- Department of Pathology, Faculty of Medicine in Plzeň, Charles University, Czech Republic, Bioptical Laboratory, Ltd, Plzeň, Czech Republic.
| |
Collapse
|
4
|
Ykema BLM, Breekveldt ECH, Carvalho B, van Wezel T, Meijer GA, Kerst M, Schaapveld M, van Leeuwen FE, Snaebjornsson P, van Leerdam ME. Somatic hits in mismatch repair genes in colorectal cancer among non-seminoma testicular cancer survivors. Br J Cancer 2022; 127:1991-1996. [PMID: 36088508 PMCID: PMC9681876 DOI: 10.1038/s41416-022-01972-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/04/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Non-seminoma testicular cancer survivors (TCS) have an increased risk of developing colorectal cancer (CRC) when they have been treated with platinum-based chemotherapy. Previously we demonstrated that among Hodgkin lymphoma survivors (HLS) there is enrichment of rare mismatch repair (MMR) deficient (MMRd) CRCs with somatic hits in MMR genes. We speculate that this phenomenon could also occur among other cancer survivors. We therefore aim to determine the MMR status and its underlying mechanism in CRC among TCS (TCS-CRC). METHODS Thirty TCS-CRC, identified through the Dutch pathology registry, were analysed for MMR proteins by immunohistochemistry. Next-generation sequencing was performed in MMRd CRCs without MLH1 promoter hypermethylation (n = 4). Data were compared with a male cohort with primary CRC (P-CRC, n = 629). RESULTS MMRd was found in 17% of TCS-CRCs vs. 9% in P-CRC (p = 0.13). MMRd was more often caused by somatic double or single hit in MMR genes by mutation or loss of heterozygosity in TCS-CRCs (3/30 (10%) vs. 11/629 (2%) in P-CRCs (p < 0.01)). CONCLUSIONS MMRd CRCs with somatic double or single hit are more frequent in this small cohort of TCS compared with P-CRC. Exposure to anticancer treatments appears to be associated with the development of these rare MMRd CRC among cancer survivors.
Collapse
Affiliation(s)
- Berbel L M Ykema
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Emilie C H Breekveldt
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Beatriz Carvalho
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gerrit A Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Martijn Kerst
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Michael Schaapveld
- Department of Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Flora E van Leeuwen
- Department of Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Petur Snaebjornsson
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Monique E van Leerdam
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
5
|
Steurer S, Schneider J, Büscheck F, Luebke AM, Kluth M, Hube-Magg C, Hinsch A, Höflmayer D, Weidemann S, Fraune C, Möller K, Menz A, Bernreuther C, Lebok P, Sauter G, Simon R, Jacobsen F, Uhlig R, Wilczak W, Minner S, Burandt E, Krech RH, Dum D, Krech T, Marx AH, Clauditz TS. Immunohistochemically detectable thyroglobulin expression in extrathyroidal cancer is 100% specific for thyroidal tumor origin. Ann Diagn Pathol 2021; 54:151793. [PMID: 34425503 DOI: 10.1016/j.anndiagpath.2021.151793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 11/28/2022]
Abstract
Thyroglobulin is a secreted 660 kDa glycoprotein produced by thyroid follicular cells used in diagnostic pathology to secure or exclude a thyroidal origin of metastases of unknown primary tumors. This study was performed to estimate specificity of thyroglobulin immunohistochemistry. 9974 tumor samples from 109 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry in a tissue microarray format. Thyroglobulin was strongly expressed in all normal thyroid samples but not in any other normal tissues. Thyroglobulin immunostaining was detected in 99.1% of 106 thyroid adenomas, 98.1% of 364 papillary, 95.2% of 147 follicular, and 7.5% of 40 anaplastic thyroid cancers. Twelve of 15 thyroid samples that were thyroglobulin negative on TMAs showed at least a weak focal thyroglobulin positivity in corresponding large sections, suggesting higher sensitivity of large section analysis. Thyroglobulin positivity in one diffuse large B-cell lymphoma of the thyroid, one chondrosarcoma metastasis to the thyroid, and 42.4% of 92 medullary thyroid cancers was considered to be caused by diffusion of thyroidal colloid from destroyed or even intact adjacent follicles. Thyroglobulin positivity was, however, not seen in 6403 extrathyroidal tumors from 104 different tumor types and subtypes. Our data demonstrate a complete specificity of positive thyroglobulin immunostaining for thyroid origin in tumor tissues obtained from extrathyroidal locations. However, for all tumors located within the thyroid, false positivity can occur as a result of tissue contamination by thyroglobulin rich thyroid colloid from adjacent normal tissue.
Collapse
Affiliation(s)
- Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Schneider
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer H Krech
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|