1
|
Cheng L, Zhang L, Wang X, Wang Y, Yu J, Li M, Ma Z, Chi-Lui Ho P, Chen X, Wang L, Sethi G, Goh BC. Extracellular vesicles in the HCC microenvironment: Implications for therapy and biomarkers. Pharmacol Res 2024; 209:107419. [PMID: 39284428 DOI: 10.1016/j.phrs.2024.107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as the sixth most prevalent cancer and the third leading cause of cancer mortality globally. Despite surgical resection being the preferred approach for early-stage HCC, most patients are diagnosed at intermediate to advanced stages, limiting treatment options to chemotherapy and immunotherapy, which often yield poor outcomes. Extracellular vesicles (EVs), minute lipid-bilayered particles released by diverse cells under various physiological and pathological conditions, are crucial for mediating communication between cells. Mounting evidence indicates that EVs sourced from different cells can profoundly influence the HCC tumor microenvironment (TME), thereby affecting the progression of HCC. Given their immunogenicity and liver-targeting properties, these EVs not only hold promise for HCC treatment but also provide avenues for advancing early diagnostic methods and assessing prognosis. This review not only describes the function of EVs within the HCC tumor microenvironment but also analyzes their therapeutic advantages and explores their significance in various therapeutic approaches for HCC, including chemotherapy, immunotherapy, combination therapy, and their role as innovative drug delivery carriers. Furthermore, it highlights the potential of EVs as biomarkers for the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Limin Zhang
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou 434000, China; The Third Clinical Medical College of Yangtze University, Jingzhou 434000, China
| | - Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Yufei Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Paul Chi-Lui Ho
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China.
| | - Lingzhi Wang
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Boon-Cher Goh
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, 119228, Singapore
| |
Collapse
|
2
|
Liu YG, Jiang ST, Zhang JW, Zheng H, Zhang L, Zhao HT, Sang XT, Xu YY, Lu X. Role of extracellular vesicle-associated proteins in the progression, diagnosis, and treatment of hepatocellular carcinoma. Cell Biosci 2024; 14:113. [PMID: 39227992 PMCID: PMC11373138 DOI: 10.1186/s13578-024-01294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, characterized by difficulties in early diagnosis, prone to distant metastasis, and high recurrence rates following surgery. Extracellular vesicles (EVs) are a class of cell-derived particles, including exosomes, characterized by a phospholipid bilayer. They serve as effective carriers for intercellular communication cargo, including proteins and nucleic acids, and are widely involved in tumor progression. They are being explored as potential tumor biomarkers and novel therapeutic avenues. We provide a brief overview of the biogenesis and characteristics of EVs to better understand their classification standards. The focus of this review is on the research progress of EV-associated proteins in the field of HCC. EV-associated proteins are involved in tumor growth and regulation in HCC, participate in intercellular communication within the tumor microenvironment (TME), and are implicated in events including angiogenesis and epithelial-mesenchymal transition (EMT) during tumor metastasis. In addition, EV-associated proteins show promising diagnostic efficacy for HCC. For the treatment of HCC, they also demonstrate significant potential including enhancing the efficacy of tumor vaccines, and as targeting cargo anchors. Facing current challenges, we propose the future directions of research in this field. Above all, research on EV-associated proteins offers the potential to enhance our comprehension of HCC and offer novel insights for developing new treatment strategies.
Collapse
Affiliation(s)
- Yao-Ge Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Shi-Tao Jiang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jun-Wei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Han Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Lei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Hai-Tao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yi-Yao Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
3
|
Xie D, Qian B, Li X. Nucleic acids and proteins carried by exosomes from various sources: Potential role in liver diseases. Front Physiol 2022; 13:957036. [PMID: 36213232 PMCID: PMC9538374 DOI: 10.3389/fphys.2022.957036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022] Open
Abstract
Exosomes are extracellular membrane-encapsulated vesicles that are released into the extracellular space or biological fluids by many cell types through exocytosis. As a newly identified form of intercellular signal communication, exosomes mediate various pathological and physiological processes by exchanging various active substances between cells. The incidence and mortality of liver diseases is increasing worldwide. Therefore, we reviewed recent studies evaluating the role of exosomes from various sources in the diagnosis and treatment of liver diseases.
Collapse
Affiliation(s)
- Danna Xie
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Baolin Qian
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xun Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
- Center for Cancer Prevention and Treatment, School of Medicine, Lanzhou University, Lanzhou, China
- Gansu Provincial Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou, China
- *Correspondence: Xun Li,
| |
Collapse
|
4
|
Sun W, Fu S, Wu S, Tu R. Growing Evidence of Exosomal MicroRNA-Related Metastasis of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4501454. [PMID: 33313314 PMCID: PMC7719499 DOI: 10.1155/2020/4501454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 12/28/2022]
Abstract
Metastasis is the prominent cause of death in patients with hepatocellular carcinoma (HCC); however, the mechanisms behind HCC metastasis are not well understood. MicroRNAs (miRs) can regulate gene expression and affect HCC metastasis. Exosomes can transport miRs and other cargoes to and from different cells, thus being associated with tumour-distant metastasis. Exosomal miRs involve different processes of HCC metastasis through their functional effects, such as their induction of epithelial-to-mesenchymal transition, angiogenesis, and distant niche. In this review, data from the literature were analysed and summarised, with a focus on the evidence extraction of exosomal miRs in HCC metastasis with the purpose of increasing the understanding of the mechanisms behind HCC metastasis and acquiring implications for application.
Collapse
Affiliation(s)
- Wenbing Sun
- Department of Medical Imaging, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
| | - Shuqi Fu
- Department of Medical Imaging, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
| | - Size Wu
- Department of Medical Imaging, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
| | - Rong Tu
- Department of Medical Imaging, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
| |
Collapse
|
5
|
Słomka A, Mocan T, Wang B, Nenu I, Urban SK, Gonzalez-Carmona MA, Schmidt-Wolf IGH, Lukacs-Kornek V, Strassburg CP, Spârchez Z, Kornek M. EVs as Potential New Therapeutic Tool/Target in Gastrointestinal Cancer and HCC. Cancers (Basel) 2020; 12:E3019. [PMID: 33080904 PMCID: PMC7603109 DOI: 10.3390/cancers12103019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
For more than a decade, extracellular vesicles (EVs) have been in focus of science. Once thought to be an efficient way to eliminate undesirable cell content, EVs are now well-accepted as being an important alternative to cytokines and chemokines in cell-to-cell communication route. With their cargos, mainly consisting of functional proteins, lipids and nucleic acids, they can activate signalling cascades and thus change the phenotype of recipient cells at local and systemic levels. Their substantial role as modulators of various physiological and pathological processes is acknowledged. Importantly, more and more evidence arises that EVs play a pivotal role in many stages of carcinogenesis. Via EV-mediated communication, tumour cells can manipulate cells from host immune system or from the tumour microenvironment, and, ultimately, they promote tumour progression and modulate host immunity towards tumour's favour. Additionally, the role of EVs in modulating resistance to pharmacological and radiological therapy of many cancer types has become evident lately. Our understanding of EV biology and their role in cancer promotion and drug resistance has evolved considerably in recent years. In this review, we specifically discuss the current knowledge on the association between EVs and gastrointestinal (GI) and liver cancers, including their potential for diagnosis and treatment.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-067 Bydgoszcz, Poland;
| | - Tudor Mocan
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (T.M.); (I.N.); (Z.S.)
| | - Bingduo Wang
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (S.K.U.); (M.G.-C.); (C.P.S.)
| | - Iuliana Nenu
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (T.M.); (I.N.); (Z.S.)
| | - Sabine K. Urban
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (S.K.U.); (M.G.-C.); (C.P.S.)
| | - Maria A. Gonzalez-Carmona
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (S.K.U.); (M.G.-C.); (C.P.S.)
| | - Ingo G. H. Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany;
| | - Veronika Lukacs-Kornek
- Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany;
| | - Christian P. Strassburg
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (S.K.U.); (M.G.-C.); (C.P.S.)
| | - Zeno Spârchez
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (T.M.); (I.N.); (Z.S.)
| | - Miroslaw Kornek
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (S.K.U.); (M.G.-C.); (C.P.S.)
| |
Collapse
|