1
|
Kamal M, Wang YJ, Plummer S, Dickerson A, Yu M. An Image-Based Identification of Aggressive Breast Cancer Circulating Tumor Cell Subtypes. Cancers (Basel) 2023; 15:2669. [PMID: 37345005 DOI: 10.3390/cancers15102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Using previously established CTC lines from breast cancer patients, we identified different morphometric subgroups of CTCs with one of them having the highest tumorigenic potential in vivo despite the slowest cell proliferation in vitro. This subgroup represents 32% of all cells and contains cells with small cell volume, large nucleus to cell, dense nuclear areas to the nucleus, mitochondria to cell volume ratios and rough texture of cell membrane and termed "Small cell, Large mitochondria, Rough membrane" (SLR). RNA-seq analyses showed that the SLR group is enriched in pathways and cellular processes related to DNA replication, DNA repair and metabolism. SLR upregulated genes are associated with poor survival in patients with ER+ breast cancer based on the KM Plotter database. The high tumorigenic potential, slow proliferation, and enriched DNA replication/repair pathways suggest that the SLR subtype is associated with stemness properties. Our new findings provide a simple image-based identification of CTC subpopulations with elevated aggressiveness, which is expected to provide a more accurate prediction of patient survival and therapy response than total CTC numbers. The detection of morphometric and transcriptomic profiles related to the SLR subgroup of CTCs also opens opportunities for potential targeted cancer treatment.
Collapse
Affiliation(s)
- Mohamed Kamal
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Zoology, Faculty of Science, University of Benha, Benha 13518, Egypt
| | - Yiru Jess Wang
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sarai Plummer
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Amber Dickerson
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Junker K. [Liquid biopsy to indvidualise therapy in advanced bladder cancer]. Aktuelle Urol 2022; 53:180-187. [PMID: 34875700 DOI: 10.1055/a-1646-9568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Biomarker development is focussing more and more on the analysis of body fluids ("liquid biopsy") due to its advantages compared to tissue analysis. In addition to proteins and lipoproteins, circulating tumour cells (CTCs), extracellular vesicles (EVs) and cell-free nucleic acids (DNA, RNA) can be investigated from body fluids. Treatment of muscle-invasive balder cancer (MIBC) is still challenging. Therefore, new biomarkers are warranted to estimate the metastatic risk, to detect metastatic spread at an early time point and to select the most effective systemic therapy in a given patient. This review gives an overview of liquid biopsy from blood in patients with advanced MIBC and considers CTCs, EVs as well as circulating DNA (ctDNA) and non-coding RNA (ncRNA) and their role for prognostic evaluation and selecting treatment.
Collapse
Affiliation(s)
- Kerstin Junker
- Dept of Urology and Pediatric Urology, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany
| |
Collapse
|
3
|
Honoré N, Galot R, van Marcke C, Limaye N, Machiels JP. Liquid Biopsy to Detect Minimal Residual Disease: Methodology and Impact. Cancers (Basel) 2021; 13:5364. [PMID: 34771526 PMCID: PMC8582541 DOI: 10.3390/cancers13215364] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
One reason why some patients experience recurrent disease after a curative-intent treatment might be the persistence of residual tumor cells, called minimal residual disease (MRD). MRD cannot be identified by standard radiological exams or clinical evaluation. Tumor-specific alterations found in the blood indirectly diagnose the presence of MRD. Liquid biopsies thus have the potential to detect MRD, allowing, among other things, the detection of circulating tumor DNA (ctDNA), circulating tumor cells (CTC), or tumor-specific microRNA. Although liquid biopsy is increasingly studied, several technical issues still limit its clinical applicability: low sensitivity, poor standardization or reproducibility, and lack of randomized trials demonstrating its clinical benefit. Being able to detect MRD could give clinicians a more comprehensive view of the risk of relapse of their patients and could select patients requiring treatment escalation with the goal of improving cancer survival. In this review, we are discussing the different methodologies used and investigated to detect MRD in solid cancers, their respective potentials and issues, and the clinical impacts that MRD detection will have on the management of cancer patients.
Collapse
Affiliation(s)
- Natasha Honoré
- Institute for Experimental and Clinical Research (IREC, Pôle MIRO), Université Catholique de Louvain (UCLouvain) ,1200 Brussels, Belgium; (R.G.); (C.v.M.)
| | - Rachel Galot
- Institute for Experimental and Clinical Research (IREC, Pôle MIRO), Université Catholique de Louvain (UCLouvain) ,1200 Brussels, Belgium; (R.G.); (C.v.M.)
- Department of Medical Oncology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Cédric van Marcke
- Institute for Experimental and Clinical Research (IREC, Pôle MIRO), Université Catholique de Louvain (UCLouvain) ,1200 Brussels, Belgium; (R.G.); (C.v.M.)
- Department of Medical Oncology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Nisha Limaye
- Genetics of Autoimmune Diseases and Cancer, de Duve Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Jean-Pascal Machiels
- Institute for Experimental and Clinical Research (IREC, Pôle MIRO), Université Catholique de Louvain (UCLouvain) ,1200 Brussels, Belgium; (R.G.); (C.v.M.)
- Department of Medical Oncology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
4
|
Herranz R, Oto J, Plana E, Fernández-Pardo Á, Cana F, Martínez-Sarmiento M, Vera-Donoso CD, España F, Medina P. Circulating Cell-Free DNA in Liquid Biopsies as Potential Biomarker for Bladder Cancer: A Systematic Review. Cancers (Basel) 2021; 13:1448. [PMID: 33810039 PMCID: PMC8005001 DOI: 10.3390/cancers13061448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) is among the most frequent cancer types in the world and is the most lethal urological malignancy. Presently, diagnostic and follow-up methods for BC are expensive and invasive. Thus, the identification of novel predictive biomarkers for diagnosis, progression, and prognosis of BC is of paramount importance. To date, several studies have evidenced that cell-free DNA (cfDNA) found in liquid biopsies such as blood and urine may play a role in the particular scenario of urologic tumors, and its analysis may improve BC diagnosis report about cancer progression or even evaluate the effectiveness of a specific treatment or anticipate whether a treatment would be useful for a specific patient depending on the tumor characteristics. In the present review, we have summarized the up-to-date studies evaluating the value of cfDNA as potential diagnostic, prognostic, or monitoring biomarker for BC in several biofluids.
Collapse
Affiliation(s)
- Raquel Herranz
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (R.H.); (J.O.); (E.P.); (Á.F.-P.); (F.C.); (F.E.)
| | - Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (R.H.); (J.O.); (E.P.); (Á.F.-P.); (F.C.); (F.E.)
| | - Emma Plana
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (R.H.); (J.O.); (E.P.); (Á.F.-P.); (F.C.); (F.E.)
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Álvaro Fernández-Pardo
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (R.H.); (J.O.); (E.P.); (Á.F.-P.); (F.C.); (F.E.)
| | - Fernando Cana
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (R.H.); (J.O.); (E.P.); (Á.F.-P.); (F.C.); (F.E.)
| | - Manuel Martínez-Sarmiento
- Department of Urology, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (M.M.-S.); (C.D.V.-D.)
| | - César D. Vera-Donoso
- Department of Urology, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (M.M.-S.); (C.D.V.-D.)
| | - Francisco España
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (R.H.); (J.O.); (E.P.); (Á.F.-P.); (F.C.); (F.E.)
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (R.H.); (J.O.); (E.P.); (Á.F.-P.); (F.C.); (F.E.)
| |
Collapse
|
5
|
Luo H, Wei W, Ye Z, Zheng J, Xu RH. Liquid Biopsy of Methylation Biomarkers in Cell-Free DNA. Trends Mol Med 2021; 27:482-500. [PMID: 33500194 DOI: 10.1016/j.molmed.2020.12.011] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/09/2023]
Abstract
Liquid biopsies, in particular, analysis of cell-free DNA (cfDNA), have emerged as a promising noninvasive diagnostic approach in oncology. Abnormal distribution of DNA methylation is one of the hallmarks of many cancers and methylation changes occur early during carcinogenesis. Systemic analysis of cfDNA methylation profiles is being developed for cancer early detection, monitoring for minimal residual disease (MRD), predicting treatment response and prognosis, and tracing the tissue origin. This review highlights the advantages and disadvantages of ctDNA profiling for noninvasive diagnosis of early-stage cancers and explores recent advances in the clinical application of ctDNA methylation assays. We also summarize the technologies for ctDNA methylation analysis and provide a brief overview of the bioinformatic approaches for analyzing DNA methylation sequencing data.
Collapse
Affiliation(s)
- Huiyan Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wei Wei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Ziyi Ye
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jiabo Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
6
|
Hong M, He G, Goh S, Low AWX, Tay KJ, Lim TKH, Yeong J, Khor LY, Lim TS. Biomarkers for Precision Urothelial Carcinoma Diagnosis: Current Approaches and the Application of Single-Cell Technologies. Cancers (Basel) 2021; 13:cancers13020260. [PMID: 33445605 PMCID: PMC7827267 DOI: 10.3390/cancers13020260] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Urothelial carcinoma (UC) is the most frequently diagnosed cancer of the urinary tract and is ranked the sixth most diagnosed cancer in men worldwide. About 70–75% of newly diagnosed UCs are non-invasive or low grade. Different tests such as urine cytology and cystoscopy are used to detect UC. If abnormal tissue is found during cystoscopy, then a biopsy will be performed. Cytology has low sensitivity for low-grade cancer while cystoscopy is invasive and costly. Detecting UC early improves the chances of treatment success. Therefore, many researchers have painstakingly identified urine biological markers for non-invasive UC diagnosis. In this review, we summarize some of the latest and most promising biological markers (including FDA-approved and investigational markers). We also discuss some new technologies that can aid research efforts in biological marker discovery for early UC detection. Abstract Urothelial carcinoma (UC) is the most frequent malignancy of the urinary system and is ranked the sixth most diagnosed cancer in men worldwide. Around 70–75% of newly diagnosed UC manifests as the non-muscle invasive bladder cancer (NMIBC) subtype, which can be treated by a transurethral resection of the tumor. However, patients require life-long monitoring due to its high rate of recurrence. The current gold standard for UC diagnosis, prognosis, and disease surveillance relies on a combination of cytology and cystoscopy, which is invasive, costly, and associated with comorbidities. Hence, there is considerable interest in the development of highly specific and sensitive urinary biomarkers for the non-invasive early detection of UC. In this review, we assess the performance of current diagnostic assays for UC and highlight some of the most promising biomarkers investigated to date. We also highlight some of the recent advances in single-cell technologies that may offer a paradigm shift in the field of UC biomarker discovery and precision diagnostics.
Collapse
Affiliation(s)
- Michelle Hong
- A. Menarini Biomarkers Singapore Pte Ltd., Singapore 117440, Singapore;
| | - George He
- Department of Pathology, Singapore General Hospital, Singapore 169856, Singapore; (G.H.); (S.G.); (T.K.H.L.)
| | - Siting Goh
- Department of Pathology, Singapore General Hospital, Singapore 169856, Singapore; (G.H.); (S.G.); (T.K.H.L.)
| | - Alvin Wei Xiang Low
- Department of Urology, Singapore General Hospital, Singapore 169854, Singapore; (A.W.X.L.); (K.J.T.)
| | - Kae Jack Tay
- Department of Urology, Singapore General Hospital, Singapore 169854, Singapore; (A.W.X.L.); (K.J.T.)
| | - Tony Kiat Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore 169856, Singapore; (G.H.); (S.G.); (T.K.H.L.)
| | - Joe Yeong
- Department of Pathology, Singapore General Hospital, Singapore 169856, Singapore; (G.H.); (S.G.); (T.K.H.L.)
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Correspondence: (J.Y.); (L.Y.K.); (T.S.L.)
| | - Li Yan Khor
- Department of Pathology, Singapore General Hospital, Singapore 169856, Singapore; (G.H.); (S.G.); (T.K.H.L.)
- Correspondence: (J.Y.); (L.Y.K.); (T.S.L.)
| | - Tong Seng Lim
- A. Menarini Biomarkers Singapore Pte Ltd., Singapore 117440, Singapore;
- Correspondence: (J.Y.); (L.Y.K.); (T.S.L.)
| |
Collapse
|
7
|
Soave A, Kluwe L, Yu H, Rink M, Gild P, Vetterlein MW, Marks P, Sauter G, Fisch M, Meyer CP, Ludwig T, Dahlem R, Minner S, Pantel K, Steinbach B, Schwarzenbach H. Copy number variations in primary tumor, serum and lymph node metastasis of bladder cancer patients treated with radical cystectomy. Sci Rep 2020; 10:21562. [PMID: 33298978 PMCID: PMC7725833 DOI: 10.1038/s41598-020-75869-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/22/2020] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to analyze copy number variations (CNV) of multiple oncogenes and tumor suppressor genes in genomic DNA from primary tumor tissue, lymph node metastasis and cell-free DNA (cfDNA) from serum of 72 urothelial carcinoma of bladder (UCB) patients treated with radical cystectomy (RC), using multiplex ligation-dependent probe amplification (MLPA). We hypothesized that primary tumor and lymph node metastasis show similar CNV profiles, and CNV are more present in lymph node metastasis compared to primary tumor tissue. Samples from 43 (59.7%) patients could be analyzed. In total, 35 (83%), 26 (68%) and 8 (42%) patients had CNV in primary tumor, serum and lymph node metastasis, respectively. MYC, CCND1, ERBB2 and CCNE1 displayed the most frequent amplifications. In particular, CNV in ERBB2 was associated with aggressive tumor characteristics. CNV in both ERBB2 and TOP2A were risk factors for disease recurrence. The current findings show that CNV are present in various oncogenes and tumor suppressor genes in genomic DNA from primary tumor, lymph node metastasis and cfDNA from serum. CNV were more present in genomic DNA from primary tumor tissue compared to cfDNA from serum and genomic DNA from lymph node metastasis. Patients with CNV in ERBB2 and TOP2A are at increased risk for disease recurrence following RC. Further studies are necessary to validate, whether these genes may represent promising candidates for targeted-therapy.
Collapse
Affiliation(s)
- Armin Soave
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lan Kluwe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hang Yu
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Gild
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte W Vetterlein
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Marks
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian P Meyer
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Ludwig
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Dahlem
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Bettina Steinbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
8
|
The Impact of Circulating Tumor Cells on Venous Thromboembolism and Cardiovascular Events in Bladder Cancer Patients Treated with Radical Cystectomy. J Clin Med 2020; 9:jcm9113478. [PMID: 33126664 PMCID: PMC7692134 DOI: 10.3390/jcm9113478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Cancer is a relevant risk factor for venous thromboembolism (VTE). Circulating tumor cells (CTC) are associated with an increased risk of VTE in breast cancer. In addition, circulating cell-free nucleic acids have been associated with cardiovascular events (CVE). OBJECTIVE To investigate the association of CTC status and the risk of VTE as well as CVE in urothelial carcinoma of the bladder (UCB) patients treated with radical cystectomy (RC). METHODS We collected data of 189 UCB patients treated with RC at our institution. Blood samples were acquired preoperatively and analyzed for CTC using the CellSearch® system. Thirty-day postoperative complications were extracted from digital charts and graded according to the Clavien-Dindo classification (CDC). Moreover, each patient's individual Comprehensive Complication Index® (CCI®) was calculated. RESULTS CTC were present in 43 patients (22.8%). Overall, six patients experienced VTE (3.2%) and eight patients (4.2%) experienced CVE. There was no association of VTE or CVE according to CTC status. In total, 168 patients (89%) experienced a total of 801 complications, of which the majority was classified as "minor" (CDC grade ≤ IIIa; 79%). There was no association between CTC status and any grade of a complication or CCI®. Presence of CTC was associated with more aggressive clinicopathological UCB features. CONCLUSIONS The overall rate of VTE and CVE was low in our study. Presence of CTC was neither associated with an increased risk of VTE nor CVE in UCB patients treated with RC. According to this study, CTC are not a qualified biomarker for individualized thromboprophylaxis management in these patients.
Collapse
|
9
|
Agashe R, Kurzrock R. Circulating Tumor Cells: From the Laboratory to the Cancer Clinic. Cancers (Basel) 2020; 12:cancers12092361. [PMID: 32825548 PMCID: PMC7564158 DOI: 10.3390/cancers12092361] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/08/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Circulating tumor cells (CTCs) are cells that are shed from tumors into the bloodstream. Cell enrichment and isolation technology as well as molecular profiling via next-generation sequencing have allowed for a greater understanding of tumor cancer biology via the interrogation of CTCs. CTC detection can be used to predict cancer relapse, progression, and survival; evaluate treatment effectiveness; and explore the ex vivo functional impact of agents. Detection methods can be by either immunoaffinity (positive or negative enrichment strategies) or biophysical strategies. CTC characterization, which is performed by DNA, RNA, and/or protein techniques, can predict metastatic potential. Currently, CTC-derived explant models may mimic patient response to chemotherapy and help with studying druggable targets and testing treatments. The Food and Drug Administration has cleared a CTC blood test to enumerate CTCs derived from breast, prostate, and colorectal cancers. In conclusion, liquid biopsies via CTCs provide a non-invasive way to obtain important diagnostic, prognostic, and predictive information in patients with cancer.
Collapse
|
10
|
Zhao C, Pan Y, Wang Y, Li Y, Han W, Lu L, Tang W, Li P, Ou Z, Zhang M, Xiong Z, Xu R, Lu Q, Xu Z, Qi L, Wang L, Xu G. A novel cell-free single-molecule unique primer extension resequencing (cf-SUPER) technology for bladder cancer non-invasive detection in urine. Transl Androl Urol 2020; 9:1222-1231. [PMID: 32676405 PMCID: PMC7354286 DOI: 10.21037/tau-19-774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The clinical diagnostic method for bladder cancer is cystoscopy, an invasive, expensive and inconvenient clinical test. Using urinary cell-free DNA (cfDNA) to develop non-invasive test for bladder cancer was a promising liquid biopsy. Methods To improve the using rate of cfDNA template and decrease the PCR bias for liquid biopsy using urinary cfDNA, we developed a cell-free single-molecule unique primer extension resequencing (cf-SUPER) technology which was done for 29 matched urinary cfDNA and tumor DNA samples of bladder cancer patients to evaluate consistency of mutation profiles. Then, a 22 high mutational frequence genes was selected to form an uriprier panel, which was analyzed in 100 patients (47 bladder cancer cases and 53 controls) using cf-SUPER technology. This performance of the technology was evaluated using bioinformatic tools and clinical samples. Results The study showed that cf-SUPER technology can accurately detect mutations with allele fractions even low as 0.01% and the DNA input as low as 1 ng. The consistency of mutation profiles and clinical pathological diagnose between 29 matched urinary cfDNA and tumor DNA samples was respectively 82.76% and 89.66% by using cf-SUPER technology. Using cf-SUPER technology, the sensitivity and specificity were 98%, 94% respectively for uriprier panel in non-invasive test. Conclusions The preliminary work shows that cf-SUPER technology will be a promising method for liquid biopsy. Focusing urinary cfDNA, the non-invasive diagnose and monitoring of bladder cancer can come true by using cf-SUPER technology.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Urology, the Third Xiangya Hospital, Central South University, Changsha 410013, China.,Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yi Pan
- Yearth Biotechnology Co. Ltd., Changsha 410008, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yuanwei Li
- Department of Urology, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Weiqing Han
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medical, Central South University, Changsha 410013, China
| | - Li Lu
- Yearth Biotechnology Co. Ltd., Changsha 410008, China
| | - Wei Tang
- Yearth Biotechnology Co. Ltd., Changsha 410008, China
| | - Pei Li
- Yearth Biotechnology Co. Ltd., Changsha 410008, China
| | - Zhenyu Ou
- Department of Urology, the Third Xiangya Hospital, Central South University, Changsha 410013, China.,Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Mengda Zhang
- Department of Urology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhuang Xiong
- Yearth Biotechnology Co. Ltd., Changsha 410008, China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Qiang Lu
- Department of Urology, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Zhenzhou Xu
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medical, Central South University, Changsha 410013, China
| | - Lin Qi
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Long Wang
- Department of Urology, the Third Xiangya Hospital, Central South University, Changsha 410013, China.,Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Genming Xu
- Yearth Biotechnology Co. Ltd., Changsha 410008, China
| |
Collapse
|
11
|
Bergmann S, Coym A, Ott L, Soave A, Rink M, Janning M, Stoupiec M, Coith C, Peine S, von Amsberg G, Pantel K, Riethdorf S. Evaluation of PD-L1 expression on circulating tumor cells (CTCs) in patients with advanced urothelial carcinoma (UC). Oncoimmunology 2020; 9:1738798. [PMID: 32391189 PMCID: PMC7199812 DOI: 10.1080/2162402x.2020.1738798] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/29/2019] [Accepted: 01/18/2020] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint inhibition (ICI) of the PD-1/PD-L1 axis shows durable responses in a subset of patients with metastatic urothelial carcinoma (UC). However, PD-L1 expression in tumor biopsies does not necessarily correlate with response to PD-1/PD-L1 inhibitors. Thus, a reliable predictive biomarker is urgently needed. Here, the expression of PD-L1 on circulating tumor cells (CTCs) in blood from patients with advanced UC was analyzed. For this purpose, an assay to test PD-L1 expression on CTCs using the CellSearch® system was established using cells of five UC cell lines spiked into blood samples from healthy donors and applied to a heterogeneous cohort of UC patients. Enumeration of CTCs was performed in blood samples from 49 patients with advanced UC. PD-L1 expression in ≥1 CTC was found in 10 of 16 CTC-positive samples (63%). Both intra- and inter-patient heterogeneity regarding PD-L1 expression of CTCs were observed. Furthermore, vimentin-expressing CTCs were detected in 4 of 15 CTC-positive samples (27%), independently of PD-L1 analysis. Both CTC detection and presence of CTCs with moderate or strong PD-L1 expression correlated with worse overall survival. Analyses during disease course of three individual patients receiving ICI suggest that apart from CTC numbers also PD-L1 expression on CTCs might potentially indicate disease progression. This is the first study demonstrating the feasibility to detect CTC-PD-L1 expression in patients with advanced UC using the CellSearch® system. This assay is readily available for clinical application and could be implemented in future clinical trials to evaluate its relevance for predicting and monitoring response to ICI.
Collapse
Affiliation(s)
- Sonja Bergmann
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja Coym
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Ott
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Armin Soave
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Janning
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malgorzata Stoupiec
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cornelia Coith
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Riethdorf
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Powles T, Walker J, Andrew Williams J, Bellmunt J. The evolving role of PD-L1 testing in patients with metastatic urothelial carcinoma. Cancer Treat Rev 2020; 82:101925. [DOI: 10.1016/j.ctrv.2019.101925] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
|
13
|
Wang D, Hu X, Long G, Xiao L, Wang ZM, Zhou LD. The clinical value of total plasma cell-free DNA in hepatitis B virus-related hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:650. [PMID: 31930051 DOI: 10.21037/atm.2019.10.78] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Circulating cell-free DNA (cfDNA), which is present in the blood, is related to the apoptosis and necrosis of cancer cells; inflammation also influences the total plasma level of cfDNA. However, the total plasma cfDNA level has not been investigated in patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) who experience cancer and HBV infection at the same time. The aim of the study was to investigate total plasma cfDNA in patients with HBV-related HCC. Methods HBV-related HCC patients were included from January 2018 to May 2019. All patients underwent hepatectomy and were diagnosed with HCC by histopathology. Peripheral blood samples were obtained preoperatively, and the levels of total plasma cfDNA were quantitated by a fluorometric double-stranded DNA (dsDNA) assay. We examined the correlation between cfDNA and clinical parameters, and recurrence-free survival was evaluated using Kaplan-Meier curves. Results Forty-eight HBV-related HCC patients were included. The average age in years was 50.90±13.15, and the mean albumin level was 41.63±5.38 g/L. HBV-DNA, Child-Turcotte-Pugh (CTP) class, TNM stage, tumor number and vascular invasion showed a relationship with total plasma cfDNA (P<0.05), and albumin, prothrombin time (PT) and tumor diameter had linear correlation with plasma cfDNA. Based on multivariate analysis, tumor diameter, vascular invasion, and CTP class (P<0.05) were independent risk factors of total plasma cfDNA. Median recurrence times for low-cfDNA and high-cfDNA groups were 14.729±0.712 and 9.264±1.22 months (P=0.026). Conclusions In addition to tumor diameter and vascular invasion, CTP class can influence total plasma cfDNA in HBV-related HCC patients, and the total plasma cfDNA level can be used as a biomarker to predict early recurrence in HBV-related HCC patients.
Collapse
Affiliation(s)
- Dong Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xi Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guo Long
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Liang Xiao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhi-Ming Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Le-Du Zhou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
14
|
Kouba E, Cheng L. Clinical utility versus futility: a tipping point for liquid biopsies in bladder cancer. Future Oncol 2019; 15:3751-3753. [PMID: 31651200 DOI: 10.2217/fon-2019-0522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Erik Kouba
- Associated Pathologists at Medical Center of Central Georgia, Macon, GA 46202, USA
| | - Liang Cheng
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Urology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
Kouba E, Lopez-Beltran A, Montironi R, Massari F, Huang K, Santoni M, Chovanec M, Cheng M, Scarpelli M, Zhang J, Cimadamore A, Cheng L. Liquid biopsy in the clinical management of bladder cancer: current status and future developments. Expert Rev Mol Diagn 2019; 20:255-264. [PMID: 31608720 DOI: 10.1080/14737159.2019.1680284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: The use of liquid biopsy on the blood from solid malignancies provides a convenient way of detecting actionable mutations, monitoring treatment response, detecting early recurrence and prognosticating outcomes. The aim of this review is to discuss the current status and future direction of serum biomarkers in the clinical management of urinary bladder cancer.Areas covered: This review provides an overview of blood liquid biopsy and bladder cancer using methods of circulating tumors cells, circulating RNA, serum metabolites and cell-free DNA. Recent clinical studies and advances in methodology are emphasized. We performed a literature search using PMC/PubMed with keywords including 'liquid biopsy', 'circulating tumor DNA', 'cell-free DNA', 'biomarkers', 'bladder cancer' 'precision medicine'. Additional articles were obtained from the cited references of key articles. An emphasis was placed on recent studies published since 2018.Expert opinion: Liquid biopsies represent a potential biomarker using cell-free DNA, metabolomic profiles of altered cellular metabolism, circulating cancer cells and RNA. Despite displaying tremendous clinical promise, the current status of the blood liquid biopsies has not reached fruition. However, future investigations should lead the evolution of liquid biomarker into clinical utility for the management of bladder cancer.
Collapse
Affiliation(s)
- Erik Kouba
- Department of Pathology, Associated Pathologists at Medical Center of Central Georgia, Macon, GA, USA
| | - Antonio Lopez-Beltran
- Department of Pathology and Surgery, Faculty of Medicine, Cordoba, Spain.,Department of Pathology, Champalimaud Clinical Center, Lisbon, Portugal
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | | | - Kun Huang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pathology, Regenstrief Institute, Indianapolis, IN, USA
| | | | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Michael Cheng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marina Scarpelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
16
|
Tuaeva NO, Falzone L, Porozov YB, Nosyrev AE, Trukhan VM, Kovatsi L, Spandidos DA, Drakoulis N, Kalogeraki A, Mamoulakis C, Tzanakakis G, Libra M, Tsatsakis A. Translational Application of Circulating DNA in Oncology: Review of the Last Decades Achievements. Cells 2019; 8:E1251. [PMID: 31615102 PMCID: PMC6829588 DOI: 10.3390/cells8101251] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, the introduction of new molecular techniques in experimental and clinical settings has allowed researchers and clinicians to propose circulating-tumor DNA (ctDNA) analysis and liquid biopsy as novel promising strategies for the early diagnosis of cancer and for the definition of patients' prognosis. It was widely demonstrated that through the non-invasive analysis of ctDNA, it is possible to identify and characterize the mutational status of tumors while avoiding invasive diagnostic strategies. Although a number of studies on ctDNA in patients' samples significantly contributed to the improvement of oncology practice, some investigations generated conflicting data about the diagnostic and prognostic significance of ctDNA. Hence, to highlight the relevant achievements obtained so far in this field, a clearer description of the current methodologies used, as well as the obtained results, are strongly needed. On these bases, this review discusses the most relevant studies on ctDNA analysis in cancer, as well as the future directions and applications of liquid biopsy. In particular, special attention was paid to the early diagnosis of primary cancer, to the diagnosis of tumors with an unknown primary location, and finally to the prognosis of cancer patients. Furthermore, the current limitations of ctDNA-based approaches and possible strategies to overcome these limitations are presented.
Collapse
Affiliation(s)
- Natalia O Tuaeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Luca Falzone
- Department of Biomedical and Biotechnlogical Sciences, University of Catania, 95123 Catania, Italy.
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Naples, Italy.
| | - Yuri B Porozov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
- ITMO University, Saint Petersburg 197101, Russia.
| | - Alexander E Nosyrev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Vladimir M Trukhan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54248 Thessaloniki, Greece.
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Zografou, Greece.
| | - Alexandra Kalogeraki
- Department of Pathology-Cytopathology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, 70013 Crete, Greece.
| | - George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Massimo Libra
- Department of Biomedical and Biotechnlogical Sciences, University of Catania, 95123 Catania, Italy.
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy.
| | - Aristides Tsatsakis
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, 71003 Crete, Greece.
| |
Collapse
|
17
|
Kerr PS, Freedland SJ, Williams SB. The current status of molecular biomarkers in patients with metastatic urothelial carcinoma of the bladder. Expert Rev Mol Diagn 2019; 20:127-129. [DOI: 10.1080/14737159.2019.1665509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Preston S. Kerr
- Division of Urology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Stephen J. Freedland
- Center for Integrated Research on Cancer and Lifestyle, Division of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Section of Urology, Durham VA Medical Center, Durham, USA
| | - Stephen B. Williams
- Division of Urology, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
18
|
Rink M, Schwarzenbach H, Vetterlein MW, Riethdorf S, Soave A. The current role of circulating biomarkers in non-muscle invasive bladder cancer. Transl Androl Urol 2019; 8:61-75. [PMID: 30976570 PMCID: PMC6414344 DOI: 10.21037/tau.2018.11.05] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Non-muscle invasive bladder cancer (NMIBC) is characterized by its high rate of disease recurrence and relevant disease progression rates. Up to today clinical models are insufficiently predicting outcomes for reliable patient counseling and treatment decision-making. This particularly is a serious problem in patients with high-risk NMIBC who are at high risk for failure of local treatment and thus candidates for early radical cystectomy or even systemic (neoadjuvant) chemotherapy. Next to its clinical variability, bladder cancer is genetically a highly heterogeneous disease. There is an essential need of biomarkers for improving clinical staging, real-time monitoring of disease with or without active treatment, as well as improved outcome prognostication. Liquid biopsies of circulating biomarkers in the blood and urine are promising non-invasive diagnostics that hold the potential facilitating these needs. In this review we report the latest data and evidence on cell-free circulating tumor desoxyribonucleic acid (ctDNA) and circulating tumor cells (CTC) in NMIBC. We summarize their current status in clinical diagnostics, discuss limitations and address future needs.
Collapse
Affiliation(s)
- Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heidi Schwarzenbach
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte W Vetterlein
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Riethdorf
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Armin Soave
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
The current role and future directions of circulating tumor cells and circulating tumor DNA in urothelial carcinoma of the bladder. World J Urol 2018; 37:1785-1799. [DOI: 10.1007/s00345-018-2543-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022] Open
|
20
|
Lodewijk I, Dueñas M, Rubio C, Munera-Maravilla E, Segovia C, Bernardini A, Teijeira A, Paramio JM, Suárez-Cabrera C. Liquid Biopsy Biomarkers in Bladder Cancer: A Current Need for Patient Diagnosis and Monitoring. Int J Mol Sci 2018; 19:E2514. [PMID: 30149597 PMCID: PMC6163729 DOI: 10.3390/ijms19092514] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023] Open
Abstract
Bladder Cancer (BC) represents a clinical and social challenge due to its high incidence and recurrence rates, as well as the limited advances in effective disease management. Currently, a combination of cytology and cystoscopy is the routinely used methodology for diagnosis, prognosis and disease surveillance. However, both the poor sensitivity of cytology tests as well as the high invasiveness and big variation in tumour stage and grade interpretation using cystoscopy, emphasizes the urgent need for improvements in BC clinical guidance. Liquid biopsy represents a new non-invasive approach that has been extensively studied over the last decade and holds great promise. Even though its clinical use is still compromised, multiple studies have recently focused on the potential application of biomarkers in liquid biopsies for BC, including circulating tumour cells and DNA, RNAs, proteins and peptides, metabolites and extracellular vesicles. In this review, we summarize the present knowledge on the different types of biomarkers, their potential use in liquid biopsy and clinical applications in BC.
Collapse
Affiliation(s)
- Iris Lodewijk
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
| | - Marta Dueñas
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Carolina Rubio
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Ester Munera-Maravilla
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
| | - Cristina Segovia
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Alejandra Bernardini
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Alicia Teijeira
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
| | - Jesús M Paramio
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Cristian Suárez-Cabrera
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
| |
Collapse
|
21
|
Maas M, Walz S, Stühler V, Aufderklamm S, Rausch S, Bedke J, Stenzl A, Todenhöfer T. Molecular markers in disease detection and follow-up of patients with non-muscle invasive bladder cancer. Expert Rev Mol Diagn 2018; 18:443-455. [DOI: 10.1080/14737159.2018.1469979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Moritz Maas
- Department of Urolo`gy, University Hospital Tuebingen, Tuebingen, Germany
| | - Simon Walz
- Department of Urolo`gy, University Hospital Tuebingen, Tuebingen, Germany
| | - Viktoria Stühler
- Department of Urolo`gy, University Hospital Tuebingen, Tuebingen, Germany
| | - Stefan Aufderklamm
- Department of Urolo`gy, University Hospital Tuebingen, Tuebingen, Germany
| | - Steffen Rausch
- Department of Urolo`gy, University Hospital Tuebingen, Tuebingen, Germany
| | - Jens Bedke
- Department of Urolo`gy, University Hospital Tuebingen, Tuebingen, Germany
| | - Arnulf Stenzl
- Department of Urolo`gy, University Hospital Tuebingen, Tuebingen, Germany
| | - Tilman Todenhöfer
- Department of Urolo`gy, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|