1
|
Zhang J, Kong L, Qu F, Chen T, Zhou X, Ge Z, Jin B, Zhang X, Zhao M. The predictive value of conventional magnetic resonance imaging combined with intravoxel incoherent motion parameters for evaluating maternal and neonatal clinical outcomes in patients with placenta accreta spectrum disorders. Placenta 2024; 151:10-17. [PMID: 38631235 DOI: 10.1016/j.placenta.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION We aimed to identify factors predictive of adverse maternal and neonatal outcomes in patients with placenta accreta spectrum (PAS) disorders using magnetic resonance imaging (MRI) and intravoxel incoherent motion (IVIM) parameters. METHOD Fifty-six normal singleton pregnancies at 33-39 weeks of gestation underwent MRI examination at 1.5 T. The IVIM parameters were obtained from the placenta. The correlation between the f value and postpartum hemorrhage (PPH) and between the f value and transfused units of red blood cells (RBCs) was estimated by linear regression. The correlation between various influencing factors (clinical risk factors, MRI features, and IVIM parameters) and poor outcomes was investigated using univariate and multivariate analyses. RESULT The interobserver agreement ranged from fair to excellent (k = 0.30-0.88). Multivariate analyses showed that previous cesarean sections, low signal intensity bands on T2WI and the D value were independent risk factors for adverse outcomes. The combination of three risk factors demonstrated the highest AUC of 0.903, with a sensitivity and specificity of 73.10 % and 96.90 %, respectively. Last, f was positively correlated with PPH and units of RBCs transfused. DISCUSSION Preoperative MRI features and IVIM parameters may be used to predict poor outcomes in patients with invasive placental disorders like PAS.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lingnan Kong
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Feifei Qu
- Research Collaboration Team, Siemens Healthineers Ltd, Shanghai, China
| | - Ting Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xin Zhou
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhiping Ge
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bai Jin
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xuan Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Meng Zhao
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
2
|
Cao J, Dong J, Su G, Zhang B, Zhu L, Wang M, Li Q, Zhang L, Wang D, Luo X. Comparison of the monoexponential and biexponential models of diffusion-weighted magnetic imaging in grading clear-cell renal cell carcinoma: a case-control study. Transl Androl Urol 2024; 13:792-801. [PMID: 38855592 PMCID: PMC11157396 DOI: 10.21037/tau-24-141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024] Open
Abstract
Background An accurate and noninvasive method to determine the preoperative clear-cell renal cell carcinoma (ccRCC) pathological grade is of great significance for surgical program selection and prognosis assessment. Previous studies have shown that diffusion-weighted imaging (DWI) has moderate value in grading ccRCC. But DWI cannot reflect the diffusion of tissue accurately because it is calculated using a monoexponential model. Intravoxel incoherent motion (IVIM) is the biexponential model of DWI. Only a few studies have examined the value of IVIM in grading ccRCC yet with inconsistent results. This study aimed to compare the value of DWI and IVIM in grading ccRCC. Methods In this study, 96 patients with pathologically confirmed ccRCC were evaluated by DWI and IVIM on a 3-T scanner. According to the World Health Organization/International Society of Urological Pathology (WHO/ISUP) classification system, these patients were divided into two groups: low-grade (grade I and II) and high-grade (grade III and IV) ccRCC. The apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction of pseudodiffusion (f) values were calculated. The Mann-Whitney test, receiver-operating characteristic (ROC) analysis, and the Delong test were used for statistical evaluations. Results (I) According to the WHO/ISUP nuclear grading system, 96 patients were divided into low-grade (grade I and II, 45 patients) and high-grade (grade III and IV, 51 patients) groups. (II) Compared with patients of low-grade ccRCC, the ADC and D values of those with high-grade ccRCC decreased while the D* and f values increased (P<0.05). (III) The cutoff value of the ADC, D, D*, and f in distinguishing low-grade from high-grade ccRCC was 1.50×10-3 mm2/s, 1.12×10-3 mm2/s, and 33.19×10-3 mm2/s, 0.31, respectively; the area under the curve (AUC) for the ADC, D, D*, and f values was 0.871, 0.942, 0.621, and 0.894, respectively, with the AUC of the D value being the highest; the sensitivity for the ADC, D, D*, and f values was 94.12%, 92.16%, 47.06%, and 92.16%, respectively; and the specificity for the ADC, D, D*, and f values was 66.67%, 91.11%, 77.78%, and 73.33%, respectively. (IV) Based on the Delong test, AUCD was significantly higher than AUCADC (P=0.02) and AUCD* (P<0.001), but there was no significant difference between AUCD and AUC f (P=0.18). Conclusions Compared with the monoexponential model DWI, the biexponential model IVIM was more accurate in grading ccRCC.
Collapse
Affiliation(s)
- Jinfeng Cao
- Department of Radiology, Zibo Central Hospital, Zibo, China
| | - Jinye Dong
- Department of Ultrasound, Weifang People’s Hospital, Weifang, China
| | - Ge Su
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Baohua Zhang
- Department of Pathology, Zibo Central Hospital, Zibo, China
| | - Lingchen Zhu
- Department of Radiology, Zibo Central Hospital, Zibo, China
| | - Min Wang
- Department of Radiology, Zibo Central Hospital, Zibo, China
| | - Qilin Li
- Department of Radiology, Zibo Central Hospital, Zibo, China
| | - Lesong Zhang
- Department of Radiology, Zibo Central Hospital, Zibo, China
| | - Dejian Wang
- Department of R&D, Hangzhou Healink Technology, Hangzhou, China
| | - Xin Luo
- Department of Radiology, Zibo Central Hospital, Zibo, China
| |
Collapse
|
3
|
Lu T, Wang Y, Deng Y, Wu C, Li X, Wang G. Diffusion and perfusion MRI parameters in the evaluation of placenta accreta spectrum disorders in patients with placenta previa. MAGMA (NEW YORK, N.Y.) 2022; 35:1009-1020. [PMID: 35802217 DOI: 10.1007/s10334-022-01023-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/22/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES To evaluate the placental function by monoexponential, biexponential, and diffusion kurtosis MR imaging (MRI) in patients with placenta previa. METHODS A total of 62 patients with placenta accreta spectrum (PAS) disorders and 11 patients with normal placentas were retrospectively enrolled, who underwent conventional diffusion-weighted imaging (DWI), intravoxel incoherent motion (IVIM), and diffusion kurtosis imaging (DKI). The apparent diffusion coefficient (ADC) and exponential ADC (eADC) from standard DWI, mean kurtosis (MK), and diffusion coefficient (MD) from DKI, and pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) from IVIM were measured and compared from the volumetric analysis. RESULTS Comparisons between patients with PAS disorders and patients with normal placentas demonstrated that MD mean, D mean, and D* mean values in patients with PAS disorders were significantly higher than those in patients with normal placentas (p < 0.05). Comparisons between patients with accreta, increta, and percreta, and patients with normal placentas showed that the D mean was significantly higher in patients with placenta increta and percreta than in patients with normal placentas (p < 0.05). CONCLUSION The accreta lesions in PAS disorders had deceased cellularity and increased blood movement. The alteration of placental cellularity was more prominent in placenta increta and percreta.
Collapse
Affiliation(s)
- Tao Lu
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Yishuang Wang
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Yan Deng
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Chengqian Wu
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Xiangqi Li
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Guotai Wang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, West Hi-tech Zone, Chengdu, 611731, China.
| |
Collapse
|
4
|
Lu T, Wang Y, Guo A, Cui W, Chen Y, Wang S, Wang G. Monoexponential, biexponential and diffusion kurtosis MR imaging models: quantitative biomarkers in the diagnosis of placenta accreta spectrum disorders. BMC Pregnancy Childbirth 2022; 22:349. [PMID: 35459146 PMCID: PMC9034554 DOI: 10.1186/s12884-022-04644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate the diagnostic value of monoexponential, biexponential, and diffusion kurtosis MR imaging (MRI) in differentiating placenta accreta spectrum (PAS) disorders. METHODS A total of 65 patients with PAS disorders and 27 patients with normal placentas undergoing conventional DWI, IVIM, and DKI were retrospectively reviewed. The mean, minimum, and maximum parameters including the apparent diffusion coefficient (ADC) and exponential ADC (eADC) from standard DWI, diffusion kurtosis (MK), and mean diffusion coefficient (MD) from DKI and pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) from IVIM were measured from the volumetric analysis and compared between patients with PAS disorders and patients with normal placentas. Univariate and multivariated logistic regression analyses were used to evaluate the value of the above parameters for differentiating PAS disorders. Receiver operating characteristics (ROC) curve analyses were used to evaluate the diagnostic efficiency of different diffusion parameters for predicting PAS disorders. RESULTS Multivariate analysis demonstrated that only D mean and D max differed significantly among all the studied parameters for differentiating PAS disorders when comparisons between accreta lesions in patients with PAS (AP) and whole placentas in patients with normal placentas (WP-normal) were performed (all p < 0.05). For discriminating PAS disorders, a combined use of these two parameters yielded an AUC of 0.93 with sensitivity, specificity, and accuracy of 83.08, 88.89, and 83.70%, respectively. CONCLUSION The diagnostic performance of the parameters from accreta lesions was better than that of the whole placenta. D mean and D max were associated with PAS disorders.
Collapse
Affiliation(s)
- Tao Lu
- Department of Radiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Yishuang Wang
- Department of Radiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Aiwen Guo
- Department of Radiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Wei Cui
- Department of Radiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Yazheng Chen
- Department of Radiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Shaoyu Wang
- Siemens Healthineer, No.278, Zhouzhu Road, Pudong New Area District, Shanghai, 201318, China
| | - Guotai Wang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, West Hi-tech Zone, Chengdu, 611731, China.
| |
Collapse
|
5
|
Antonelli A, Capuani S, Ercolani G, Dolciami M, Ciulla S, Celli V, Kuehn B, Piccioni MG, Giancotti A, Porpora MG, Catalano C, Manganaro L. Human placental microperfusion and microstructural assessment by intra-voxel incoherent motion MRI for discriminating intrauterine growth restriction: a pilot study. J Matern Fetal Neonatal Med 2022; 35:9667-9674. [PMID: 35291892 DOI: 10.1080/14767058.2022.2050365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES To evaluate the potential of Intravoxel Incoherent Motion (IVIM) Imaging in the quantification of placental micro-perfusion and microstructural features to identify and discriminate different forms of intrauterine growth restriction (IUGR) and normal fetuses pregnancies. METHODS Small for gestational age SGA (n = 8), fetal growth restriction FGR (n = 10), and normal (n = 49) pregnancies were included in the study. Placental Magnetic Resonance Imaging (MRI) was performed at 1.5 T using a diffusion-weighted sequence with 10 b-values. IVIM fractional perfusion (fp), diffusion (D), and pseudodiffusion (D*) were evaluated on the fetal and maternal placental sides. Correlations between IVIM parameters, Gestational Age (GA), Birth Weight (BW), and the presence or absence of prenatal fetoplacental Doppler abnormalities at the US were investigated in SGA, FGR, and normal placentae. RESULTS fp and D* of the placental fetal side discriminate between SGA and FGR (p = .021; p = .036, respectively), showing lower values in FGR. SGA showed an intermediate perfusion pattern in terms of fp and D* compared to FGR and normal controls. In the intrauterine growth restriction group (SGA + FGR), a significant positive correlation was found between fp and BW (p < .002) in the fetal placenta and a significant negative correlation was found between D and GA in both the fetal (p < .0009) and maternal (p < .006) placentas. CONCLUSIONS Perfusion IVIM parameters fp and D* may be useful to discriminate different micro-vascularization patterns in IUGR being helpful to detect microvascular subtle impairment even in fetuses without any sign of US Doppler impairment in utero. Moreover, fp may predict fetuses' body weight in intrauterine growth restriction pregnancies. The diffusion IVIM parameter D may reflect more rapid microstructural rearrangement of the placenta due to aging processes in the IUGR group than in normal controls.
Collapse
Affiliation(s)
- Amanda Antonelli
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Silvia Capuani
- Physics Department, CNR Institute for Complex Systems (ISC), "Sapienza" University of Rome, Rome, Italy
| | - Giada Ercolani
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Miriam Dolciami
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Sandra Ciulla
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Veronica Celli
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | | | - Maria Grazia Piccioni
- Department of Gynaecological-Obstetrical and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Antonella Giancotti
- Department of Gynaecological-Obstetrical and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Maria Grazia Porpora
- Department of Gynaecological-Obstetrical and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Lucia Manganaro
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
6
|
Liao Y, Sun T, Jiang L, Zhao Z, Liu T, Qian Z, Sun Y, Zhang Y, Wu D. Detecting abnormal placental microvascular flow in maternal and fetal diseases based on flow-compensated and non-compensated intravoxel incoherent motion imaging. Placenta 2022; 119:17-23. [DOI: 10.1016/j.placenta.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/28/2022]
|
7
|
Intravoxel incoherent motion MR imaging analysis for diagnosis of placenta accrete spectrum disorders: A pilot feasibility study. Magn Reson Imaging 2021; 80:26-32. [PMID: 33766730 DOI: 10.1016/j.mri.2021.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/04/2020] [Accepted: 03/11/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Placenta accreta spectrum (PAS) disorders occur when the placenta adheres abnormally to the uterine myometrium and can have devastating effects on maternal health due to risks of massive postpartum hemorrhage and possible need for emergency hysterectomy. PAS can be difficult to diagnose using routine clinical imaging with ultrasound and structural MRI. OBJECTIVE To determine feasibility of using intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) analysis in the diagnosis of the placenta accreta spectrum disorders in pregnant women. METHODS A total of 49 pregnant women were recruited including 14 with pathologically confirmed cases of PAS and 35 health controls without prior cesarean delivery and no suspected PAS by ultrasound. All women underwent diffusion-weighted imaging with an 8 b-value scanning sequence. A semi-automated method for image processing was used, creating a 3D object map, which was then fit to a biexponential signal decay curve for IVIM modeling to determine slow diffusion (Ds), fast diffusion (Df), and perfusion fraction (Pf). RESULTS Our results demonstrated a high degree of model fitting (R2 ≥ 0.98), with Pf significantly higher in those with PAS compared to healthy controls (0.451 ± 0.019 versus 0.341 ± 0.022, p = 0.002). By contrast, no statistical difference in the Df (1.70 × 10-2 ± 0.38 × 10-2 versus 1.48 × 10-2 ± 0.08 × 10-2 mm2/s, p = 0.211) or Ds (1.34 × 10-3 ± 0.10 × 10-3 versus 1.45 × 10-3 ± 0.007 × 10-3 mm2/s, p = 0.215) was found between subjects with PAS and healthy controls. CONCLUSIONS The use of MRI, and IVIM modeling in particular, may have potential in aiding in the diagnosis of PAS when other imaging modalities are equivocal. However, the widespread use of these techniques will require generation of large normative data sets, consistent sequencing protocols, and streamlined analysis techniques.
Collapse
|
8
|
Functional diagnosis of placenta accreta by intravoxel incoherent motion model diffusion-weighted imaging. Eur Radiol 2020; 31:740-748. [PMID: 32862290 DOI: 10.1007/s00330-020-07200-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/21/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To investigate the diagnostic value of intravoxel incoherent motion (IVIM) DWI for placenta accreta by comparing diffusion and perfusion characteristics of placentas with accreta lesions (APs) with those of normal placentas (NPs). METHODS Twenty-five pregnant women with AP and 24 with NP underwent 3-T magnetic resonance examinations with IVIM-DWI. The perfusion percentage (f), pseudo-diffusion coefficient (D*), and diffusion coefficient (D) values were calculated from different ROIs: the entire-plane of the AP (AP-ROI) and NP (NP-ROI) and the implanted (IR-ROI) and non-implanted region (NIR-ROI) of the AP. The AP-ROIs and NP-ROIs were compared using covariance analysis; the IR-ROIs and NIR-ROIs were compared using the Wilcoxon signed-rank test. ROC curves were produced to evaluate the parameters for predicting placenta accreta. RESULTS The f and D* values for the AP-ROIs ([45.0 ± 7.63]%, [11.64 ± 2.15]mm2/s) were significantly higher than those for the NP-ROIs ([31.85 ± 5.96]%, [9.04 ± 3.13]mm2/s) (both p < 0.05); the IR-ROIs (54.8%, 14.03 mm2/s) were also significantly higher than the NIR-ROIs (37.4%, 11.4 mm2/s) (both p < 0.05). No significant differences were found between the D values of the AP-ROIs and NP-ROIs (p > 0.05) or of the IR-ROIs and NIR-ROIs (p > 0.05). The areas under the curve for f and D* of the ROC curves were 0.93 and 0.79, respectively. CONCLUSIONS These results suggest that the IVIM parameters f and D* can be used to quantitatively evaluate the higher perfusion of AP when compared with NP. Furthermore, IVIM may be a useful functional diagnostic technique to predict placenta accreta. KEY POINTS • Intravoxel incoherent motion (IVIM) may be a useful diagnostic technique to quantitatively estimate the perfusion of the placenta. • The perfusion percentage (f) and pseudo-diffusion coefficient (D*) values differed significantly between placentas with accreta lesions and normal placentas. • ROC curves showed that perfusion percentage (f) and pseudo-diffusion coefficient (D*) values could accurately predict placenta accreta.
Collapse
|