Li H, Zhou Q, Wu Z, Lu X. Identification of novel key genes associated with uterine corpus endometrial carcinoma progression and prognosis.
ANNALS OF TRANSLATIONAL MEDICINE 2023;
11:100. [PMID:
36819577 PMCID:
PMC9929804 DOI:
10.21037/atm-22-6461]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Background
Uterine corpus endometrial carcinoma (UCEC) is a common malignant cancer type which affects the health of women worldwide. However, its molecular mechanism has not been elucidated.
Methods
To identify the hub modules and genes in UCEC associated with clinical phenotypes, the RNA sequencing data and clinical data of 543 UCEC samples were obtained from The Cancer Genome Atlas (TCGA) database and then subjected to weighted gene co-expression network analysis (WGCNA). To explore the potential biological function of the hub modules, Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted. Genes differentially expressed in UCEC were screened according to TCGA data using the "gdcDEAnalysis" package in R (The R Foundation for Statistical Computing). After intersecting with hub genes, the shared genes were used for further survival analyses. The relationship between gene expression level and clinical phenotype was analyzed in the TCGA-UCEC cohort in The University of ALabama at Birmingham CANcer data analysis Portal and the Human Protein Atlas. The microarray data set GSE17025 was also analyzed to validate the gene expression profiles.
Results
There were 19 coexpression modules generated by WGCNA. Among them, 2 modules with 198 hub genes were highly correlated with clinical features (especially histologic grade and clinical stage). Meanwhile, 4,003 differentially expressed genes (DEGs) were screened out, and 164 DEGs overlapped with hub genes. Survival analyses revealed that high expression of GINS4 and low expression of ESR1 showed a trend of poor prognosis. Further analyses demonstrated that both messenger RNA (mRNA) and protein expression profiles of GINS4 and ESR1 were significantly associated with UCEC development and progression in TCGA and GSE17025 cohorts.
Conclusions
Based on the integrated bioinformatic analyses, our data indicated that GINS4 and ESR1 might serve as potential prognostic markers and targets for UCEC therapy.
Collapse