1
|
Sakamoto S, Harikrishnan S, Uchida H, Yanagi Y, Fukuda A, Kasahara M. Liver transplantation for pediatric liver malignancies. Liver Transpl 2024:01445473-990000000-00440. [PMID: 39172014 DOI: 10.1097/lvt.0000000000000470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
In the last few decades, collaboration between international pediatric oncology groups has resulted in significant improvement in survival after liver transplantation (LT) for pediatric liver tumors, and LT has become the accepted standard of care for unresectable pediatric liver tumors-either living donor liver transplantation or deceased donor liver transplantation. Hepatoblastoma and HCC are the common pediatric liver malignancies treated by LT, and LT is now the accepted treatment modality for unresectable nonmetastatic cases. The long-term survival rate is more than 80% in hepatoblastoma transplants. Furthermore, with the advent of living donor liver transplantation, the waitlist mortality, availability of a better graft quality with shorter ischemic times, and performance of LT with the appropriate timing between chemotherapy have all improved. Up to 80% of pediatric HCCs are unresectable, and studies have shown that LT for pediatric HCC has better outcomes than liver resection. Furthermore, LT has also shown better results than liver resection for cases of HCC not meeting Milan criteria. Given the rarity of pediatric liver malignancies and challenges in optimal management, a multidisciplinary treatment approach, research models building on what is already known, and consideration of newer treatment modalities are required for further improving the treatment of pediatric liver malignancies.
Collapse
Affiliation(s)
- Seisuke Sakamoto
- Organ Transplantation Center, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
2
|
Rajpoot J, Jain M, Pujani M, Agarwal C, Wadhwa R, Sarohi M. Pediatric hepatocellular carcinoma in a 14-year-old boy: A rare case report. J Cancer Res Ther 2024; 20:1650-1653. [PMID: 39412940 DOI: 10.4103/jcrt.jcrt_1769_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/14/2022] [Indexed: 10/18/2024]
Abstract
ABSTRACT Hepatocellular carcinoma (HCC) is much rarer in children and adolescents in comparison to adults with an incidence of 0.7/1,000,000 per year. Hepatitis B virus, a known carcinogen increases the chances of HCC at a young age. Very few case reports of HCC developing in HBV-positive male children have been published.We present a case of a 14-year-old Hepatitis B-positive boy who presented with abdominal distension and jaundice. Contrast enhanced computerized tomography (CECT) whole abdomen suggested a diagnosis of multinodular HCC with no evidence of metastasis on FDG PET-CECT. Histopathology with immunohistochemistry confirmed the diagnosis of moderately differentiated HCC.Clinical presentation of HCC in children is similar to adults. Viral hepatitis, metabolic disorders, and male gender increase the risk of HCC. In our case, boy never had any prior history of jaundice, abdominal pain/distension, or any other illness suggestive of liver dysfunction. When the boy was found to be HBV positive, his mother was also screened and turned out to be Hepatitis B virus positive. Histopathology along with a panel of immunohistochemical markers clinched the final diagnosis.
Collapse
Affiliation(s)
- Jyoti Rajpoot
- Department of Pathology, ESIC Medical College, Faridabad, Haryana, India
| | - Manjula Jain
- Department of Pathology, ESIC Medical College, Faridabad, Haryana, India
| | - Mukta Pujani
- Department of Pathology, ESIC Medical College, Faridabad, Haryana, India
| | - Charu Agarwal
- Department of Pathology, ESIC Medical College, Faridabad, Haryana, India
| | - Ruchira Wadhwa
- Department of Pathology, ESIC Medical College, Faridabad, Haryana, India
| | - Monica Sarohi
- Department of Community Medicine, ESIC Medical College, Faridabad, Haryana, India
| |
Collapse
|
3
|
Karayazili M, Celtik U, Ataseven E, Nart D, Ergun O. Evaluation of surgical strategies and long-term outcomes in pediatric hepatocellular carcinoma. Pediatr Surg Int 2024; 40:144. [PMID: 38819667 DOI: 10.1007/s00383-024-05721-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE Hepatocellular carcinoma (HCC), the second most common pediatric malignant liver tumor after hepatoblastoma, represents 1% of all pediatric tumors. METHODS A retrospective study was conducted on children with HCC treated at our center from March 2002 to October 2022, excluding those with inadequate follow-up or records. Demographic data, initial complaints, alpha-fetoprotein (AFP) values, underlying disease, size and histopathological features of the masses, chemotherapy, and long-term outcomes were analyzed. RESULTS Fifteen patients (8 boys, 7 girls) with a mean age of 11.4 ± 4.1 years (0.8-16.4 years) were analyzed. The majority presented with abdominal pain, with a median AFP of 3.9 ng/mL. Hepatitis B cirrhosis in one patient (6.6%) and metabolic disease (tyrosinemia type 1) in two patients (13.3%) were the underlying diseases. Histopathological diagnoses were fibrolamellar HCC (n:8; 53.3%), HCC (n:6; 40%). Four of the 15 patients underwent liver transplantation, and 9 underwent surgical resection. Due to late diagnosis, two patients were considered inoperable (13.3%). The survival rate for the four patients who underwent liver transplantation was found to be 75%. CONCLUSION Surgical treatment of various variants of HCC can be safely performed in experienced centers with a multidisciplinary approach, and outcomes are better than in adults.
Collapse
Affiliation(s)
- Merve Karayazili
- Department of Pediatric Surgery, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ulgen Celtik
- Department of Pediatric Surgery, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Eda Ataseven
- Department of Pediatric Oncology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Deniz Nart
- Department of Pathology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Orkan Ergun
- Department of Pediatric Surgery, Faculty of Medicine, Ege University, Izmir, Turkey.
| |
Collapse
|
4
|
Dong Y, Cekuolis A, Schreiber-Dietrich D, Augustiniene R, Schwarz S, Möller K, Nourkami-Tutdibi N, Chen S, Cao JY, Huang YL, Wang Y, Taut H, Grevelding L, Dietrich CF. Review on Pediatric Malignant Focal Liver Lesions with Imaging Evaluation: Part I. Diagnostics (Basel) 2023; 13:3568. [PMID: 38066809 PMCID: PMC10706220 DOI: 10.3390/diagnostics13233568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Malignant focal liver lesions (FLLs) are commonly reported in adults but rarely seen in the pediatric population. Due to the rarity, the understanding of these diseases is still very limited. In children, most malignant FLLs are congenital. It is very important to choose appropriate imaging examination concerning various factors. This paper will outline common pediatric malignant FLLs, including hepatoblastoma, hepatocellular carcinoma, and cholangiocarcinoma and discuss them against the background of the latest knowledge on comparable/similar tumors in adults. Medical imaging features are of vital importance for the non-invasive diagnosis and follow-up of treatment of FLLs in pediatric patients. The use of CEUS in pediatric patients for characterizing those FLLs that remain indeterminate on conventional B mode ultrasounds may be an effective option in the future and has great potential to be integrated into imaging algorithms without the risk of exposure to ionizing radiation.
Collapse
Affiliation(s)
- Yi Dong
- Department of Ultrasound, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (Y.D.); (S.C.); (J.-Y.C.); (Y.-L.H.); (Y.W.)
| | - Andrius Cekuolis
- Ultrasound Section, Department of Pediatric Radiology, Radiology and Nuclear Medicine Centre, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania; (A.C.); (R.A.)
| | | | - Rasa Augustiniene
- Ultrasound Section, Department of Pediatric Radiology, Radiology and Nuclear Medicine Centre, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania; (A.C.); (R.A.)
| | - Simone Schwarz
- Department of Neonatology and Pediatric Intensive Care Medicine, Sana Kliniken Duisburg GmbH, 47055 Duisburg, Germany;
| | - Kathleen Möller
- Medical Department I/Gastroenterology, SANA Hospital Lichtenberg, 10365 Berlin, Germany;
| | - Nasenien Nourkami-Tutdibi
- Saarland University Medical Center, Hospital of General Pediatrics and Neonatology, 66421 Homburg, Germany;
| | - Sheng Chen
- Department of Ultrasound, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (Y.D.); (S.C.); (J.-Y.C.); (Y.-L.H.); (Y.W.)
| | - Jia-Ying Cao
- Department of Ultrasound, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (Y.D.); (S.C.); (J.-Y.C.); (Y.-L.H.); (Y.W.)
| | - Yun-Lin Huang
- Department of Ultrasound, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (Y.D.); (S.C.); (J.-Y.C.); (Y.-L.H.); (Y.W.)
| | - Ying Wang
- Department of Ultrasound, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (Y.D.); (S.C.); (J.-Y.C.); (Y.-L.H.); (Y.W.)
| | - Heike Taut
- Children’s Hospital, Universitätsklinikum Dresden, Technische Universität Dresden, 01069 Dresden, Germany;
| | - Lara Grevelding
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital Frankfurt, Goethe University, 60323 Frankfurt, Germany
| | - Christoph F. Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem und Permanence, 3013 Bern, Switzerland
| |
Collapse
|
5
|
Ruan W, Galvan NTN, Dike P, Koci M, Faraone M, Fuller K, Koomaraie S, Cerminara D, Fishman DS, Deray KV, Munoz F, Schackman J, Leung D, Akcan-Arikan A, Virk M, Lam FW, Chau A, Desai MS, Hernandez JA, Goss JA. The Multidisciplinary Pediatric Liver Transplant. Curr Probl Surg 2023; 60:101377. [PMID: 37993242 DOI: 10.1016/j.cpsurg.2023.101377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/29/2023] [Indexed: 11/24/2023]
Affiliation(s)
- Wenly Ruan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Nhu Thao N Galvan
- Division of Abdominal Transplantation, Michael E. DeBakey Department of Surgery, Department of Pediatric Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX.
| | - Peace Dike
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Melissa Koci
- Division of Abdominal Transplantation, Michael E. DeBakey Department of Surgery, Department of Pediatric Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Marielle Faraone
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Kelby Fuller
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | | | - Dana Cerminara
- Department of Pharmacy, Texas Children's Hospital, Houston, TX
| | - Douglas S Fishman
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Kristen Valencia Deray
- Department of Pediatrics, Department of Pharmacy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Flor Munoz
- Department of Pediatrics, Department of Pharmacy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Julie Schackman
- Division of Anesthesiology, Perioperative, & Pain Medicine, Department of Anesthesiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Daniel Leung
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Ayse Akcan-Arikan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Manpreet Virk
- Division of Critical Care, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Fong W Lam
- Division of Critical Care, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Alex Chau
- Division of Interventional Radiology, Department of Radiology, Edward B. Singleton Department of Radiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Moreshwar S Desai
- Division of Critical Care, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Jose A Hernandez
- Division of Interventional Radiology, Department of Radiology, Edward B. Singleton Department of Radiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - John A Goss
- Division of Abdominal Transplantation, Michael E. DeBakey Department of Surgery, Department of Pediatric Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| |
Collapse
|
6
|
Grimaldi C, de Ville de Goyet J, Bici K, Cianci MC, Callea F, Morabito A. The role of liver transplantation in the care of primary hepatic vascular tumours in children. Front Oncol 2022; 12:1026232. [PMID: 36505841 PMCID: PMC9730342 DOI: 10.3389/fonc.2022.1026232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Liver transplantation (LT) is the standard of care for many liver conditions, such as end-stage liver diseases, inherited metabolic disorders, and primary liver malignancies. In the latter group, indications of LT for hepatoblastoma and hepatocellular carcinoma evolved and are currently available for many non-resectable cases. However, selection criteria apply, as the absence of active metastases. Evidence of good long-term outcomes has validated the LT approach for managing these malignancies in the context of specialist and multidisciplinary approach. Nevertheless, LT's role in treating primary vascular tumours of the liver in children, both benign and malignant, remains somewhat controversial. The rarity of the different diseases and the heterogeneity of pathological definitions contribute to the controversy and make evaluating the benefit/risk ratio and outcomes quite difficult. In this narrative review, we give an overview of primary vascular tumours of the liver in children, the possible indications and the outcomes of LT.
Collapse
Affiliation(s)
- Chiara Grimaldi
- Department of Pediatric Surgery, Meyer Children’s Hospital, University of Florence, Florence, Italy,*Correspondence: Chiara Grimaldi,
| | - Jean de Ville de Goyet
- Department of Pediatrics, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad altra specializzazione (ISMETT) (Institute for Scientific-Based Care and Research-Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Palermo, Italy
| | - Kejd Bici
- Department of Pediatric Surgery, Meyer Children’s Hospital, University of Florence, Florence, Italy
| | - Maria Chiara Cianci
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Francesco Callea
- Department of Histopathology, Bugando Medical Centre, Catholic University of Healthy Allied Sciences, Mwanza, Tanzania
| | - Antonino Morabito
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
7
|
Commander SJ, Cerullo M, Arjunji N, Leraas HJ, Thornton S, Ravindra K, Tracy ET. Improved Survival and Higher Rates of Surgical Resection Associated with Hepatocellular Carcinoma in Children as Compared to Young Adults. Int J Cancer 2022; 151:2206-2214. [PMID: 35841394 DOI: 10.1002/ijc.34215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/06/2022]
Abstract
Hepatocellular adenocarcinoma (HCC) is the second most common primary hepatic malignancy in children with a 5-year overall survival of 30%. Few studies have examined the similarities and differences between pediatric and adult HCC. This paper aims to examine the relationship between tumor characteristics, treatments, and outcomes in pediatric and adult patients with HCC. The 2019 National Cancer Database was queried for patients with HCC. Patients were stratified by age: pediatric <21 years (n = 214) and young adults 21-40 (n = 1102). Descriptive statistics and chi square were performed. The mean age at diagnosis was 15.5 years (SD 5.6) in the pediatric and 33 years (5.3) in the adult group. Children had a comparable rate of metastasis (30% vs 28%, P = 0.47) and increased fibrolamellar histology (32% vs 9%). Surgical resection was more common in children compared with adults (74% vs 62%, P < 0.001), children also had more lymph nodes examined (39% vs 19%, P < 0.001), positive lymph nodes (35% vs 17%, P = 0.02), and surgical resection when metastasis were present at diagnosis (46% vs 18%, P < 0.001). The 1, 3, and 5-year overall survival was higher for pediatric patients than adults (81%, 65%, 55%, vs 70%, 54%, 48%,) Despite higher prevalence of fibrolamellar histology, greater number of positive lymph nodes, and comparable rates of metastasis at diagnosis, children with HCC have improved overall survival compared with adults. Age did not significantly contribute to survivorship, so it is likely that the more aggressive surgical approach contributed to the improved overall survival in pediatric patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Marcelo Cerullo
- Department of General Surgery, Duke University Medical Center
| | - Neha Arjunji
- School of Medicine, Duke University Medical Center
| | - Harold J Leraas
- Division of Pediatric Surgery, Duke University Medical Center
| | | | - Kadiyala Ravindra
- Division of Abdominal Transplantation, Duke University Medical Center
| | | |
Collapse
|
8
|
Jiang ZP, Zeng KY, Huang JY, Yang J, Yang R, Li JW, Qiu TT, Luo Y, Lu Q. Differentiating malignant and benign focal liver lesions in children using CEUS LI-RADS combined with serum alpha-fetoprotein. World J Gastroenterol 2022; 28:2350-2360. [PMID: 35800178 PMCID: PMC9185218 DOI: 10.3748/wjg.v28.i21.2350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/08/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Contrast-enhanced ultrasound (CEUS) can be used to diagnose focal liver lesions (FLLs) in children. The America College of Radiology developed the CEUS liver imaging reporting and data system (LI-RADS) for standardizing CEUS diagnosis of FLLs in adult patients. Until now, no similar consensus or guidelines have existed for pediatric patients to improve imaging interpretation as adults.
AIM To evaluate the performance of CEUS LI-RADS combined with alpha-fetoprotein (AFP) in differentiating benign and malignant FLLs in pediatric patients.
METHODS Between January 2011 and January 2021, patients ≤ 18 years old who underwent CEUS for FLLs were retrospectively evaluated. The following criteria for diagnosing malignancy were proposed: Criterion I considered LR-4, LR-5, or LR-M lesions as malignancies; criterion II regarded LR-4, LR-5 or LR-M lesions with simultaneously elevated AFP (≥ 20 ng/mL) as malignancies; criterion III took LR-4 Lesions with elevated AFP or LR-5 or LR-M lesions as malignancies. The sensitivity, specificity, accuracy and area under the receiver operating characteristic curve (AUC) were calculated to determine the diagnostic value of the aforementioned criteria.
RESULTS The study included 63 nodules in 60 patients (mean age, 11.0 ± 5.2 years; 26 male). There were no statistically significant differences between the specificity, accuracy, or AUC of criterion II and criterion III (95.1% vs 80.5%, 84.1% vs 87.3%, and 0.794 vs 0.902; all P > 0.017). Notably, criterion III showed a higher diagnostic sensitivity than criterion II (100% vs 63.6%; P < 0.017). However, both the specificity and accuracy of criterion I was inferior to those of criterion II and criterion III (all P < 0.017). For pediatric patients more than 5 years old, the performance of the three criteria was overall similar when patients were subcategorized by age when compared to all patients in aggregate.
CONCLUSION CEUS LI-RADS combined with AFP may be a powerful diagnostic tool in pediatric patients. LR-4 with elevated AFP, LR-5 or LR-M lesions is highly suggestive of malignant tumors.
Collapse
Affiliation(s)
- Zhen-Peng Jiang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ke-Yu Zeng
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Yan Huang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jie Yang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Rui Yang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Wu Li
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ting-Ting Qiu
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yan Luo
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qiang Lu
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
9
|
Danso KA, Akuaku RS, Taylor RR, Amoako E, Ulzen‐Appiah K, Jimah BB, Tagoe LG. A case report of a teenager with hepatitis B surface antigen-positive multifocal hepatocellular carcinoma in a noncirrhotic liver. Clin Case Rep 2022; 10:e05622. [PMID: 35340653 PMCID: PMC8935124 DOI: 10.1002/ccr3.5622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 11/20/2022] Open
Abstract
Hepatitis B virus is a known carcinogen for hepatocellular carcinoma, which is rare in the pediatric population. We report a 13-year-old patient with hepatitis B surface antigen-positive multifocal hepatocellular carcinoma in a noncirrhotic liver. Her APRI score was 0.24. Her BCLC stage was C, and her caregiver opted for palliative care.
Collapse
Affiliation(s)
- Kwadwo Apeadu Danso
- Department of Paediatrics and Child HealthCape Coast Teaching HospitalCape CoastGhana
| | | | - Rebekah Ruth Taylor
- Department of Paediatrics and Child HealthCape Coast Teaching HospitalCape CoastGhana
| | - Emmanuella Amoako
- Department of Paediatrics and Child HealthCape Coast Teaching HospitalCape CoastGhana
- School of Medical SciencesUniversity of Cape CoastCape CoastGhana
| | - Kofi Ulzen‐Appiah
- School of Medical SciencesUniversity of Cape CoastCape CoastGhana
- Department of PathologyCape Coast Teaching HospitalCape CoastGhana
| | - Bashiru Babatunde Jimah
- Department of Medical ImagingSchool of Medical SciencesUniversity of Cape CoastCape CoastGhana
| | | |
Collapse
|
10
|
Pessanha I, Heitor F, Furtado E, Campos AP, Gonçalves I. Long-term survival after choriocarcinoma transmitted by liver graft: A successful report in pediatric transplantation. Pediatr Transplant 2022; 26:e14135. [PMID: 34486207 DOI: 10.1111/petr.14135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/07/2021] [Accepted: 08/25/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND LT is the standard of care for many pediatric liver disorders. Although long-term outcomes have improved, some rare complications such as transmission of occult donor tumors have been reported. CASE REPORT An adolescent diagnosed with tyrosinemia was submitted to LT from a previous healthy donor due to HCC. Almost 8 months after LT, the patient presented a nodular hepatic lesion. Clinically, he had mild weight loss, lower limb edema, and gynecomastia. Thorax CT found lesions in the left lung parenchyma, which showed no increased uptake in PET SCAN. Liver biopsy revealed a carcinoma with desmoplastic stroma. ISS was withdrawn, and palliative chemotherapy was started for presumptive HCC relapse. AFP remained normal, but HCG had reached unexpected values of 1984 IU/L. As we requested detailed information about the other organ recipients from the same donor, we found that one of them passed away due to disseminated tumor. Five months after the beginning of chemotherapy, the patient underwent resection of liver segments V and VI. Histological examination confirmed liver metastatic choriocarcinoma. At the time of writing, with 11 years of follow-up, the patient had sustained remission with no signs of relapse. DISCUSSION This case reports a diagnostic challenge in an adolescent with a particular unique background and a very rare pattern of tumor transmission. The authors aim to highlight the risk of cancer-bearing organs reveled post-LT and to testimony the experience of the successful outcome after a choriocarcinoma transmitted by liver graft.
Collapse
Affiliation(s)
- Inês Pessanha
- Serviço de Cirurgia Pediátrica e Queimados, Hospital Pediátrico de Coimbra, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Fátima Heitor
- Serviço de Oncologia Pediátrica, Hospital Pediátrico de Coimbra, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Emanuel Furtado
- Unidade de Hepatologia e Transplantação Hepática de Adultos, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - António Pedro Campos
- Unidade de Cuidados Respiratórios e Nutricionais, Hospital Dona Estefânia, Centro Hospitalar Lisboa Central, Lisboa, Portugal
| | - Isabel Gonçalves
- Unidade de Hepatologia e Transplantação Hepática Pediátrica, Hospital Pediátrico de Coimbra, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select null#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
12
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select null,null,null,null,null,null#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
13
|
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
14
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select null,null,null,null,null,null,null-- lvco] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
15
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select null,null,null,null,null,null,null,null,null-- foap] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
16
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select 16,16,16,16,16,concat(0x716b6a7071,0x53626858706e68556454,0x7178767871),16,16,16,16#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
17
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select 16,16,16,concat(0x716b6a7071,0x6d73444b675570455555,0x7178767871),16,16,16,16,16,16#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
18
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select null,null,null,null,null,null,null,null,concat(0x716b6a7071,0x4676717248704b675778,0x7178767871),null#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
19
|
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
20
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select 16,16,16,concat(0x716b6a7071,0x6b6e754f54436f795551654a677441695869687a63736c685366707253435553414b554651546c6a,0x7178767871),16,16,16,16,16,16#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
21
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select null,null,null,null,null,concat(0x716b6a7071,0x6661577761656e567a64,0x7178767871),null,null,null,null#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
22
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select 16,16,16,16,16,16,16,16,concat(0x716b6a7071,0x5a4d42416955786c58706f624a676258746b5a59706f726442475877545a4a657652577a766c4d62,0x7178767871),16#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
23
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 waitfor delay '0:0:5'-- oive] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
24
|
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
25
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 and sleep(5)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
26
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select null,null,null,null,null,null,null#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
27
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select null,null,null,null,null#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
28
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select null,null,null,null,null,null,null,null-- voia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
29
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select null,null,null,null,null,null,null,null#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
30
|
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
31
|
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
32
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 and 5278=(select 5278 from pg_sleep(5))-- oacw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
33
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 and 8629=8629-- ckeq] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
34
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 order by 1-- ppbb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
35
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 and 7526=(select 7526 from pg_sleep(5))] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
36
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 and 7526=(select 7526 from pg_sleep(5))-- biux] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
37
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select null,null,null,null,null,null,null-- yonb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
38
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 and 1209=1209-- ogjw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
39
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select null,null,concat(0x716b6a7071,0x694a6a6c4e6355667567634e63614c4f6e4667784273756f4f4c6b5065786149666742764c576467,0x7178767871),null,null,null,null,null,null,null#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
40
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select 16,16,16,16,concat(0x716b6a7071,0x6859657345734f787a44524643456f697968557a6a68457a47434b7072764d577271616e544c7161,0x7178767871),16,16,16,16,16#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
41
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select null,null,null,null,null,null,concat(0x716b6a7071,0x43574a73547a567077526274524b6c794e766f49454561546550707958764b65474b4c734c617854,0x7178767871),null,null,null#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
42
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select 16,16,16,16,16,16,16,16,concat(0x716b6a7071,0x746f7277677a52445471,0x7178767871),16#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
43
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select null,concat(0x716b6a7071,0x577351426e6347546470,0x7178767871),null,null,null,null,null,null,null,null#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
44
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select null,null,null,null,null,null,null-- tupc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
45
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select null-- fjau] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
46
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select null,null-- dwve] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
47
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select null,null,null-- pdww] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
48
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select null,null,null,null,null,null,null,null,null,null-- ioyo] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
49
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select null,null,null,null,null,null,null,null-- covs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
50
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021. [DOI: 10.3390/ijms222313135 union all select 16,16,16,16,concat(0x716b6a7071,0x624e7264735062686f6c,0x7178767871),16,16,16,16,16#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|