1
|
Ippolito JE, Hartig JP, Bejar K, Nakhoul H, Sehn JK, Weimholt C, Grimsley G, Nunez E, Trikalinos NA, Chatterjee D, Kim EH, Mehta AS, Angel PM, Troyer DA, Leach RJ, Corey E, Wu JD, Drake RR. N-Linked Fucosylated Glycans Are Biomarkers for Prostate Cancer with a Neuroendocrine and Metastatic Phenotype. Mol Cancer Res 2025; 23:59-70. [PMID: 39417716 PMCID: PMC11694069 DOI: 10.1158/1541-7786.mcr-24-0660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
Prostate cancer is a heterogeneous disease with a spectrum of pathology and outcomes ranging from indolent to lethal. Although there have been recent advancements in prognostic tissue biomarkers, limitations still exist. We leveraged matrix-assisted laser desorption/ionization imaging of formalin-fixed, paraffin embedded prostate cancer specimens to determine if N-linked glycans expressed in the extracellular matrix of lethal neuroendocrine prostate cancer were also expressed in conventional prostate adenocarcinomas that were associated with poor outcomes. We found that N-glycan fucosylation was abundant in neuroendocrine prostate cancer as well as adenocarcinomas at the time of prostatectomy that eventually developed recurrent metastatic disease. Analysis of patient-derived xenografts revealed that this fucosylation signature was enriched differently across metastatic disease organ sites, with the highest abundance in liver metastases. These data suggest that N-linked fucosylated glycans could be an early tissue biomarker for poor prostate cancer outcomes. Implications: These studies identify that hyper-fucosylated N-linked glycans are enriched in neuroendocrine prostate cancer and conventional prostate adenocarcinomas that progress to metastatic disease, thus advancing biomarker discovery and providing insights into mechanisms underlying metastatic disease.
Collapse
Affiliation(s)
- Joseph E. Ippolito
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Jordan P. Hartig
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Kaitlyn Bejar
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, Texas
| | - Hani Nakhoul
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Jennifer K. Sehn
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Cody Weimholt
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri
| | - Grace Grimsley
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Elena Nunez
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Nikolaos A. Trikalinos
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Deyali Chatterjee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eric H. Kim
- Department of Surgery, University of Nevada, Reno, Nevada
- Department of Physiology and Cell Biology, University of Nevada, Reno, Nevada
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Dean A. Troyer
- Department of Microbiology, Eastern Virginia Medical School, San Antonio, Texas
- Department of Molecular Cell Biology and Pathology, Eastern Virginia Medical School, San Antonio, Texas
- Department of Pathology, UT Health, San Antonio, Texas
| | - Robin J. Leach
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, Texas
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Jennifer D. Wu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
2
|
Hartig JP, Bejar K, Young LE, Grimsley G, Bethard JR, Troyer DA, Hernandez J, Wu JD, Ippolito JE, Ball LE, Gelfond JA, Johnson-Pais TL, Mehta AS, Leach RJ, Angel PM, Drake RR. Determining the N-Glycan and Collagen/Extracellular Matrix Protein Compositions in a Novel Outcome Cohort of Prostate Cancer Tissue Microarrays Using MALDI-MSI. CANCER RESEARCH COMMUNICATIONS 2024; 4:3036-3048. [PMID: 39347566 PMCID: PMC11600299 DOI: 10.1158/2767-9764.crc-24-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/23/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
SIGNIFICANCE Using matrix-assisted laser desorption/ionization mass spectrometry imaging techniques on a unique cohort of prostate cancer tissues, we highlighted several molecular characteristics of matrix that have potential to act as early predictors of prostate cancer metastasis.
Collapse
Affiliation(s)
- Jordan P. Hartig
- Medical University of South Carolina, Charleston, South Carolina
| | - Kaitlyn Bejar
- University of Texas Health Science Center, San Antonio, Texas
| | | | - Grace Grimsley
- Medical University of South Carolina, Charleston, South Carolina
| | | | | | - Javier Hernandez
- Audie L. Murphy Memorial Veteran’s Administration Hospital, San Antonio, Texas
| | - Jennifer D. Wu
- Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Joseph E. Ippolito
- Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Lauren E. Ball
- Medical University of South Carolina, Charleston, South Carolina
| | | | | | - Anand S. Mehta
- Medical University of South Carolina, Charleston, South Carolina
| | - Robin J. Leach
- University of Texas Health Science Center, San Antonio, Texas
| | - Peggi M. Angel
- Medical University of South Carolina, Charleston, South Carolina
| | - Richard R. Drake
- Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
3
|
Andrikopoulou A, Goga K, Stefanaki K, Paschou SA, Athanasopoulos S, Zagouri F, Dimopoulos MA. Ectopic Cushing syndrome in metastatic castration‑resistant prostate cancer: A case report and review of literature. Oncol Lett 2024; 28:417. [PMID: 39006947 PMCID: PMC11240268 DOI: 10.3892/ol.2024.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/03/2024] [Indexed: 07/16/2024] Open
Abstract
Cushing's syndrome (CS), as a result of ectopic adrenocorticotropic hormone (ACTH) production, constitutes a common paraneoplastic manifestation of various malignancies, with the most common being small cell lung carcinoma. In the literature, fewer than fifty cases associating ectopic CS with prostate cancer have been documented. In the present study, the case of a 76-year old man suffering from castration-resistant prostate adenocarcinoma that had been treated with enzalutamide and luteinizing hormone-releasing hormone (LHRH) analogue for the last four years is presented. The patient presented to the emergency department with lower extremity muscle weakness, bradypsychia and hypokalemia. Following a thorough diagnostic evaluation, hypercortisolemia was identified. No suppression after low- and high-dose dexamethasone challenge, increased cortisol 24 h excretion and normal pituitary magnetic resonance imaging led to the diagnosis of ectopic CS. Immediate targeted therapy was initiated with adrenal steroidogenesis inhibitors, including metyrapone and ketoconazole along with chemotherapy with docetaxel and prednisolone. There was a remarkable decrease in cortisol levels within days and hospitalization was no longer required. The patient managed to complete three cycles of chemotherapy; unfortunately, he succumbed within three months of the diagnosis of ectopic CS. In the present study, all existing cases of paraneoplastic CS related to prostate cancer are reviewed. The aim of the current study was to highlight the need of early diagnosis and treatment of this entity as it may present with atypical clinical findings and potentially evolve to a life-threatening condition.
Collapse
Affiliation(s)
- Angeliki Andrikopoulou
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Kristiana Goga
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Katerina Stefanaki
- Department of Clinical Therapeutics, Endocrine Unit and Diabetes Centre, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Stavroula A. Paschou
- Department of Clinical Therapeutics, Endocrine Unit and Diabetes Centre, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Stavros Athanasopoulos
- Department of Clinical Therapeutics, Endocrine Unit and Diabetes Centre, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
4
|
Elbialy A, Kappala D, Desai D, Wang P, Fadiel A, Wang SJ, Makary MS, Lenobel S, Sood A, Gong M, Dason S, Shabsigh A, Clinton S, Parwani AV, Putluri N, Shvets G, Li J, Liu X. Patient-Derived Conditionally Reprogrammed Cells in Prostate Cancer Research. Cells 2024; 13:1005. [PMID: 38920635 PMCID: PMC11201841 DOI: 10.3390/cells13121005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Prostate cancer (PCa) remains a leading cause of mortality among American men, with metastatic and recurrent disease posing significant therapeutic challenges due to a limited comprehension of the underlying biological processes governing disease initiation, dormancy, and progression. The conventional use of PCa cell lines has proven inadequate in elucidating the intricate molecular mechanisms driving PCa carcinogenesis, hindering the development of effective treatments. To address this gap, patient-derived primary cell cultures have been developed and play a pivotal role in unraveling the pathophysiological intricacies unique to PCa in each individual, offering valuable insights for translational research. This review explores the applications of the conditional reprogramming (CR) cell culture approach, showcasing its capability to rapidly and effectively cultivate patient-derived normal and tumor cells. The CR strategy facilitates the acquisition of stem cell properties by primary cells, precisely recapitulating the human pathophysiology of PCa. This nuanced understanding enables the identification of novel therapeutics. Specifically, our discussion encompasses the utility of CR cells in elucidating PCa initiation and progression, unraveling the molecular pathogenesis of metastatic PCa, addressing health disparities, and advancing personalized medicine. Coupled with the tumor organoid approach and patient-derived xenografts (PDXs), CR cells present a promising avenue for comprehending cancer biology, exploring new treatment modalities, and advancing precision medicine in the context of PCa. These approaches have been used for two NCI initiatives (PDMR: patient-derived model repositories; HCMI: human cancer models initiatives).
Collapse
Affiliation(s)
- Abdalla Elbialy
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Computational Oncology Unit, The University of Chicago Comprehensive Cancer Center, 900 E 57th Street, KCBD Bldg., STE 4144, Chicago, IL 60637, USA
| | - Deepthi Kappala
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Dhruv Desai
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Peng Wang
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Ahmed Fadiel
- Computational Oncology Unit, The University of Chicago Comprehensive Cancer Center, 900 E 57th Street, KCBD Bldg., STE 4144, Chicago, IL 60637, USA
| | - Shang-Jui Wang
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mina S. Makary
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Division of Vascular and Interventional Radiology, Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Scott Lenobel
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Division of Musculoskeletal Imaging, Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Akshay Sood
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Michael Gong
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Shawn Dason
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmad Shabsigh
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Steven Clinton
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Anil V. Parwani
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Departments of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA
| | - Jenny Li
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Departments of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Xuefeng Liu
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Departments of Pathology, Urology, and Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Hyung J, Kim HD, Kim GH, Cho YM, Ryu YM, Kim SY, Park I, Yoon S, Lee JL. Clinical Outcomes of Small Cell Carcinoma of the Genitourinary Tract and the Prognostic Significance of the Tumor Immune Microenvironment. Cancer Res Treat 2024; 56:624-633. [PMID: 38037320 PMCID: PMC11016647 DOI: 10.4143/crt.2023.1076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
PURPOSE Small cell carcinoma of the genitourinary tract (GU SCC) is a rare disease with a poor prognosis. There are only limited treatment options due to insufficient understanding of the disease. In this study, we analyzed the clinical outcomes of patients with GU SCC and their association with the tumor immune phenotype. MATERIALS AND METHODS Patients diagnosed with GU SCC were included. Survival outcomes according to the primary location (prostate and non-prostate) and stages (limited disease [LD] and extensive disease [ED]) were analyzed. We performed multiplex immunohistochemistry (IHC) in non-prostate SCC patients and analyzed the immune cell population. RESULTS A total of 77 patients were included in this study. Their median age was 71 years, 67 patients (87.0%) were male, and 48 patients (62.3%) had non-prostate SCC. All patients with ED (n=31, 40.3%) received etoposide plus platinum (EP) as initial treatment and median overall survival (OS) was 9.7 months (95% confidence interval [CI], 7.1 to 18.6). Patients with LD (n=46, 59.7%) received EP followed by radiotherapy or surgery, and 24-months OS rate was 63.6% (95% CI, 49.9 to 81.0). The multiplex IHC analysis of 21 patients with non-prostate SCC showed that patients with a higher density of programmed death-ligand 1-expressing CD68+CD206+ M2-like macrophages had significantly worse OS outcomes with an adjusted hazards ratio of 4.17 (95% CI, 1.25 to 14.29; adjusted p=0.02). CONCLUSION Patients with GU SCC had a poor prognosis, even those with localized disease. The tumor immune phenotypes were significantly associated with survival. This finding provides new insights for treating GU SCC.
Collapse
Affiliation(s)
- Jaewon Hyung
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyung-Don Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gi Hwan Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon-Mi Ryu
- Asan Institute of Life Sciences, Asan Medical Center, Seoul, Korea
| | - Sang-Yeob Kim
- Asan Institute of Life Sciences, Asan Medical Center, Seoul, Korea
| | - Inkeun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Lyun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Abufaraj M, Ramadan R, Alkhatib A. Paraneoplastic Syndromes in Neuroendocrine Prostate Cancer: A Systematic Review. Curr Oncol 2024; 31:1618-1632. [PMID: 38534956 PMCID: PMC10969281 DOI: 10.3390/curroncol31030123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 05/26/2024] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a rare subtype of prostate cancer (PCa) that usually results in poor clinical outcomes and may be accompanied by paraneoplastic syndromes (PNS). NEPC is becoming more frequent. It can initially manifest as PNS, complicating diagnosis. Therefore, we reviewed the literature on the different PNS associated with NEPC. We systematically reviewed English-language articles from January 2017 to September 2023, identifying 17 studies meeting PRISMA guidelines for NEPC and associated PNS. A total of 17 articles were included in the review. Among these, Cushing's Syndrome (CS) due to ectopic Adrenocorticotropic hormone (ACTH) secretion was the most commonly reported PNS. Other PNS included syndrome of inappropriate Anti-Diuretic Hormone secretion (SIADH), Anti-Hu-mediated chronic intestinal pseudo-obstruction (CIPO), limbic encephalitis, Evans Syndrome, hypercalcemia, dermatomyositis, and polycythemia. Many patients had a history of prostate adenocarcinoma treated with androgen deprivation therapy (ADT) before neuroendocrine features developed. The mean age was 65.5 years, with a maximum survival of 9 months post-diagnosis. NEPC is becoming an increasingly more common subtype of PCa that can result in various PNS. This makes the diagnosis and treatment of NEPC challenging. Further research is crucial to understanding these syndromes and developing standardized, targeted treatments to improve patient survival.
Collapse
Affiliation(s)
- Mohammad Abufaraj
- Division of Urology, Department of Special Surgery, The University of Jordan, Amman 11942, Jordan
| | - Raghad Ramadan
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Amro Alkhatib
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
7
|
Steadman K, You S, Srinivas DV, Mouakkad L, Yan Y, Kim M, Venugopal SV, Tanaka H, Freeman MR. Autonomous action and cooperativity between the ONECUT2 transcription factor and its 3' untranslated region. Front Cell Dev Biol 2023; 11:1206259. [PMID: 37484909 PMCID: PMC10356556 DOI: 10.3389/fcell.2023.1206259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/16/2023] [Indexed: 07/25/2023] Open
Abstract
The transcription factor ONECUT2 (OC2) is a master transcriptional regulator operating in metastatic castration-resistant prostate cancer that suppresses androgen receptor activity and promotes neural differentiation and tumor cell survival. OC2 mRNA possesses an unusually long (14,575 nt), evolutionarily conserved 3' untranslated region (3' UTR) with many microRNA binding sites, including up to 26 miR-9 sites. This is notable because miR-9 targets many of the same genes regulated by the OC2 protein. Paradoxically, OC2 expression is high in tissues with high miR-9 expression. The length and complex secondary structure of OC2 mRNA suggests that it is a potent master competing endogenous RNA (ceRNA) capable of sequestering miRNAs. Here, we describe a novel role for OC2 3' UTR in lethal prostate cancer consistent with a function as a ceRNA. A plausible ceRNA network in OC2-driven tumors was constructed computationally and then confirmed in prostate cancer cell lines. Genes regulated by OC2 3' UTR exhibited high overlap (up to 45%) with genes driven by the overexpression of the OC2 protein in the absence of 3' UTR, indicating a cooperative functional relationship between the OC2 protein and its 3' UTR. These overlapping networks suggest an evolutionarily conserved mechanism to reinforce OC2 transcription by protection of OC2-regulated mRNAs from miRNA suppression. Both the protein and 3' UTR showed increased polycomb-repressive complex activity. The expression of OC2 3' UTR mRNA alone (without protein) dramatically increased the metastatic potential by in vitro assays. Additionally, OC2 3' UTR increased the expression of Aldo-Keto reductase and UDP-glucuronyl transferase family genes responsible for altering the androgen synthesis pathway. ONECUT2 represents the first-described dual-modality transcript that operates as both a key transcription factor driving castration-resistant prostate cancer and a master ceRNA that promotes and protects the same transcriptional network.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Michael R. Freeman
- Division of Cancer Biology and Therapeutics, Biomedical Sciences and Pathology and Laboratory Medicine, Department of Urology, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, United States
| |
Collapse
|
8
|
Oseni SO, Naar C, Pavlović M, Asghar W, Hartmann JX, Fields GB, Esiobu N, Kumi-Diaka J. The Molecular Basis and Clinical Consequences of Chronic Inflammation in Prostatic Diseases: Prostatitis, Benign Prostatic Hyperplasia, and Prostate Cancer. Cancers (Basel) 2023; 15:3110. [PMID: 37370720 DOI: 10.3390/cancers15123110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic inflammation is now recognized as one of the major risk factors and molecular hallmarks of chronic prostatitis, benign prostatic hyperplasia (BPH), and prostate tumorigenesis. However, the molecular mechanisms by which chronic inflammation signaling contributes to the pathogenesis of these prostate diseases are poorly understood. Previous efforts to therapeutically target the upstream (e.g., TLRs and IL1-Rs) and downstream (e.g., NF-κB subunits and cytokines) inflammatory signaling molecules in people with these conditions have been clinically ambiguous and unsatisfactory, hence fostering the recent paradigm shift towards unraveling and understanding the functional roles and clinical significance of the novel and relatively underexplored inflammatory molecules and pathways that could become potential therapeutic targets in managing prostatic diseases. In this review article, we exclusively discuss the causal and molecular drivers of prostatitis, BPH, and prostate tumorigenesis, as well as the potential impacts of microbiome dysbiosis and chronic inflammation in promoting prostate pathologies. We specifically focus on the importance of some of the underexplored druggable inflammatory molecules, by discussing how their aberrant signaling could promote prostate cancer (PCa) stemness, neuroendocrine differentiation, castration resistance, metabolic reprogramming, and immunosuppression. The potential contribution of the IL1R-TLR-IRAK-NF-κBs signaling molecules and NLR/inflammasomes in prostate pathologies, as well as the prospective benefits of selectively targeting the midstream molecules in the various inflammatory cascades, are also discussed. Though this review concentrates more on PCa, we envision that the information could be applied to other prostate diseases. In conclusion, we have underlined the molecular mechanisms and signaling pathways that may need to be targeted and/or further investigated to better understand the association between chronic inflammation and prostate diseases.
Collapse
Affiliation(s)
- Saheed Oluwasina Oseni
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Corey Naar
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mirjana Pavlović
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Waseem Asghar
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James X Hartmann
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, and I-HEALTH, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Nwadiuto Esiobu
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James Kumi-Diaka
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
9
|
Masud N, Aldahish A, Iczkowski KA, Kale A, Shah GV. Zinc finger protein‑like 1 is a novel neuroendocrine biomarker for prostate cancer. Int J Oncol 2023; 62:38. [PMID: 36799165 PMCID: PMC9937688 DOI: 10.3892/ijo.2023.5486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/26/2022] [Indexed: 02/08/2023] Open
Abstract
Prostate‑derived calcitonin (CT) and its receptor induce tumorigenicity and increase metastatic potential of prostate cancer (PC). CT‑inducible genes in human prostate were identified by subtraction hybridization. Among these genes, zinc finger protein like 1 (ZFPL1) protein was interesting since it was abundantly expressed in malignant prostates but was almost absent in benign prostates. ZFPL1 expression was upregulated by CT and androgens, and ZFPL1 protein was secreted by prostate tumor cells through exosomal secretion. Serum levels of ZFPL1 in cancer patients were at least 4‑fold higher than those in the sera of cancer‑free individuals. Cell biology of ZFPL1 suggests its localization in Golgi bodies and exosomes, and its colocalization with chromogranin A and CD44. These results suggested that ZFPL1 is secreted by tumor cells of neuroendocrine (NE)/stem cell phenotype. The knockdown of endogenous ZFPL1 in (PC) cells led to a remarkable decrease in cell proliferation, and invasion while increasing their apoptosis. As expected, the overexpression of ZFPL1 in prostate cells had an opposite effect on these functions. The knockdown of ZFPL1 in PC cells also decreased Akt phosphorylation, suggesting the actions of ZFPL1 may be mediated through the PI3K‑Akt pathway. Moreover, the present results revealed that ZFPL1 is released by tumors cells of NE or androgen‑independent phenotype and its serum levels are significantly higher in cancer patients, suggesting that it may serve as a blood‑based non‑invasive biomarker of aggressive PC.
Collapse
Affiliation(s)
- Neshat Masud
- Pharmacology, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Afaf Aldahish
- Pharmacology, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Kenneth A. Iczkowski
- Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ajay Kale
- Pharmacology, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Girish V. Shah
- Pharmacology, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| |
Collapse
|
10
|
Tan C, Triay J. Ectopic adrenocorticotrophic hormone syndrome secondary to treatment-related neuroendocrine differentiation of metastatic castrate-resistant prostate cancer. Endocrinol Diabetes Metab Case Rep 2023; 2023:22-0347. [PMID: 36625254 PMCID: PMC9874952 DOI: 10.1530/edm-22-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Summary A 64-year-old man with progressive metastatic castrate-resistant prostate adenocarcinoma presented with recurrent fluid overload, severe hypokalaemia with metabolic alkalosis and loss of glycaemic control. Clinical features were facial plethora, skin bruising and proximal myopathy. Plasma adrenocorticotrophic hormone (ACTH), serum cortisol and 24-h urinary cortisol levels were elevated. Low-dose dexamethasone failed to suppress cortisol. Pituitary MRI was normal and 68Gallium-DOTATATE PET-CT scan showed only features of metastatic prostate cancer. He was diagnosed with ectopic ACTH syndrome secondary to treatment-related neuroendocrine prostate cancer differentiation. Medical management was limited by clinical deterioration, accessibility of medications and cancer progression. Ketoconazole and cabergoline were utilised, but cortisol remained uncontrolled. He succumbed 5 months following diagnosis. Treatment-related neuroendocrine differentiation of prostate adenocarcinoma is a rare cause of ectopic ACTH syndrome. Learning points Neuroendocrine differentiation following prostate adenocarcinoma treatment with androgen deprivation has been described. Ectopic adrenocorticotrophic hormone (ACTH) syndrome should be considered where patients with metastatic prostate cancer develop acute electrolyte disturbance or fluid overload. Ketoconazole interferes with adrenal and gonadal steroidogenesis and can be used in ectopic ACTH syndrome, but the impact may be insufficient. Inhibition of gonadal steroidogenesis is favourable in prostate cancer. More data are required to evaluate the use of cabergoline in ectopic ACTH syndrome. Ectopic ACTH syndrome requires prompt management and is challenging in the face of metastatic cancer.
Collapse
|
11
|
Wang X, Brea L, Lu X, Gritsina G, Park SH, Xie W, Zhao JC, Yu J. FOXA1 inhibits hypoxia programs through transcriptional repression of HIF1A. Oncogene 2022; 41:4259-4270. [PMID: 35931888 PMCID: PMC9464719 DOI: 10.1038/s41388-022-02423-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/11/2022]
Abstract
Intratumoral hypoxia is associated with castration-resistant prostate cancer (CRPC), a lethal disease. FOXA1 is an epithelial transcription factor that is down-regulated in CRPC. We have previously reported that FOXA1 loss induces epithelial-mesenchymal transition (EMT) and cell motility through elevated TGFβ signaling. However, whether FOXA1 directly regulates hypoxia pathways of CRPC tumors has not been previously studied. Here we report that FOXA1 down-regulation induces hypoxia transcriptional programs, and FOXA1 level is negatively correlated with hypoxia markers in clinical prostate cancer (PCa) samples. Mechanistically, FOXA1 directly binds to an intragenic enhancer of HIF1A to inhibit its expression, and HIF1A, in turn, is critical in mediating FOXA1 loss-induced hypoxia gene expression. Further, we identify CCL2, a chemokine ligand that modulates tumor microenvironment and promotes cancer progression, as a crucial target of the FOXA1-HIF1A axis. We found that FOXA1 loss leads to immunosuppressive macrophage infiltration and increased cell invasion, dependent on HIF1A expression. Critically, therapeutic targeting of HIF1A-CCL2 using pharmacological inhibitors abolishes FOXA1 loss-induced macrophage infiltration and PCa cell invasion. In summary, our study reveals an essential role of FOXA1 in controlling the hypoxic tumor microenvironment and establishes the HIF1A-CCL2 axis as one mechanism of FOXA1 loss-induced CRPC progression.
Collapse
Affiliation(s)
- Xiaohai Wang
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lourdes Brea
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiaodong Lu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Galina Gritsina
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Su H. Park
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Wanqing Xie
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jonathan C. Zhao
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
12
|
Pokhrel A, Nair K, Jaswani V, Salyana M, Mooppan U, Wang JC. Review of Checkpoint Inhibitor Immunotherapy in Neuroendocrine Tumor of Prostate and Our Experience in 2 Cases. J Investig Med High Impact Case Rep 2022; 10:23247096221093886. [PMID: 35473437 PMCID: PMC9052808 DOI: 10.1177/23247096221093886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 11/30/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a rare entity. De novo NEPC is extremely rare; other cases are usually adenocarcinoma previously treated with hormonal therapies transforming to NEPC. Most of the cases are metastatic at diagnosis and regardless of the histology types, the prognosis is poor. In this report, we reviewed the checkpoint inhibitor (CPI) immunotherapies used for neuroendocrine tumors of the prostate. Very limited data with only a few cases were published which showed a limited activity by immunotherapy; therefore, we present our experience of 2 cases: (1) adenocarcinoma with foci of NEPC and (2) adenocarcinoma transforming to NEPC after treatment with androgen deprivation therapy (ADT); both of which were initially managed with ADT, chemotherapy followed by immunotherapy with durvalumab, a programmed death ligand 1 inhibitor. In these 2 cases, CPI therapy showed limited efficacy, suggesting that neuroendocrine histology is not very responsive to CPI treatment, regardless if onset is early or late. Other therapies need to be explored for the treatment of NEPC.
Collapse
Affiliation(s)
- Akriti Pokhrel
- Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Kiron Nair
- Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Vijay Jaswani
- Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | | | - Unni Mooppan
- Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Jen C Wang
- Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| |
Collapse
|
13
|
Slabáková E, Kahounová Z, Procházková J, Souček K. Regulation of Neuroendocrine-like Differentiation in Prostate Cancer by Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040075. [PMID: 34940756 PMCID: PMC8704250 DOI: 10.3390/ncrna7040075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) represents a variant of prostate cancer that occurs in response to treatment resistance or, to a much lesser extent, de novo. Unravelling the molecular mechanisms behind transdifferentiation of cancer cells to neuroendocrine-like cancer cells is essential for development of new treatment opportunities. This review focuses on summarizing the role of small molecules, predominantly microRNAs, in this phenomenon. A published literature search was performed to identify microRNAs, which are reported and experimentally validated to modulate neuroendocrine markers and/or regulators and to affect the complex neuroendocrine phenotype. Next, available patients’ expression datasets were surveyed to identify deregulated microRNAs, and their effect on NEPC and prostate cancer progression is summarized. Finally, possibilities of miRNA detection and quantification in body fluids of prostate cancer patients and their possible use as liquid biopsy in prostate cancer monitoring are discussed. All the addressed clinical and experimental contexts point to an association of NEPC with upregulation of miR-375 and downregulation of miR-34a and miR-19b-3p. Together, this review provides an overview of different roles of non-coding RNAs in the emergence of neuroendocrine prostate cancer.
Collapse
|
14
|
Macedo-Silva C, Benedetti R, Ciardiello F, Cappabianca S, Jerónimo C, Altucci L. Epigenetic mechanisms underlying prostate cancer radioresistance. Clin Epigenetics 2021; 13:125. [PMID: 34103085 PMCID: PMC8186094 DOI: 10.1186/s13148-021-01111-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy (RT) is one of the mainstay treatments for prostate cancer (PCa), a highly prevalent neoplasm among males worldwide. About 30% of newly diagnosed PCa patients receive RT with a curative intent. However, biochemical relapse occurs in 20–40% of advanced PCa treated with RT either alone or in combination with adjuvant-hormonal therapy. Epigenetic alterations, frequently associated with molecular variations in PCa, contribute to the acquisition of a radioresistant phenotype. Increased DNA damage repair and cell cycle deregulation decreases radio-response in PCa patients. Moreover, the interplay between epigenome and cell growth pathways is extensively described in published literature. Importantly, as the clinical pattern of PCa ranges from an indolent tumor to an aggressive disease, discovering specific targetable epigenetic molecules able to overcome and predict PCa radioresistance is urgently needed. Currently, histone-deacetylase and DNA-methyltransferase inhibitors are the most studied classes of chromatin-modifying drugs (so-called ‘epidrugs’) within cancer radiosensitization context. Nonetheless, the lack of reliable validation trials is a foremost drawback. This review summarizes the major epigenetically induced changes in radioresistant-like PCa cells and describes recently reported targeted epigenetic therapies in pre-clinical and clinical settings. ![]()
Collapse
Affiliation(s)
- Catarina Macedo-Silva
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.,Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.
| |
Collapse
|
15
|
Zhu M, Huang Y, Bender ME, Girard L, Kollipara R, Eglenen-Polat B, Naito Y, Savage TK, Huffman KE, Koyama S, Kumanogoh A, Minna JD, Johnson JE, Akbay EA. Evasion of Innate Immunity Contributes to Small Cell Lung Cancer Progression and Metastasis. Cancer Res 2021; 81:1813-1826. [PMID: 33495232 PMCID: PMC8137539 DOI: 10.1158/0008-5472.can-20-2808] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/07/2020] [Accepted: 01/12/2021] [Indexed: 11/16/2022]
Abstract
Small cell lung cancer (SCLC) is a pulmonary neuroendocrine cancer with very poor prognosis and limited effective therapeutic options. Most patients are diagnosed at advanced stages, and the exact reason for the aggressive and metastatic phenotype of SCLC is completely unknown. Despite a high tumor mutational burden, responses to immune checkpoint blockade are minimal in patients with SCLC. This may reflect defects in immune surveillance. Here we illustrate that evading natural killer (NK) surveillance contributes to SCLC aggressiveness and metastasis, primarily through loss of NK-cell recognition of these tumors by reduction of NK-activating ligands (NKG2DL). SCLC primary tumors expressed very low level of NKG2DL mRNA and SCLC lines express little to no surface NKG2DL at the protein level. Chromatin immunoprecipitation sequencing showed NKG2DL loci in SCLC are inaccessible compared with NSCLC, with few H3K27Ac signals. Restoring NKG2DL in preclinical models suppressed tumor growth and metastasis in an NK cell-dependent manner. Likewise, histone deacetylase inhibitor treatment induced NKG2DL expression and led to tumor suppression by inducing infiltration and activation of NK and T cells. Among all the common tumor types, SCLC and neuroblastoma were the lowest NKG2DL-expressing tumors, highlighting a lineage dependency of this phenotype. In conclusion, these data show that epigenetic silencing of NKG2DL results in a lack of stimulatory signals to engage and activate NK cells, highlighting the underlying immune avoidance of SCLC and neuroblastoma. SIGNIFICANCE: This study discovers in SCLC and neuroblastoma impairment of an inherent mechanism of recognition of tumor cells by innate immunity and proposes that this mechanism can be reactivated to promote immune surveillance.
Collapse
Affiliation(s)
- Mingrui Zhu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, Dallas, Texas
| | - Yi Huang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, Dallas, Texas
| | - Matthew E Bender
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, Dallas, Texas
| | - Luc Girard
- Simmons Comprehensive Cancer Center, Dallas, Texas
- Hamon Center for Therapeutic Oncology Research University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rahul Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Buse Eglenen-Polat
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, Dallas, Texas
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of medicine, Osaka University, Suita, Japan
| | - Trisha K Savage
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kenneth E Huffman
- Simmons Comprehensive Cancer Center, Dallas, Texas
- Hamon Center for Therapeutic Oncology Research University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of medicine, Osaka University, Suita, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of medicine, Osaka University, Suita, Japan
| | - John D Minna
- Simmons Comprehensive Cancer Center, Dallas, Texas
- Hamon Center for Therapeutic Oncology Research University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jane E Johnson
- Simmons Comprehensive Cancer Center, Dallas, Texas
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Esra A Akbay
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas.
- Simmons Comprehensive Cancer Center, Dallas, Texas
| |
Collapse
|
16
|
Ehsani M, David FO, Baniahmad A. Androgen Receptor-Dependent Mechanisms Mediating Drug Resistance in Prostate Cancer. Cancers (Basel) 2021; 13:1534. [PMID: 33810413 PMCID: PMC8037957 DOI: 10.3390/cancers13071534] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/16/2022] Open
Abstract
Androgen receptor (AR) is a main driver of prostate cancer (PCa) growth and progression as well as the key drug target. Appropriate PCa treatments differ depending on the stage of cancer at diagnosis. Although androgen deprivation therapy (ADT) of PCa is initially effective, eventually tumors develop resistance to the drug within 2-3 years of treatment onset leading to castration resistant PCa (CRPC). Castration resistance is usually mediated by reactivation of AR signaling. Eventually, PCa develops additional resistance towards treatment with AR antagonists that occur regularly, also mostly due to bypass mechanisms that activate AR signaling. This tumor evolution with selection upon therapy is presumably based on a high degree of tumor heterogenicity and plasticity that allows PCa cells to proliferate and develop adaptive signaling to the treatment and evolve pathways in therapy resistance, including resistance to chemotherapy. The therapy-resistant PCa phenotype is associated with more aggressiveness and increased metastatic ability. By far, drug resistance remains a major cause of PCa treatment failure and lethality. In this review, various acquired and intrinsic mechanisms that are AR‑dependent and contribute to PCa drug resistance will be discussed.
Collapse
Affiliation(s)
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740 Jena, Germany; (M.E.); (F.O.D.)
| |
Collapse
|
17
|
Cyrta J, Augspach A, De Filippo MR, Prandi D, Thienger P, Benelli M, Cooley V, Bareja R, Wilkes D, Chae SS, Cavaliere P, Dephoure N, Uldry AC, Lagache SB, Roma L, Cohen S, Jaquet M, Brandt LP, Alshalalfa M, Puca L, Sboner A, Feng F, Wang S, Beltran H, Lotan T, Spahn M, Kruithof-de Julio M, Chen Y, Ballman KV, Demichelis F, Piscuoglio S, Rubin MA. Role of specialized composition of SWI/SNF complexes in prostate cancer lineage plasticity. Nat Commun 2020; 11:5549. [PMID: 33144576 PMCID: PMC7642293 DOI: 10.1038/s41467-020-19328-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 10/07/2020] [Indexed: 01/06/2023] Open
Abstract
Advanced prostate cancer initially responds to hormonal treatment, but ultimately becomes resistant and requires more potent therapies. One mechanism of resistance observed in around 10–20% of these patients is lineage plasticity, which manifests in a partial or complete small cell or neuroendocrine prostate cancer (NEPC) phenotype. Here, we investigate the role of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complex in NEPC. Using large patient datasets, patient-derived organoids and cancer cell lines, we identify mSWI/SNF subunits that are deregulated in NEPC and demonstrate that SMARCA4 (BRG1) overexpression is associated with aggressive disease. We also show that SWI/SNF complexes interact with different lineage-specific factors in NEPC compared to prostate adenocarcinoma. These data point to a role for mSWI/SNF complexes in therapy-related lineage plasticity, which may also be relevant for other solid tumors. The differentiation of prostate adenocarcinoma to neuroendocrine prostate cancer (CRPC-NE) is a mechanism of resistance to androgen deprivation therapy. Here the authors show that SWI/SNF chromatin-remodeling complex is deregulated in CRPC-NE and that the complex interacts with different lineage specific factors throughout prostate cancer transdifferentiation.
Collapse
Affiliation(s)
- Joanna Cyrta
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland.,The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Anke Augspach
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Maria Rosaria De Filippo
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008, Bern, Switzerland.,Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, 4051, Basel, Switzerland
| | - Davide Prandi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122, Trento, Italy
| | - Phillip Thienger
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Matteo Benelli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122, Trento, Italy.,Bioinformatics Unit, Hospital of Prato, 59100, Prato, Italy
| | - Victoria Cooley
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Rohan Bareja
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David Wilkes
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Sung-Suk Chae
- Department of Laboratory Medicine and Pathology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Paola Cavaliere
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Noah Dephoure
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA.,Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Anne-Christine Uldry
- Proteomics Mass Spectrometry Core Facility, University of Bern, 3010, Bern, Switzerland
| | - Sophie Braga Lagache
- Proteomics Mass Spectrometry Core Facility, University of Bern, 3010, Bern, Switzerland
| | - Luca Roma
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, 4051, Basel, Switzerland
| | - Sandra Cohen
- Department of Laboratory Medicine and Pathology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Muriel Jaquet
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Laura P Brandt
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Mohammed Alshalalfa
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Loredana Puca
- Department of Medicine, Division of Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Andrea Sboner
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.,HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.,Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Felix Feng
- Proteomics Mass Spectrometry Core Facility, University of Bern, 3010, Bern, Switzerland
| | - Shangqian Wang
- Human Oncology and Pathogenesis Program and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Himisha Beltran
- Department of Medicine, Division of Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA.,Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Tamara Lotan
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Martin Spahn
- Lindenhofspital Bern, Prostate Center Bern, 3012, Bern, Switzerland.,Department of Urology, Essen University Hospital, University of Duisburg-Essen, 47057, Essen, Germany
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland.,Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008, Bern, Switzerland.,Department of Urology, Inselspital, 3010, Bern, Switzerland
| | - Yu Chen
- Department of Medicine, Division of Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Karla V Ballman
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francesca Demichelis
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122, Trento, Italy
| | - Salvatore Piscuoglio
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, 4051, Basel, Switzerland.,Visceral Surgery Research Laboratory, Clarunis, Department of Biomedicine, University of Basel, 4051, Basel, Switzerland.,Clarunis Universitäres Bauchzentrum Basel, 4002, Basel, Switzerland
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland. .,Inselspital, 3010, Bern, Switzerland. .,Bern Center for Precision Medicine, 3008, Bern, Switzerland.
| |
Collapse
|
18
|
Akoto T, Bhagirath D, Saini S. MicroRNAs in treatment-induced neuroendocrine differentiation in prostate cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:804-818. [PMID: 33426506 PMCID: PMC7793563 DOI: 10.20517/cdr.2020.30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prostate cancer is a condition commonly associated with men worldwide. Androgen deprivation therapy remains one of the targeted therapies. However, after some years, there is biochemical recurrence and metastatic progression into castration-resistant prostate cancer (CRPC). CRPC cases are treated with second-line androgen deprivation therapy, after which, these CRPCs transdifferentiate to form neuroendocrine prostate cancer (NEPC), a highly aggressive variant of CRPC. NEPC arises via a reversible transdifferentiation process, known as neuroendocrine differentiation (NED), which is associated with altered expression of lineage markers such as decreased expression of androgen receptor and increased expression of neuroendocrine lineage markers including enolase 2, chromogranin A and synaptophysin. The etiological factors and molecular basis for NED are poorly understood, contributing to a lack of adequate molecular biomarkers for its diagnosis and therapy. Therefore, there is a need to fully understand the underlying molecular basis for this cancer. Recent studies have shown that microRNAs (miRNAs) play a key epigenetic role in driving therapy-induced NED in prostate cancer. In this review, we briefly describe the role of miRNAs in prostate cancer and CRPCs, discuss some key players in NEPCs and elaborate on miRNA dysregulation as a key epigenetic process that accompanies therapy-induced NED in metastatic CRPC. This understanding will contribute to better clinical management of the disease.
Collapse
Affiliation(s)
- Theresa Akoto
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA
| | - Divya Bhagirath
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
19
|
Bhagirath D, Liston M, Patel N, Akoto T, Lui B, Yang TL, To DM, Majid S, Dahiya R, Tabatabai ZL, Saini S. MicroRNA determinants of neuroendocrine differentiation in metastatic castration-resistant prostate cancer. Oncogene 2020; 39:7209-7223. [PMID: 33037409 PMCID: PMC7718386 DOI: 10.1038/s41388-020-01493-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 02/08/2023]
Abstract
Therapy-induced neuroendocrine prostate cancer (NEPC), an extremely aggressive variant of castration-resistant prostate cancer (CRPC), is increasing in incidence with the widespread use of highly potent androgen receptor (AR)-pathway inhibitors (APIs) such as Enzalutamide (ENZ) and Abiraterone and arises via a reversible trans-differentiation process, referred to as neuroendocrine differentiation (NED). The molecular basis of NED is not completely understood leading to a lack of effective molecular markers for its diagnosis. Here, we demonstrate for the first time, that lineage switching to NE states is accompanied by key miRNA alterations including downregulation of miR-106a~363 cluster and upregulation of miR-301a and miR-375. To systematically investigate the key miRNAs alterations driving therapy-induced NED, we performed small RNA-NGS in a retrospective cohort of human metastatic CRPC clinical samples + PDX models with adenocarcinoma features (CRPC-adeno) vs those with neuroendocrine features (CRPC-NE). Further, with the application of machine learning algorithms to sequencing data, we trained a 'miRNA classifier' that could robustly classify 'CRPC-NE' from 'CRPC-Adeno' cases. The performance of classifier was validated in an additional cohort of mCRPC patients and publicly available PCa cohorts. Importantly, we demonstrate that miR-106a~363 cluster pleiotropically regulate cardinal nodal proteins instrumental in driving NEPC including Aurora Kinase A, N-Myc, E2F1 and STAT3. Our study has important clinical implications and transformative potential as our 'miRNA classifier' can be used as a molecular tool to stratify mCRPC patients into those with/without NED and guide treatment decisions. Further, we identify novel miRNA NED drivers that can be exploited for NEPC therapeutic targeting.
Collapse
Affiliation(s)
- Divya Bhagirath
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Michael Liston
- Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, CA, USA
| | - Nikhil Patel
- Department of Pathology, Augusta University, Augusta, GA, USA
| | - Theresa Akoto
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Byron Lui
- Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, CA, USA
| | - Thao Ly Yang
- Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, CA, USA
| | - Dat My To
- Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, CA, USA
| | - Shahana Majid
- Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, CA, USA
| | - Rajvir Dahiya
- Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, CA, USA
| | - Z Laura Tabatabai
- Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, CA, USA
| | - Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA.
| |
Collapse
|
20
|
Vellky JE, Ricke WA. Development and prevalence of castration-resistant prostate cancer subtypes. Neoplasia 2020; 22:566-575. [PMID: 32980775 PMCID: PMC7522286 DOI: 10.1016/j.neo.2020.09.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) occurs when prostate cancer (CaP) progresses under therapy-induced castrate conditions. Several mechanisms have been proposed to explain this acquired resistance, many of which are driven by androgen receptor (AR). Recent findings, however, sub-classified CRPC by downregulation/absence of AR in certain subtypes that consequently do not respond to anti-androgen therapies. To highlight the significance of CRPC sub-classification, we reviewed the development and treatment of CRPC, AR downregulation in CRPC, and summarized recent reports on the prevalence of CRPC subtypes. METHODS Using a medline-based literature search, we reviewed mechanisms of CRPC development, current treatment schemes, and assessed the prevalence of AR low/negative subtypes of CRPC. Additionally, we performed immunohistochemical staining on human CRPC specimens to quantify AR expression across CRPC subtypes. RESULTS In the majority of cases, CRPC continues to rely on AR signaling, which can be augmented in castrate-conditions through a variety of mechanisms. However, recently low/negative AR expression patterns were identified in a significant proportion of patient samples from a multitude of independent studies. In these AR low/negative cases, we postulated that AR protein may be downregulated by (1) promoter methylation, (2) transcriptional regulation, (3) post-transcriptional regulation by microRNA or RNA-binding-proteins, or (4) post-translational ubiquitination-mediated degradation. CONCLUSIONS Here, we discussed mechanisms of CRPC development and summarized the overall prevalence of CRPC subtypes; interestingly, AR low/negative CRPC represented a considerable proportion of diagnoses. Because these subtypes cannot be effectively treated with AR-targeted therapeutics, a better understanding of AR low/negative subtypes could lead to better treatment strategies and increased survival.
Collapse
Affiliation(s)
- Jordan E Vellky
- Department of Urology, University of Wisconsin School of Medicine and Public Health, 1685 Highland Ave., Madison, WI 53705, USA; Cancer Biology Graduate Program, University of Wisconsin-Madison, Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI 53705, USA
| | - William A Ricke
- Department of Urology, University of Wisconsin School of Medicine and Public Health, 1685 Highland Ave., Madison, WI 53705, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI 53705, USA; George M. O'Brien Research Center of Excellence, University of Wisconsin School of Medicine and Public Health, 1685 Highland Ave., Madison, WI 53705, USA.
| |
Collapse
|
21
|
Verma S, Prajapati KS, Kushwaha PP, Shuaib M, Kumar Singh A, Kumar S, Gupta S. Resistance to second generation antiandrogens in prostate cancer: pathways and mechanisms. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:742-761. [PMID: 35582225 PMCID: PMC8992566 DOI: 10.20517/cdr.2020.45] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/05/2023]
Abstract
Androgen deprivation therapy targeting the androgens/androgen receptor (AR) signaling continues to be the mainstay treatment of advanced-stage prostate cancer. The use of second-generation antiandrogens, such as abiraterone acetate and enzalutamide, has improved the survival of prostate cancer patients; however, a majority of these patients progress to castration-resistant prostate cancer (CRPC). The mechanisms of resistance to antiandrogen treatments are complex, including specific mutations, alternative splicing, and amplification of oncogenic proteins resulting in dysregulation of various signaling pathways. In this review, we focus on the major mechanisms of acquired resistance to second generation antiandrogens, including AR-dependent and AR-independent resistance mechanisms as well as other resistance mechanisms leading to CRPC emergence. Evolving knowledge of resistance mechanisms to AR targeted treatments will lead to additional research on designing more effective therapies for advanced-stage prostate cancer.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Kumari Sunita Prajapati
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Prem Prakash Kushwaha
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Mohd Shuaib
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Atul Kumar Singh
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Shashank Kumar
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
22
|
Sejda A, Sigorski D, Gulczyński J, Wesołowski W, Kitlińska J, Iżycka-Świeszewska E. Complexity of Neural Component of Tumor Microenvironment in Prostate Cancer. Pathobiology 2020; 87:87-99. [PMID: 32045912 DOI: 10.1159/000505437] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/16/2019] [Indexed: 11/19/2022] Open
Abstract
The tumor microenvironment (TME) plays an essential role in the development and progression of neoplasms. TME consists of the extracellular matrix and numerous specialized cells interacting with cancer cells by paracrine and autocrine mechanisms. Tumor axonogenesis and neoneurogenesis constitute a developing area of investigation. Prostate cancer (PC) is one of the most common malignancies in men worldwide. During the past years, more and more studies have shown that mechanisms leading to the development of PC are not confined only to the epithelial cancer cell, but also involve the tumor stroma. Different nerve types and neurotransmitters present within the TME are thought to be important factors in PC biology. Moreover, perineural invasion, which is a common way of PC spreading, in parallel creates the neural niche for malignant cells. Cancer neurobiology seems to have become a new discipline to explore the contribution of neoplastic cell interactions with the nervous system and the neural TME component, also to search for potential therapeutic targets in malignant tumors such as PC.
Collapse
Affiliation(s)
- Aleksandra Sejda
- Department of Pathomorphology, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland,
| | - Dawid Sigorski
- Department of Oncology, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Jacek Gulczyński
- Department of Pathology and Neuropathology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Joanna Kitlińska
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Ewa Iżycka-Świeszewska
- Department of Pathology and Neuropathology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
23
|
Mishra R, Haldar S, Suchanti S, Bhowmick NA. Epigenetic changes in fibroblasts drive cancer metabolism and differentiation. Endocr Relat Cancer 2019; 26:R673-R688. [PMID: 31627186 PMCID: PMC6859444 DOI: 10.1530/erc-19-0347] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
Abstract
Genomic changes that drive cancer initiation and progression contribute to the co-evolution of the adjacent stroma. The nature of the stromal reprogramming involves differential DNA methylation patterns and levels that change in response to the tumor and systemic therapeutic intervention. Epigenetic reprogramming in carcinoma-associated fibroblasts are robust biomarkers for cancer progression and have a transcriptional impact that support cancer epithelial progression in a paracrine manner. For prostate cancer, promoter hypermethylation and silencing of the RasGAP, RASAL3 that resulted in the activation of Ras signaling in carcinoma-associated fibroblasts. Stromal Ras activity initiated a process of macropinocytosis that provided prostate cancer epithelia with abundant glutamine for metabolic conversion to fuel its proliferation and a signal to transdifferentiate into a neuroendocrine phenotype. This epigenetic oncogenic metabolic/signaling axis seemed to be further potentiated by androgen receptor signaling antagonists and contributed to therapeutic resistance. Intervention of stromal signaling may complement conventional therapies targeting the cancer cell.
Collapse
Affiliation(s)
- Rajeev Mishra
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Subhash Haldar
- Department of Biotechnology, Brainware University, Kolkata, India
| | - Surabhi Suchanti
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Research, Greater Los Angeles Veterans Administration, Los Angeles, California, USA
- Correspondence should be addressed to N A Bhowmick:
| |
Collapse
|
24
|
Patel GK, Chugh N, Tripathi M. Neuroendocrine Differentiation of Prostate Cancer-An Intriguing Example of Tumor Evolution at Play. Cancers (Basel) 2019; 11:E1405. [PMID: 31547070 PMCID: PMC6826557 DOI: 10.3390/cancers11101405] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Our understanding of neuroendocrine prostate cancer (NEPC) has assumed a new perspective in light of the recent advances in research. Although classical NEPC is rarely seen in the clinic, focal neuroendocrine trans-differentiation of prostate adenocarcinoma occurs in about 30% of advanced prostate cancer (PCa) cases, and represents a therapeutic challenge. Even though our knowledge of the mechanisms that mediate neuroendocrine differentiation (NED) is still evolving, the role of androgen deprivation therapy (ADT) as a key driver of this phenomenon is increasingly becoming evident. In this review, we discuss the molecular, cellular, and therapeutic mediators of NED, and emphasize the role of the tumor microenvironment (TME) in orchestrating the phenotype. Understanding the role of the TME in mediating NED could provide us with valuable insights into the plasticity associated with the phenotype, and reveal potential therapeutic targets against this aggressive form of PCa.
Collapse
Affiliation(s)
- Girijesh Kumar Patel
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Natasha Chugh
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Manisha Tripathi
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
25
|
Neural Transcription Factors in Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:437-462. [PMID: 31900920 DOI: 10.1007/978-3-030-32656-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progression to the malignant state is fundamentally dependent on transcriptional regulation in cancer cells. Optimum abundance of cell cycle proteins, angiogenesis factors, immune evasion markers, etc. is needed for proliferation, metastasis or resistance to treatment. Therefore, dysregulation of transcription factors can compromise the normal prostate transcriptional network and contribute to malignant disease progression.The androgen receptor (AR) is considered to be a key transcription factor in prostate cancer (PCa) development and progression. Consequently, androgen pathway inhibitors (APIs) are currently the mainstay in PCa treatment, especially in castration-resistant prostate cancer (CRPC). However, emerging evidence suggests that with increased administration of potent APIs, prostate cancer can progress to a highly aggressive disease that morphologically resembles small cell carcinoma, which is referred to as neuroendocrine prostate cancer (NEPC), treatment-induced or treatment-emergent small cell prostate cancer. This chapter will review how neuronal transcription factors play a part in inducing a plastic stage in prostate cancer cells that eventually progresses to a more aggressive state such as NEPC.
Collapse
|