Battaglia E, Boehm J, Zheng Y, Jamieson AR, Gahan J, Majewicz Fey A. Rethinking Autonomous Surgery: Focusing on Enhancement over Autonomy.
Eur Urol Focus 2021;
7:696-705. [PMID:
34246619 PMCID:
PMC10394949 DOI:
10.1016/j.euf.2021.06.009]
[Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
CONTEXT
As robot-assisted surgery is increasingly used in surgical care, the engineering research effort towards surgical automation has also increased significantly. Automation promises to enhance surgical outcomes, offload mundane or repetitive tasks, and improve workflow. However, we must ask an important question: should autonomous surgery be our long-term goal?
OBJECTIVE
To provide an overview of the engineering requirements for automating control systems, summarize technical challenges in automated robotic surgery, and review sensing and modeling techniques to capture real-time human behaviors for integration into the robotic control loop for enhanced shared or collaborative control.
EVIDENCE ACQUISITION
We performed a nonsystematic search of the English language literature up to March 25, 2021. We included original studies related to automation in robot-assisted laparoscopic surgery and human-centered sensing and modeling.
EVIDENCE SYNTHESIS
We identified four comprehensive review papers that present techniques for automating portions of surgical tasks. Sixteen studies relate to human-centered sensing technologies and 23 to computer vision and/or advanced artificial intelligence or machine learning methods for skill assessment. Twenty-two studies evaluate or review the role of haptic or adaptive guidance during some learning task, with only a few applied to robotic surgery. Finally, only three studies discuss the role of some form of training in patient outcomes and none evaluated the effects of full or semi-autonomy on patient outcomes.
CONCLUSIONS
Rather than focusing on autonomy, which eliminates the surgeon from the loop, research centered on more fully understanding the surgeon's behaviors, goals, and limitations could facilitate a superior class of collaborative surgical robots that could be more effective and intelligent than automation alone.
PATIENT SUMMARY
We reviewed the literature for studies on automation in surgical robotics and on modeling of human behavior in human-machine interaction. The main application is to enhance the ability of surgical robotic systems to collaborate more effectively and intelligently with human surgeon operators.
Collapse