1
|
Kubota CS, Myers SL, Seppälä TT, Burkhart RA, Espenshade PJ. In vivo CRISPR screening identifies geranylgeranyl diphosphate as a pancreatic cancer tumor growth dependency. Mol Metab 2024; 85:101964. [PMID: 38823776 PMCID: PMC11217740 DOI: 10.1016/j.molmet.2024.101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/04/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
OBJECTIVE Cancer cells must maintain lipid supplies for their proliferation and do so by upregulating lipogenic gene programs. The sterol regulatory element-binding proteins (SREBPs) act as modulators of lipid homeostasis by acting as transcriptional activators of genes required for fatty acid and cholesterol synthesis and uptake. SREBPs have been recognized as chemotherapeutic targets in multiple cancers, however it is not well understood which SREBP target genes are essential for tumorigenesis. In this study, we examined the requirement of SREBP target genes for pancreatic ductal adenocarcinoma (PDAC) tumor growth. METHODS Here we constructed a custom CRISPR knockout library containing known SREBP target genes and performed in vitro 2D culture and in vivo orthotopic xenograft CRISPR screens using a patient-derived PDAC cell line. In vitro, we grew cells in medium supplemented with 10% fetal bovine serum (FBS) or 10% lipoprotein-deficient serum (LPDS) to examine differences in gene essentiality in different lipid environments. In vivo, we injected cells into the pancreata of nude mice and collected tumors after 4 weeks. RESULTS We identified terpenoid backbone biosynthesis genes as essential for PDAC tumor development. Specifically, we identified the non-sterol isoprenoid product of the mevalonate pathway, geranylgeranyl diphosphate (GGPP), as an essential lipid for tumor growth. Mechanistically, we observed that restricting mevalonate pathway activity using statins and SREBP inhibitors synergistically induced apoptosis and caused disruptions in small G protein prenylation that have pleiotropic effects on cellular signaling pathways. Finally, we demonstrated that geranylgeranyl diphosphate synthase 1 (GGPS1) knockdown significantly reduces tumor burden in an orthotopic xenograft mouse model. CONCLUSIONS These findings indicate that PDAC tumors selectively require GGPP over other lipids such as cholesterol and fatty acids and that this is a targetable vulnerability of pancreatic cancer cells.
Collapse
Affiliation(s)
- Casie S Kubota
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephanie L Myers
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular & Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Toni T Seppälä
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard A Burkhart
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Peter J Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Giovanis Institute for Translational Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Kubota CS, Myers SL, Seppälä TT, Burkhart RA, Espenshade PJ. In vivo CRISPR screening identifies geranylgeranyl diphosphate as a pancreatic cancer tumor growth dependency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592368. [PMID: 38746286 PMCID: PMC11092789 DOI: 10.1101/2024.05.03.592368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cancer cells must maintain lipid supplies for their proliferation and do so by upregulating lipogenic gene programs. The sterol regulatory element-binding proteins (SREBPs) act as modulators of lipid homeostasis by acting as transcriptional activators of genes required for fatty acid and cholesterol synthesis and uptake. SREBPs have been recognized as chemotherapeutic targets in multiple cancers, however it is not well understood which SREBP target genes are essential for tumorigenesis. Using parallel in vitro and in vivo CRISPR knockout screens, we identified terpenoid backbone biosynthesis genes as essential for pancreatic ductal adenocarcinoma (PDAC) tumor development. Specifically, we identified the non-sterol isoprenoid product of the mevalonate pathway, geranylgeranyl diphosphate (GGPP), as an essential lipid for tumor growth. Mechanistically, we observed that restricting mevalonate pathway activity using statins and SREBP inhibitors synergistically induced apoptosis and caused disruptions in small G protein prenylation that have pleiotropic effects on cellular signaling pathways. Finally, we demonstrated that geranylgeranyl diphosphate synthase 1 ( GGPS1 ) knockdown significantly reduces tumor burden in an orthotopic xenograft mouse model. These findings indicate that PDAC tumors selectively require GGPP over other lipids such as cholesterol and fatty acids and that this is a targetable vulnerability of pancreatic cancer cells.
Collapse
|
3
|
Lumibao JC, Okhovat SR, Peck KL, Lin X, Lande K, Yomtoubian S, Ng I, Tiriac H, Lowy AM, Zou J, Engle DD. The effect of extracellular matrix on the precision medicine utility of pancreatic cancer patient-derived organoids. JCI Insight 2024; 9:e172419. [PMID: 38051586 PMCID: PMC10906458 DOI: 10.1172/jci.insight.172419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
The use of patient-derived organoids (PDOs) to characterize therapeutic sensitivity and resistance is a promising precision medicine approach, and its potential to inform clinical decisions is now being tested in several large multiinstitutional clinical trials. PDOs are cultivated in the extracellular matrix from basement membrane extracts (BMEs) that are most commonly acquired commercially. Each clinical site utilizes distinct BME lots and may be restricted due to the availability of commercial BME sources. However, the effect of different sources of BMEs on organoid drug response is unknown. Here, we tested the effect of BME source on proliferation, drug response, and gene expression in mouse and human pancreatic ductal adenocarcinoma (PDA) organoids. Both human and mouse organoids displayed increased proliferation in Matrigel compared with Cultrex and UltiMatrix. However, we observed no substantial effect on drug response when organoids were cultured in Matrigel, Cultrex, or UltiMatrix. We also did not observe major shifts in gene expression across the different BME sources, and PDOs maintained their classical or basal-like designation. Overall, we found that the BME source (Matrigel, Cultrex, UltiMatrix) does not shift PDO dose-response curves or drug testing results, indicating that PDO pharmacotyping is a robust approach for precision medicine.
Collapse
Affiliation(s)
- Jan C. Lumibao
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Shira R. Okhovat
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Kristina L. Peck
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Xiaoxue Lin
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Kathryn Lande
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Shira Yomtoubian
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Isabella Ng
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, and
| | - Hervé Tiriac
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, and
| | - Andrew M. Lowy
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, and
| | - Jingjing Zou
- Division of Biostatistics and Bioinformatics, Herbert Wertheim School of Public Health and Human Longevity Science, UCSD, San Diego, California, USA
| | | |
Collapse
|
4
|
Mazur R, Trna J. Principles of Palliative and Supportive Care in Pancreatic Cancer: A Review. Biomedicines 2023; 11:2690. [PMID: 37893064 PMCID: PMC10603964 DOI: 10.3390/biomedicines11102690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is well known for its poor survival time. Clinical symptoms are painless jaundice or abdominal or back pain. Less specific symptoms often appear that make diagnosis difficult, e.g., weight loss, loss of appetite, nausea and vomiting, and general weakness. Only 10-20% of patients are diagnosed at an early stage. A cure is practically only possible with a radical surgical operation. In the case of locally advanced findings, neoadjuvant therapy is administered. Among the therapeutic options offered are chemotherapy, radiotherapy (including stereotactic radiotherapy-SBRT), targeted treatment, or immunotherapy. In the case of metastatic disease, of which more than half are present at diagnosis, the goal is to relieve the patient of problems. Metastatic PDAC can cause problems arising from the localization of distant metastases, but it also locally affects the organs it infiltrates. In our review article, we focus on the largest group of patients, those with locally advanced disease and metastatic disease-symptoms related to the infiltration or destruction of the pancreatic parenchyma and the growth of the tumor into the surrounding. Therefore, we deal with biliary or duodenal obstruction, gastric outlet syndrome, bleeding and thromboembolic diseases, pain, depression, and fatigue, as well as pancreatic exocrine insufficiency and malnutrition. Metastatic spread is most often to the liver, peritoneum, or lungs. The presented overview aims to offer current therapeutic options across disciplines. In accordance with modern oncology, a multidisciplinary approach with a procedure tailored to the specific patient remains the gold standard.
Collapse
Affiliation(s)
| | - Jan Trna
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic;
| |
Collapse
|
5
|
Lumibao JC, Okhovat SR, Peck KL, Lin X, Lande K, Zou J, Engle DD. The impact of extracellular matrix on the precision medicine utility of pancreatic cancer patient-derived organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525757. [PMID: 36747742 PMCID: PMC9900943 DOI: 10.1101/2023.01.26.525757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The use of patient-derived organoids (PDOs) to characterize therapeutic sensitivity and resistance (pharmacotyping) is a promising precision medicine approach. The potential of this approach to inform clinical decisions is now being tested in several large multi-institutional clinical trials. PDOs are cultivated in extracellular matrix from basement membrane extracts (BMEs) that are most commonly acquired commercially. Each clinical site utilizes distinct BME lots and may be restricted due to the availability of commercial BME sources. However, the impact of different sources and lots of BMEs on organoid drug response is unknown. Here, we tested the impact of BME source and lot on proliferation, chemotherapy and targeted therapy drug response, and gene expression in mouse and human pancreatic ductal adenocarcinoma (PDA) organoids. Both human and mouse organoids displayed increased proliferation in Matrigel (Corning) compared to Cultrex (RnD) and UltiMatrix (RnD). However, we observed no substantial impact on drug response when oragnoids were cultured in Matrigel, Cultrex, or UltiMatrix. We also did not observe major shifts in gene expression across the different BME sources, and PDOs maintained their Classical or Basal-like designation. Overall, we find that BME source (Matrigel, Cultrex, UltiMatrix) does not shift PDO dose-response curves and drug testing results, indicating that PDO pharmacotyping is a robust approach for precision medicine.
Collapse
|
6
|
KIF2C Facilitates Tumor Growth and Metastasis in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:cancers15051502. [PMID: 36900292 PMCID: PMC10000478 DOI: 10.3390/cancers15051502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer with a poor prognosis. For PDAC, an increase in the survival time of patients and a reduction mortality have not yet successfully been achieved. In many research works, Kinesin family member 2C (KIF2C) is highly expressed in several tumors. Nevertheless, the role of KIF2C in pancreatic cancer is unknown. In this study, we found that KIF2C expression is significantly upregulated in human PDAC tissues and cell lines such as ASPC-1 and MIA-PaCa2. Moreover, KIF2C upregulation is associated with a poor prognosis when combining the expression of KIF2C with clinical information. Through cell functional assays and the construction of animal models, we showed that KIF2C promotes PDAC cell proliferation, migration, invasion, and metastasis, both in vitro and in vivo. Finally, the results of sequencing showed that the overexpression of KIF2C causes a decrease in some proinflammatory factors and chemokines. The cell cycle detection indicated that the pancreatic cancer cells in the overexpressed group had abnormal proliferation in the G2 and S phases. These results revealed the potential of KIF2C as a therapeutic target for the treatment of PDAC.
Collapse
|
7
|
Allen-Coyle TJ, Niu J, Welsch E, Conlon NT, Garner W, Clynes M, O'Sullivan F, Straubinger RM, Mager DE, Roche S. FOLFIRINOX Pharmacodynamic Interactions in 2D and 3D Pancreatic Cancer Cell Cultures. AAPS J 2022; 24:108. [PMID: 36229752 DOI: 10.1208/s12248-022-00752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
The multi-drug combination regime, FOLFIRINOX, is a standard of care chemotherapeutic therapy for pancreatic cancer patients. However, systematic evaluation of potential pharmacodynamic interactions among multi-drug therapy has not been reported previously. Here, pharmacodynamic interactions of the FOLFIRINOX agents (5-fluorouracil (5-FU), oxaliplatin (Oxa) and SN-38, the active metabolite of irinotecan) were assessed across a panel of primary and established pancreatic cancer cells. Inhibition of cell proliferation was quantified for each drug, alone and in combination, to obtain quantitative, drug-specific interaction parameters and assess the nature of drug interactions. The experimental data were analysed assuming Bliss independent interactions, and nonlinear regression model fitting was conducted in SAS. Estimates of the drug interaction term, psi (ψ), revealed that the Oxa/SN-38 combination appeared synergistic in PANC-1 (ψ = 0.6, 95% CI = 0.4, 0.9) and modestly synergistic, close to additive, in MIAPaCa-2 (ψ = 0.8, 95% CI = 0.6, 1.0) in 2D assays. The triple combination was strongly synergistic in MIAPaCa-2 (ψ = 0.2, 95% CI = 0.1, 0.3) and modestly synergistic/borderline additive in PANC-1 2D (ψ = 0.8, 95% CI = 0.6, 1.0). The triple combination showed antagonistic interactions in the primary PIN-127 and 3D PANC-1 model (ψ > 1). Quantitative pharmacodynamic interactions have not been described for the FOLFIRINOX regimen; this analysis suggests a complex interplay among the three chemotherapeutic agents. Extension of this pharmacodynamic analysis approach to clinical/translational studies of the FOLFIRINOX combination could reveal additional pharmacodynamic interactions and guide further refinement of this regimen to achieve optimal clinical responses.
Collapse
Affiliation(s)
- Taylor J Allen-Coyle
- SSPC, The SFI Research Centre for Pharmaceuticals, Limerick, Ireland. .,National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.
| | - Jin Niu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, New York, Albany, USA
| | - Eva Welsch
- SSPC, The SFI Research Centre for Pharmaceuticals, Limerick, Ireland
| | - Neil T Conlon
- SSPC, The SFI Research Centre for Pharmaceuticals, Limerick, Ireland
| | - Weylon Garner
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, New York, Albany, USA
| | - Martin Clynes
- SSPC, The SFI Research Centre for Pharmaceuticals, Limerick, Ireland.,National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.,Pancreatic Cancer Research Fund UK (PCRF), London, UK
| | - Finbarr O'Sullivan
- SSPC, The SFI Research Centre for Pharmaceuticals, Limerick, Ireland.,National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, New York, Albany, USA.,Departments of Pharmacology & Therapeutics, and Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, New York, Albany, USA.,Enhanced Pharmacodynamics, LLC, Buffalo, New York, USA
| | - Sandra Roche
- SSPC, The SFI Research Centre for Pharmaceuticals, Limerick, Ireland
| |
Collapse
|
8
|
Zwart ES, Yilmaz BS, Halimi A, Ahola R, Kurlinkus B, Laukkarinen J, Ceyhan GO. Venous resection for pancreatic cancer, a safe and feasible option? A systematic review and meta-analysis. Pancreatology 2022; 22:803-809. [PMID: 35697587 DOI: 10.1016/j.pan.2022.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND In pancreatic ductal adenocarcinoma patients with suspected venous infiltration, a R0 resection is most of the time not possible without venous resection (VR). To investigate this special kind of patients, this meta-analysis was conducted to compare mortality, morbidity and long-term survival of pancreatic resections with (VR+) and without venous resection (VR-). METHODS A systematic search was performed in Embase, Pubmed and Web of Science. Studies which compared over twenty patients with VR + to VR-for PDAC with ≥1 year follow up were included. Articles including arterial resections were excluded. Statistical analysis was performed with the random effect Mantel-Haenszel test and inversed variance method. Individual patient data was compared with the log-rank test. RESULTS Following a review of 6403 papers by title and abstract and 166 by full text, a meta-analysis was conducted of 32 studies describing 2216 VR+ and 5380 VR-. There was significantly more post-pancreatectomy hemorrhage (6.5% vs. 5.6%), R1 resections (36.7% vs. 28.6%), N1 resections (70.3% vs. 66.8%) and tumors were significantly larger (34.6 mm vs. 32.8 mm) in patients with VR+. Of all VR + patients, 64.6% had true pathological venous infiltration. The 90-day mortality, individual patient data for overall survival and pooled multivariate hazard ratio for overall survival were similar. CONCLUSION VR is a safe and feasible option in patients with pancreatic cancer and suspicion of venous involvement, since VR during pancreatic surgery has comparable overall survival and complication rates.
Collapse
Affiliation(s)
- E S Zwart
- Amsterdam UMC, Amsterdam, Cancer Center Amsterdam, Netherlands Department of Surgery, the Netherlands
| | - B S Yilmaz
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - A Halimi
- Division of Surgery, CLINTEC, Karolinska Institute, Sweden; Department of Surgical and Perioperative Sciences, Umeå University Hospital, Sweden
| | - R Ahola
- Tampere University Hospital and Tampere University, Tampere, Finland
| | - B Kurlinkus
- Clinic of Gastroenterology, Nephrourology and Surgery, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - J Laukkarinen
- Tampere University Hospital and Tampere University, Tampere, Finland
| | - G O Ceyhan
- Department of General Surgery, HPB Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
| |
Collapse
|
9
|
Lumibao JC, Tremblay JR, Hsu J, Engle DD. Altered glycosylation in pancreatic cancer and beyond. J Exp Med 2022; 219:e20211505. [PMID: 35522218 PMCID: PMC9086500 DOI: 10.1084/jem.20211505] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the deadliest cancers and is projected to soon be the second leading cause of cancer death. Median survival of PDA patients is 6-10 mo, with the majority of diagnoses occurring at later, metastatic stages that are refractory to treatment and accompanied by worsening prognoses. Glycosylation is one of the most common types of post-translational modifications. The complex landscape of glycosylation produces an extensive repertoire of glycan moieties, glycoproteins, and glycolipids, thus adding a dynamic and tunable level of intra- and intercellular signaling regulation. Aberrant glycosylation is a feature of cancer progression and influences a broad range of signaling pathways to promote disease onset and progression. However, despite being so common, the functional consequences of altered glycosylation and their potential as therapeutic targets remain poorly understood and vastly understudied in the context of PDA. In this review, the functionality of glycans as they contribute to hallmarks of PDA are highlighted as active regulators of disease onset, tumor progression, metastatic capability, therapeutic resistance, and remodeling of the tumor immune microenvironment. A deeper understanding of the functional consequences of altered glycosylation will facilitate future hypothesis-driven studies and identify novel therapeutic strategies in PDA.
Collapse
Affiliation(s)
| | | | - Jasper Hsu
- Salk Institute for Biological Studies, La Jolla, CA
| | | |
Collapse
|
10
|
Kang BW, Chau I. Emerging agents for metastatic pancreatic cancer: spotlight on early phase clinical trials. Expert Opin Investig Drugs 2021; 30:1089-1107. [PMID: 34727804 DOI: 10.1080/13543784.2021.1995354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Despite the recent development of new chemotherapeutic regimens and combination strategies, metastatic pancreatic cancer (mPC) still shows only a modest response to conventional cytotoxic agents. However, several novel therapeutic agents targeting the unique features of mPC are showing promise in clinical trials. AREA COVERED This article reviews the current state of development of new agents targeting various systems and molecular pathways. We searched PubMed and clinicaltrials.gov in September 2021 with a special focus on ongoing early phase clinical trials to identify the promising therapeutic strategies for mPC. EXPERT OPINION Extensive tumor heterogeneity, complex tumor microenvironment, genetic alterations of the oncogenic signaling pathways, metabolic dysregulation, and a low immunogenicity are hurdles for current treatment approaches. Ongoing research efforts strive to overcome these hurdles and are showing some promising early results.
Collapse
Affiliation(s)
- Byung Woog Kang
- Department of Oncology/Hematology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Kyungpook National University, Daegu, Republic of Korea
| | - Ian Chau
- Department of Medicine, Royal Marsden Hospital, London, Surrey, UK
| |
Collapse
|
11
|
Wang H, Ding W, Shi H, Bao H, Lu Y, Jiang TA. Combination therapy with low-frequency ultrasound irradiation and radiofrequency ablation as a synergistic treatment for pancreatic cancer. Bioengineered 2021; 12:9832-9846. [PMID: 34696663 PMCID: PMC8810087 DOI: 10.1080/21655979.2021.1995581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We aim to evaluate the efficacies of combination therapy with low-frequency ultrasound-stimulated microbubbles (USMB) and radiofrequency ablation (RFA) on suppressing the proliferation of pancreatic cancer cell and treating Panc02 subcutaneous xenograft mice. The proliferation of HPDE6-C7 and Panc02 cells after the treatment of USMB and RFA alone or combination were evaluated by CCK-8 assay. Scratch test was performed to assess the cell migration capability. Panc02-bearing mice were received 14-day treatment of USMB and RFA alone or combination. Tumor size and survival rate were recorded once two days. The serum levels of immune-related factors and changes of apoptosis- and autophagy-related factors were detected by ELISA and western blotting methods. As a result, CKK-8 assays revealed significant inhibition on Panc02 cell proliferation in combination therapy with USMB and RFA relative to other groups (all p < 0.05). Strong synergistic effect of USMB combined with RFA was confirmed via the calculated combination index (CI) <0.4. In addition, combination therapy of USMB and RFA significantly inhibited the migration of Panc02 cells. Moreover, combined treatment remarkably inhibited the size and width of xenograft and improved the survival in Panc02-bearing mice. Furthermore, 14-day combination therapy of USMB and RFA in Panc02-bearing mice significantly facilitated the apoptosis and autophagy of tumor cells. In summary, combination therapy of USMB and RFA showed synergistic anti-tumor efficacies on Panc02 cells attributing to the promotion on apoptosis and autophagy in Panc02 subcutaneous xenograft mice.
Collapse
Affiliation(s)
- Huiyang Wang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenxiu Ding
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Shi
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiwei Bao
- Department of Ultrasound Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuting Lu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian An Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pulsed Electric Field Technology for Medical Transformation, Hangzhou, China
| |
Collapse
|
12
|
Alipour S, Pishkar L, Chaleshi V. Cytotoxic Effect of Portulaca Oleracea Extract on the Regulation of CDK1 and P53 Gene Expression in Pancreatic Cancer Cell Line. Nutr Cancer 2021; 74:1792-1801. [PMID: 34431425 DOI: 10.1080/01635581.2021.1960386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 10/24/2022]
Abstract
The growth of pancreatic cancer has a high predominance in the world. Different therapeutic methods were unsuccessful due to tumor invasion and rapid metastasis. Plants have natural products that were used as therapeutic agents. Accordingly, the purpose of this research was to assess the cytotoxic effect of Portulaca Oleracea against PANC-1 cancer cell line. MTT technique and flow cytometry were done to evaluate the cytotoxicity of P.Oleracea extracts against PANC-1 cancer cell line. For finding the change of CDK and P53 expression levels, qPCR carries out. The findings of the MTT assay exhibited that P.Oleracea extracts had toxicity potential on PANC- one cancer cell line. Also, the results of gene expression showed the high expression of P53 and reduction of CDK gene expression following treatment of cancer cells with plant extracts in. The flow cytometry assay showed apoptosis induced after P.Oleracea extract treatment in PANC- one cancer cell line. Also, microscopic observation is in agreement with flow cytometry and MTT assay. Results of the current study indicated that P.Oleracea extracts significantly induce apoptosis by regulating P53 and CDK expression, consequently. Therefore, P.Oleracea may be considered as a novel finding for pancreatic cancer treatment consequently of its cytotoxic and apoptotic activity.
Collapse
Affiliation(s)
- Samira Alipour
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Leila Pishkar
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Vahid Chaleshi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
13
|
Mollinedo F, Gajate C. Direct Endoplasmic Reticulum Targeting by the Selective Alkylphospholipid Analog and Antitumor Ether Lipid Edelfosine as a Therapeutic Approach in Pancreatic Cancer. Cancers (Basel) 2021; 13:4173. [PMID: 34439330 PMCID: PMC8394177 DOI: 10.3390/cancers13164173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common malignancy of the pancreas, shows a dismal and grim overall prognosis and survival rate, which have remained virtually unchanged for over half a century. PDAC is the most lethal of all cancers, with the highest mortality-to-incidence ratio. PDAC responds poorly to current therapies and remains an incurable malignancy. Therefore, novel therapeutic targets and drugs are urgently needed for pancreatic cancer treatment. Selective induction of apoptosis in cancer cells is an appealing approach in cancer therapy. Apoptotic cell death is highly regulated by different signaling routes that involve a variety of subcellular organelles. Endoplasmic reticulum (ER) stress acts as a double-edged sword at the interface of cell survival and death. Pancreatic cells exhibit high hormone and enzyme secretory functions, and thereby show a highly developed ER. Thus, pancreatic cancer cells display a prominent ER. Solid tumors have to cope with adverse situations in which hypoxia, lack of certain nutrients, and the action of certain antitumor agents lead to a complex interplay and crosstalk between ER stress and autophagy-the latter acting as an adaptive survival response. ER stress also mediates cell death induced by a number of anticancer drugs and experimental conditions, highlighting the pivotal role of ER stress in modulating cell fate. The alkylphospholipid analog prototype edelfosine is selectively taken up by tumor cells, accumulates in the ER of a number of human solid tumor cells-including pancreatic cancer cells-and promotes apoptosis through a persistent ER-stress-mediated mechanism both in vitro and in vivo. Here, we discuss and propose that direct ER targeting may be a promising approach in the therapy of pancreatic cancer, opening up a new avenue for the treatment of this currently incurable and deadly cancer. Furthermore, because autophagy acts as a cytoprotective response to ER stress, potentiation of the triggering of a persistent ER response by combination therapy, together with the use of autophagy blockers, could improve the current gloomy expectations for finding a cure for this type of cancer.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, C/Ramiro de Maeztu 9, E-28040 Madrid, Spain;
| | | |
Collapse
|
14
|
Murphy KJ, Chambers CR, Herrmann D, Timpson P, Pereira BA. Dynamic Stromal Alterations Influence Tumor-Stroma Crosstalk to Promote Pancreatic Cancer and Treatment Resistance. Cancers (Basel) 2021; 13:3481. [PMID: 34298706 PMCID: PMC8305001 DOI: 10.3390/cancers13143481] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Many cancer studies now recognize that disease initiation, progression, and response to treatment are strongly influenced by the microenvironmental niche. Widespread desmoplasia, or fibrosis, is fundamental to pancreatic cancer development, growth, metastasis, and treatment resistance. This fibrotic landscape is largely regulated by cancer-associated fibroblasts (CAFs), which deposit and remodel extracellular matrix (ECM) in the tumor microenvironment (TME). This review will explore the prognostic and functional value of the stromal compartment in predicting outcomes and clinical prognosis in pancreatic ductal adenocarcinoma (PDAC). We will also discuss the major dynamic stromal alterations that occur in the pancreatic TME during tumor development and progression, and how the stromal ECM can influence cancer cell phenotype, metabolism, and immune response from a biochemical and biomechanical viewpoint. Lastly, we will provide an outlook on the latest clinical advances in the field of anti-fibrotic co-targeting in combination with chemotherapy or immunotherapy in PDAC, providing insight into the current challenges in treating this highly aggressive, fibrotic malignancy.
Collapse
Affiliation(s)
- Kendelle J. Murphy
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (K.J.M.); (C.R.C.); (D.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Cecilia R. Chambers
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (K.J.M.); (C.R.C.); (D.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - David Herrmann
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (K.J.M.); (C.R.C.); (D.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (K.J.M.); (C.R.C.); (D.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Brooke A. Pereira
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (K.J.M.); (C.R.C.); (D.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| |
Collapse
|
15
|
Xu J, Zhang M, Cheng G. Comparison between B-mode ultrasonography and contrast-enhanced ultrasonography for the surveillance of early stage pancreatic cancer: a retrospective study. J Gastrointest Oncol 2020; 11:1090-1097. [PMID: 33209500 DOI: 10.21037/jgo-20-412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Contrast-enhanced ultrasonography (CE-US) brings a higher signal-to-noise ratio and a higher sensitivity for slow flow than traditional B-mode ultrasonography (US). However, it remains unclear whether CE-US is also superior to B-mode US in detecting early-stage pancreatic cancer (PC). Methods This was a retrospective study enrolling patients suspected of pancreatic insufficiency between June 2015 and December 2019. Enrolled patients successively received B-mode US and CE-US examinations, and some their demographic and clinical data were collected. The diagnostic capacity of the two examinations was calculated and receiver operating characteristic (ROC) curves was used to compare the area under the curve (AUC). A subgroup analysis was performed to explore the effects of tumor size on the diagnostic accuracy of B-mode US and CE-US. Results There were 128 patients enrolled in this study; 74 patients were diagnosed as early-stage PC patients and the remaining 54 were diagnosed with benign pancreatic lesions. The mean size of the PC was 17.8±4.9 mm. The results revealed that 68 of the 74 PC patients were correctly diagnosed by CE-US, and all 54 patients with benign pancreatic lesions were also correctly diagnosed. Meanwhile, only 55 of the 74 PC patients and 50 of the 54 patients with benign pancreatic lesions were diagnosed correctly using B-mode US. The ROC curve showed that the AUCs of CE-US and B-mode US were 0.959 and 0.835, respectively. According to the subgroup analysis, CE-US exhibited better accuracy than B-mode US for smaller tumors (size <20 mm, P=0.002; size <10 mm, P=0.043; size <5 mm, P=0.025). Conclusions CE-US was clearly superior to the conventional B-mode US in detecting early-stage PC, especially smaller sized PC.
Collapse
Affiliation(s)
- Jin Xu
- Department of Medical Ultrasonics, the Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Meng Zhang
- Department of Medical Ultrasonics, the Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Gang Cheng
- Department of Medical Ultrasonics, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
16
|
Ciecielski KJ, Berninger A, Algül H. Precision Therapy of Pancreatic Cancer: From Bench to Bedside. Visc Med 2020; 36:373-380. [PMID: 33178734 PMCID: PMC7590788 DOI: 10.1159/000509232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC), with a mortality rate of 94% and a 5-year-survival rate of only 8%, is one of the deadliest cancer entities worldwide, and early diagnostic methods as well as effective therapies are urgently needed. SUMMARY This review summarizes current clinical procedure and recent developments of oncological therapy in the palliative setting of metastatic PDAC. It further gives examples of successful, as well as failed, targeted therapy approaches and finally discusses promising ongoing research into the decade-old question of the "undruggability" of KRAS. KEY MESSAGES Bench-driven concepts change the clinical landscape from "one size fits all" towards precision medicine. With growing insight into the molecular mechanisms of pancreatic cancer the era of targeted therapy in PDAC is gaining a new momentum.
Collapse
Affiliation(s)
| | | | - Hana Algül
- Comprehensive Cancer Center Munich (CCCM), Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
17
|
Beetz O, Sarisin A, Kaltenborn A, Klempnauer J, Winkler M, Grannas G. Multivisceral resection for adenocarcinoma of the pancreatic body and tail-a retrospective single-center analysis. World J Surg Oncol 2020; 18:218. [PMID: 32819373 PMCID: PMC7441692 DOI: 10.1186/s12957-020-01973-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adenocarcinoma of the pancreatic body and tail is associated with a dismal prognosis. As patients frequently present themselves with locally advanced tumors, extended surgery including multivisceral resection is often necessary in order to achieve tumor-free resection margins. The aim of this study was to identify prognostic factors for postoperative morbidity and mortality and to evaluate the influence of multivisceral resections on patient outcome. METHODS This is a retrospective analysis of 94 patients undergoing resection of adenocarcinoma located in the pancreatic body and/or tail between April 1995 and December 2016 at our institution. Uni- and multivariable Cox regression analysis was conducted to identify independent prognostic factors for postoperative survival. RESULTS Multivisceral resections, including partial resections of the liver, the large and small intestines, the stomach, the left kidney and adrenal gland, and major vessels, were carried out in 47 patients (50.0%). The median postoperative follow-up time was 12.90 (0.16-220.92) months. Median Kaplan-Meier survival after resection was 12.78 months with 1-, 3-, and 5-year survival rates of 53.2%, 15.8%, and 9.0%. Multivariable Cox regression identified coeliac trunk resection (p = 0.027), portal vein resection (p = 0.010), intraoperative blood transfusions (p = 0.005), and lymph node ratio in percentage (p = 0.001) as independent risk factors for survival. Although postoperative complications requiring surgical revision were observed more frequently after multivisceral resections (14.9 versus 2.1%; p = 0.029), postoperative survival was not significantly inferior when compared to patients undergoing standard distal or subtotal pancreatectomy (12.35 versus 13.87 months; p = 0.377). CONCLUSIONS Our data indicates that multivisceral resection in cases of locally advanced pancreatic carcinoma of the body and/or tail is justified, as it is not associated with increased mortality and can even facilitate long-term survival, albeit with an increase in postoperative morbidity. Simultaneous resections of major vessels, however, should be considered carefully, as they are associated with inferior survival.
Collapse
Affiliation(s)
- Oliver Beetz
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Akin Sarisin
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Alexander Kaltenborn
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Jürgen Klempnauer
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Michael Winkler
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Gerrit Grannas
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|