1
|
Song G, Zhao F, Ni R, Deng B, Chen S, Hu R, Zheng J, Peng Y, Liu H, Luo Y, Zhou Z, Huang G, Shen W. Epithelial cells derived exosomal miR-203a-3p facilitates stromal inflammation of type IIIA chronic prostatitis/chronic pelvic pain syndrome by targeting DUSP5 and increasing MCP-1 generation. J Nanobiotechnology 2024; 22:236. [PMID: 38724995 PMCID: PMC11084011 DOI: 10.1186/s12951-024-02513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Increased proinflammatory cytokines and infiltration of inflammatory cells in the stroma are important pathological features of type IIIA chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS-A), and the interaction between stromal cells and other cells in the inflammatory microenvironment is closely related to the inflammatory process of CP/CPPS-A. However, the interaction between stromal and epithelial cells remains unclear. In this study, inflammatory prostate epithelial cells (PECs) released miR-203a-3p-rich exosomes and facilitated prostate stromal cells (PSCs) inflammation by upregulating MCP-1 expression. Mechanistically, DUSP5 was identified as a novel target gene of miR-203a-3p and regulated PSCs inflammation through the ERK1/2/MCP-1 signaling pathway. Meanwhile, the effect of exosomes derived from prostatic fluids of CP/CPPS-A patients was consistent with that of exosomes derived from inflammatory PECs. Importantly, we demonstrated that miR-203a-3p antagomirs-loaded exosomes derived from PECs targeted the prostate and alleviated prostatitis by inhibiting the DUSP5-ERK1/2 pathway. Collectively, our findings provide new insights into underlying the interaction between PECs and PSCs in CP/CPPS-A, providing a promising therapeutic strategy for CP/CPPS-A.
Collapse
Affiliation(s)
- Guojing Song
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Fuhan Zhao
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Rongrong Ni
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Bingqian Deng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Saipeng Chen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ruimin Hu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jun Zheng
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yiji Peng
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Heting Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yang Luo
- Department of Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Zhansong Zhou
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
2
|
Wang H, He L, Liu Z, Xu X, Zhang H, Mao P, Li M. Calycosin protects against chronic prostatitis in rats via inhibition of the p38MAPK/NF-κB pathway. Open Med (Wars) 2023; 18:20230770. [PMID: 37663231 PMCID: PMC10473462 DOI: 10.1515/med-2023-0770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023] Open
Abstract
Currently, the effect and molecular mechanism of calycosin, the main active ingredient of Qinshi Simiao San, which can alleviate chronic prostatitis (CP), on CP remain unclear. This study aimed to elucidate the potential mechanism of action of calycosin in CP in a rat CP model. The prostate tissue morphology was evaluated based on hematoxylin-eosin staining. Enzyme-linked immunosorbent assay was conducted to evaluate inflammatory cytokine and immune factor levels (secretory immunoglobulin A [SIgA]; immunoglobulin G [IgG]) in prostate tissues and serum. Additionally, representative biomarkers of oxidative stress, including malondialdehyde, superoxide dismutase, and catalase were detected using detection kits, and reactive oxygen species release was evaluated using immunofluorescence staining. Furthermore, the p38 mitogen-activated protein kinase (p38MAPK)/NF-kappaB (NF-κB) signaling pathway was analyzed by western blotting. The results showed that calycosin substantially ameliorated the pathological damage to prostate tissues of the CP rats. Moreover, calycosin significantly downregulated interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha, IgG, and SIgA levels. Furthermore, we found that calycosin considerably suppressed oxidative stress and inhibited the activation of the p38MAPK/NF-κB signaling pathway in rats with CP. In summary, our findings revealed that calycosin protects against CP in rats by inhibiting the p38MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Heng Wang
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Lei He
- Department of Acupuncture, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Zhaofei Liu
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Xiangjun Xu
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Haitao Zhang
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Pengfei Mao
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Ming Li
- Department of Pharmacy, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No.160 Chaoyang Middle Road, Haizhou District, Lianyungang 222000, China
| |
Collapse
|
3
|
He H, Luo H, Xu H, Qian B, Zou X, Zhang G, Zeng F, Zou J. Preclinical models and evaluation criteria of prostatitis. Front Immunol 2023; 14:1183895. [PMID: 37228599 PMCID: PMC10203503 DOI: 10.3389/fimmu.2023.1183895] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Prostatitis is a common urological condition that affects almost half of all men at some point in their life. The prostate gland has a dense nerve supply that contributes to the production of fluid to nourish sperm and the mechanism to switch between urination and ejaculation. Prostatitis can cause frequent urination, pelvic pain, and even infertility. Long-term prostatitis increases the risk of prostate cancer and benign prostate hyperplasia. Chronic non-bacterial prostatitis presents a complex pathogenesis, which has challenged medical research. Experimental studies of prostatitis require appropriate preclinical models. This review aimed to summarize and compare preclinical models of prostatitis based on their methods, success rate, evaluation, and range of application. The objective of this study is to provide a comprehensive understanding of prostatitis and advance basic research.
Collapse
Affiliation(s)
- Hailan He
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hui Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hui Xu
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Xiaofeng Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Guoxi Zhang
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Fei Zeng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| |
Collapse
|
4
|
Clinical Efficacy Analysis of Biofeedback Electrical Stimulation Combined with Doxycycline in the Treatment of Type IIIA Chronic Prostatitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7150204. [PMID: 36212975 PMCID: PMC9534622 DOI: 10.1155/2022/7150204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
Abstract
Purpose To analyse the clinical efficacy of biofeedback electrical stimulation combined with doxycycline in the treatment of type IIIA chronic prostatitis. Methods Eighty patients who met the diagnostic criteria of type IIIA chronic prostatitis in our hospital between February 2020 and February 2022 were selected and equally divided into the drug group and electrical stimulation group according to the random number table method. The drug group was treated with medication alone for 4 weeks; the electrostimulation group was treated with biofeedback electrostimulation on top of medication for 12 weeks. The expressed prostatic secretious (EPS) routine (lecithin bodies, white blood cells) and the maximum urinary flow rate (Qmax) and mean urinary flow rate (Qave) were measured before and after treatment in both groups, and the National Institutes of Health chronic prostatitis symptom index (NIH-CPSI) was used to score the urinary symptom, pain or discomfort, and quality of life and determine the efficacy of the treatment in both groups. Results After treatment, the number of lecithin bodies and white blood cells in EPS improved significantly in both groups compared to before, and both the electrical stimulation group was better than the drug group (P < 0.05). After treatment, the Qmax and Qave were significantly higher in both groups than before, and both the electrical stimulation groups were higher than the drug group (P < 0.05). After treatment, the urinary symptom scores, pain or discomfort scores, quality of life scores, and total NIH-CPSI scores were significantly lower in both groups than before, and all were lower in the electrical stimulation group than in the drug group (P < 0.05). After treatment, the overall efficiency of patients in the electrical stimulation group was significantly higher than that of the drug group (P < 0.05). Conclusion Biofeedback electrical stimulation combined with doxycycline in the treatment of type IIIA chronic prostatitis can synergistically improve the patient's inflammation level, urinary dysfunction, relieve pelvic floor tension myalgia, and improve their quality of life, opening up new avenues for the rehabilitation of patients with type IIIA chronic prostatitis.
Collapse
|
5
|
Ouyang B, Han D, Guo Z, Deng J, Li W, Huang L, Liu J, Cai Z, Bian J, Huang S. Altered small non‑coding RNA expression profiles of extracellular vesicles in the prostatic fluid of patients with chronic pelvic pain syndrome. Exp Ther Med 2022; 23:382. [PMID: 35495611 PMCID: PMC9019767 DOI: 10.3892/etm.2022.11310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/21/2022] [Indexed: 11/06/2022] Open
Abstract
Chronic pelvic pain syndrome (CPPS) and chronic prostatitis (CP) is difficult to distinguish from each other, herein termed CP/CPPS. The present study aimed at gaining further insight into the change in extracellular vesicles (EVs) in the prostatic fluid of males with CPPS. From December 2019 to November 2020, after clinical screening, 24 patients with CPPS without obvious urinary symptoms and 13 healthy male participants were included. EVs were isolated from expressed prostatic secretion (EPS) of all subjects. The small non-coding ribonucleic acid (sncRNA) expression of EVs was sequenced, analyzed, and validated by quantitative real-time polymerase chain reaction (qPCR) assays. The results showed that numerous sncRNAs were differentially expressed between the patients and healthy participants. Further qPCR assays validated that several chronic pain-related miRNAs, including miR-204-5p, let-7d-3p, let-7b-3p, let-7c-3p, miR-146a-5p, and miR-320a-5p, were differentially expressed. Series sncRNAs including several chronic pain-related miRNAs were altered in EVs in prostatic fluid of patients with CPPS, which may serve as diagnostic markers for CPPS.
Collapse
Affiliation(s)
- Bin Ouyang
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Dayu Han
- Department of Andrology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zexin Guo
- Reproductive Centre, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Junhong Deng
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Weilong Li
- Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 51018, P.R. China
| | - Liangliang Huang
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Jianming Liu
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Zhouda Cai
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Jun Bian
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Shaoming Huang
- Department of Andrology, Ganzhou Municipal Hospital, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|