1
|
Li Y, Zheng Y, Huang J, Nie RC, Wu QN, Zuo Z, Yuan S, Yu K, Liang CC, Pan YQ, Zhao BW, Xu Y, Zhang Q, Zheng Y, Chen J, Zeng ZL, Wei W, Liu ZX, Xu RH, Luo HY. CAF-macrophage crosstalk in tumour microenvironments governs the response to immune checkpoint blockade in gastric cancer peritoneal metastases. Gut 2024:gutjnl-2024-333617. [PMID: 39537239 DOI: 10.1136/gutjnl-2024-333617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Peritoneal metastasis is the most common metastasis pattern of gastric cancer. Patients with gastric cancer peritoneal metastasis (GCPM) have a poor prognosis and respond poorly to conventional treatments. Recently, immune checkpoint blockade (ICB) has demonstrated favourable efficacy in the treatment of GCPM. Stratification of best responders and elucidation of resistance mechanisms of ICB therapies are highly important and remain major clinical challenges. DESIGN We performed a phase II trial involving patients with GCPM treated with ICB (sintilimab) combined with chemotherapy. The samples of primary tumours, GCPMs and peripheral blood from patients were collected for single-cell sequencing to comprehensively interpret the tumour microenvironment of GCPM and its impacts on immunotherapy efficacy. RESULTS The GCPM ecosystem coordinates a unique immunosuppressive pattern distinct from that of primary GC, which is dominated by a stroma-myeloid niche composed of SPP1+tumour-associated macrophages (TAMs) and Thrombospondin 2 (THBS2)+matrix cancer-associated fibroblasts (mCAFs). Consequently, this stroma-myeloid crosstalk is the major mediator of ICB resistance in patients with GCPM. Mechanistically, the accumulated THBS2+mCAFs facilitate the recruitment of peritoneum-specific tissue-resident macrophages and their transformation into SPP1+TAMs via the complement C3 and its receptor C3a receptor 1 (C3AR1), thereby forming a protumoral stroma-myeloid niche. Blocking the C3-C3AR1 axis disrupts the stroma-myeloid crosstalk and thereby significantly improves the benefits of ICB in in vivo models. CONCLUSION Our findings provide a new molecular portrait of cell compositions associated with ICB resistance in patients with GCPM and aid in the prioritisation of therapeutic candidates to potentiate immunotherapy.
Collapse
Affiliation(s)
- Yuanfang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yongqiang Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jiaqian Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Run-Cong Nie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qi-Nian Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhijun Zuo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shuqiang Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Kai Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Cheng-Cai Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yi-Qian Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Bai-Wei Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yuhong Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qihua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yashang Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Junquan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhao-Lei Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wei Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Hui-Yan Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Sundar R, Chia DKA, Zhao JJ, Lee ARYB, Kim G, Tan HL, Pang A, Shabbir A, Willaert W, Ma H, Huang KK, Hagihara T, Tan ALK, Ong CAJ, Wong JSM, Seo CJ, Walsh R, Chan G, Cheo SW, Soh CCC, Callebout E, Geboes K, Ng MCH, Lum JHY, Leow WQ, Selvarajan S, Hoorens A, Ang WH, Pang H, Tan P, Yong WP, Chia CSL, Ceelen W, So JBY. Phase I PIANO trial-PIPAC-oxaliplatin and systemic nivolumab combination for gastric cancer peritoneal metastases: clinical and translational outcomes. ESMO Open 2024; 9:103681. [PMID: 39288528 PMCID: PMC11421236 DOI: 10.1016/j.esmoop.2024.103681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024] Open
Abstract
INTRODUCTION Pressurized intraperitoneal aerosol chemotherapy-oxaliplatin (PIPAC-OX) induces direct DNA damage and immunogenic cell death in patients with gastric cancer peritoneal metastases (GCPM). Combining PIPAC-OX with immune checkpoint inhibition remains untested. We conducted a phase I first-in-human trial evaluating the safety and efficacy of PIPAC-OX combined with systemic nivolumab (NCT03172416). METHODS Patients with GCPM who experienced disease progression on at least first-line systemic therapy were recruited across three centers in Singapore and Belgium. Patients received PIPAC-OX at 90 mg/m2 every 6 weeks and i.v. nivolumab 240 mg every 2 weeks. Translational studies were carried out on GCPM samples acquired during PIPAC-OX procedures. RESULTS In total, 18 patients with GCPM were prospectively recruited. The PIPAC-OX and nivolumab combination was well tolerated with manageable treatment-related adverse events, although one patient suffered from grade 4 vomiting. At second and third PIPAC-OX, respectively, the median decrease in peritoneal cancer index (PCI) was -5 (interquartile range: -12 to +1) and -7 (interquartile range: -6 to -20) and peritoneal regression grade 1 or 2 was observed in 66.7% (6/9) and 100% (3/3). Translational analyses of 43 GCPM samples revealed enrichment of immune/stromal infiltration and inflammatory signatures in peritoneal tumors after PIPAC-OX and nivolumab. M2 macrophages were reduced in treated peritoneal tumor samples while memory CD4+, CD8+ central memory and naive CD8+ T-cells were increased. CONCLUSIONS The first-in-human trial combining PIPAC-OX and nivolumab demonstrated safety and tolerability, coupled with enhanced T-cell infiltration within peritoneal tumors. This trial sets the stage for future combinations of systemic immunotherapy with locoregional intraperitoneal treatments.
Collapse
Affiliation(s)
- R Sundar
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore; Singapore Gastric Cancer Consortium, Singapore.
| | - D K A Chia
- Division of Upper Gastrointestinal Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore
| | - J J Zhao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore; Department of Medicine, National University Hospital, Singapore, Singapore
| | - A R Y B Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - G Kim
- Division of Upper Gastrointestinal Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore
| | - H L Tan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - A Pang
- Division of Upper Gastrointestinal Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore
| | - A Shabbir
- Division of Upper Gastrointestinal Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore
| | - W Willaert
- Department of Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - H Ma
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - K K Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - T Hagihara
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - A L K Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - C-A J Ong
- Singapore Gastric Cancer Consortium, Singapore; Department of Sarcoma, Peritoneal and Rare Tumors (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - J S M Wong
- Department of Sarcoma, Peritoneal and Rare Tumors (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - C J Seo
- Department of Sarcoma, Peritoneal and Rare Tumors (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - R Walsh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - G Chan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - S W Cheo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - C C C Soh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - E Callebout
- Department of Digestive Oncology, Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - K Geboes
- Department of Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - M C H Ng
- Division of Medical Oncology, National Cancer Centre, Singapore; Duke NUS Medical School, Singapore
| | - J H Y Lum
- Department of Pathology, National University Hospital, Singapore
| | - W Q Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - S Selvarajan
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - A Hoorens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - W H Ang
- Department of Chemistry, National University of Singapore, Singapore
| | - H Pang
- Department of Chemistry, National University of Singapore, Singapore
| | - P Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore; Singapore Gastric Cancer Consortium, Singapore
| | - W P Yong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore; Singapore Gastric Cancer Consortium, Singapore
| | - C S L Chia
- Department of Sarcoma, Peritoneal and Rare Tumors (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - W Ceelen
- Department of Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - J B Y So
- Singapore Gastric Cancer Consortium, Singapore; Division of Upper Gastrointestinal Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Surgical Oncology, National University Cancer Institute of Singapore (NCIS), Singapore, Singapore.
| |
Collapse
|
3
|
Vlodavsky I, Hilwi M, Kayal Y, Soboh S, Ilan N. Impact of heparanase-2 (Hpa2) on cancer and inflammation: Advances and paradigms. FASEB J 2024; 38:e23670. [PMID: 38747803 DOI: 10.1096/fj.202400286r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
HPSE2, the gene-encoding heparanase 2 (Hpa2), is mutated in urofacial syndrome (UFS), a rare autosomal recessive congenital disease attributed to peripheral neuropathy. Hpa2 lacks intrinsic heparan sulfate (HS)-degrading activity, the hallmark of heparanase (Hpa1), yet it exhibits a high affinity toward HS, thereby inhibiting Hpa1 enzymatic activity. Hpa2 regulates selected genes that promote normal differentiation, tissue homeostasis, and endoplasmic reticulum (ER) stress, resulting in antitumor, antiangiogenic, and anti-inflammatory effects. Importantly, stress conditions induce the expression of Hpa2, thus establishing a feedback loop, where Hpa2 enhances ER stress which, in turn, induces Hpa2 expression. In most cases, cancer patients who retain high levels of Hpa2 survive longer than patients bearing Hpa2-low tumors. Experimentally, overexpression of Hpa2 attenuates the growth of tumor xenografts, whereas Hpa2 gene silencing results in aggressive tumors. Studies applying conditional Hpa2 knockout (cHpa2-KO) mice revealed an essential involvement of Hpa2 contributed by the host in protecting against cancer and inflammation. This was best reflected by the distorted morphology of the Hpa2-null pancreas, including massive infiltration of immune cells, acinar to adipocyte trans-differentiation, and acinar to ductal metaplasia. Moreover, orthotopic inoculation of pancreatic ductal adenocarcinoma (PDAC) cells into the pancreas of Hpa2-null vs. wild-type mice yielded tumors that were by far more aggressive. Likewise, intravenous inoculation of cancer cells into cHpa2-KO mice resulted in a dramatically increased lung colonization reflecting the involvement of Hpa2 in restricting the formation of a premetastatic niche. Elucidating Hpa2 structure-activity-relationships is expected to support the development of Hpa2-based therapies against cancer and inflammation.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Maram Hilwi
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yasmin Kayal
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Soaad Soboh
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
4
|
Dadgar N, Sherry C, Zimmerman J, Park H, Lewis C, Donnenberg A, Zaidi AH, Fan Y, Xiao K, Bartlett D, Donnenberg V, Wagner PL. Targeting interleukin-6 as a treatment approach for peritoneal carcinomatosis. J Transl Med 2024; 22:402. [PMID: 38689325 PMCID: PMC11061933 DOI: 10.1186/s12967-024-05205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Peritoneal carcinomatosis (PC) is a complex manifestation of abdominal cancers, with a poor prognosis and limited treatment options. Recent work identifying high concentrations of the cytokine interleukin-6 (IL-6) and its soluble receptor (sIL-6-Rα) in the peritoneal cavity of patients with PC has highlighted this pathway as an emerging potential therapeutic target. This review article provides a comprehensive overview of the current understanding of the potential role of IL-6 in the development and progression of PC. We discuss mechansims by which the IL-6 pathway may contribute to peritoneal tumor dissemination, mesothelial adhesion and invasion, stromal invasion and proliferation, and immune response modulation. Finally, we review the prospects for targeting the IL-6 pathway in the treatment of PC, focusing on common sites of origin, including ovarian, gastric, pancreatic, colorectal and appendiceal cancer, and mesothelioma.
Collapse
Affiliation(s)
- Neda Dadgar
- Translational Hematology & Oncology Research, Enterprise Cancer Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Christopher Sherry
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Jenna Zimmerman
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Hyun Park
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Catherine Lewis
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Albert Donnenberg
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Ali H Zaidi
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Yong Fan
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Kunhong Xiao
- Center for Proteomics & Artificial Intelligence, Center for Clinical Mass Spectrometry, Allegheny Health Network Cancer Institute, Pittsburgh, PA, 15224, USA
| | - David Bartlett
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Vera Donnenberg
- University of Pittsburgh School of MedicineDepartment of Cardiothoracic SurgeryUPMC Hillman Cancer Center Wagner, Patrick; Allegheny Health Network Cancer Institute, Pittsburgh, USA
| | - Patrick L Wagner
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA.
| |
Collapse
|
5
|
Chen XJ, Wei CZ, Lin J, Zhang RP, Chen GM, Li YF, Nie RC, Chen YM. Prognostic Significance of PD-L1 Expression in Gastric Cancer Patients with Peritoneal Metastasis. Biomedicines 2023; 11:2003. [PMID: 37509642 PMCID: PMC10377298 DOI: 10.3390/biomedicines11072003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Recently, many studies have explored the relationship between the expression of programmed death ligand 1 (PD-L1) and prognosis in gastric cancer, but there is still controversy. Additionally, few studies have specifically investigated the expression of PD-L1 in patients with peritoneal metastasis. METHODS Immunohistochemistry was used to analyze the expression of PD-L1 in gastric cancer patients with peritoneal metastasis. The combined positive score (CPS) was calculated to evaluate the expression of PD-L1, and the clinicopathological data were analyzed to explore prognostic significance. RESULTS In total, 147 gastric cancer patients with peritoneal metastasis were enrolled. The negative PD-L1 expression was defined as a CPS < 1, and high PD-L1 expression was defined as a CPS ≥ 10. PD-L1 expression with CPS ≥ 1 and CPS-negative was detected in 67 (45.58%) and 80 (54.42%) patients, respectively. High PD-L1 expression at PD-L1 CPS ≥ 10 was detected in 21(14.29%) patients. The median overall survival (OS) was 18.53 months in the CPS < 10 group and 27.00 months in the CPS ≥ 10 group; the OS difference between the two groups was significant (p = 0.015). Multivariate analysis demonstrated that a poor Eastern Cooperative Oncology Group performance score (ECOG PS) (p = 0.002) and severe peritoneal metastasis (p = 0.033) were significantly associated with poor survival, while palliative chemotherapy (p = 0.002) and high PD-L1 expression (p = 0.008) were independent and significantly favorable prognostic factors. CONCLUSIONS Our study demonstrated that PD-L1 expression was widely presented in gastric cancer patients with peritoneal metastasis, while a CPS no less than 10 predicted better prognosis.
Collapse
Affiliation(s)
- Xiao-Jiang Chen
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou 510060, China
| | - Cheng-Zhi Wei
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou 510060, China
| | - Jun Lin
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou 510060, China
| | - Ruo-Peng Zhang
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou 510060, China
| | - Guo-Ming Chen
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou 510060, China
| | - Yuan-Fang Li
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou 510060, China
| | - Run-Cong Nie
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou 510060, China
| | - Yong-Ming Chen
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No.651 Dongfeng Road East, Guangzhou 510060, China
| |
Collapse
|
6
|
Wang B, Huang L, Ye S, Zheng Z, Liao S. Identification of Novel Prognostic Biomarkers That are Associated with Immune Microenvironment Based on GABA-Related Molecular Subtypes in Gastric Cancer. Pharmgenomics Pers Med 2023; 16:665-679. [PMID: 37405024 PMCID: PMC10315139 DOI: 10.2147/pgpm.s411862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/10/2023] [Indexed: 07/06/2023] Open
Abstract
Background Gamma-aminobutyric acid (GABA) plays an important role in tumorigenesis and progression. Despite this, the role of Reactome GABA receptor activation (RGRA) on gastric cancer (GC) remains unclear. This study was intended to screen RGRA-related genes in GC and investigate their prognostic value. Methods GSVA algorithm was used to assess the score of RGRA. GC patients were divided into two subtypes based on the median score of RGRA. GSEA, functional enrichment analysis, and immune infiltration analysis were performed between the two subgroups. Then, differentially expressed analysis, and weighted gene co-expression network analysis (WGCNA) were used to identify RGRA-related genes. The prognosis and expression of core genes were analyzed and validated in the TCGA database, GEO database, and clinical samples. ssGSEA and ESTIMATE algorithms were used to assess the immune cell infiltration in the low- and high-core genes subgroups. Results High-RGRA subtype had a poor prognosis and activated immune-related pathways, as well as an activated immune microenvironment. ATP1A2 was identified to be the core gene. The expression of ATP1A2 was associated with the overall survival rate and tumor stage, and its expression was down-regulated in GC patients. Furthermore, ATP1A2 expression was positively correlated with the level of immune cells, including B cells, CD8 T cells, cytotoxic cells, DC, eosinophils, macrophages, mast cells, NK cells, and T cells. Conclusion Two RGRA-related molecular subtypes were identified that could predict the outcome in GC patients. ATP1A2 was a core immunoregulatory gene and was associated with prognosis and immune cell infiltration in GC.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Linlin Huang
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Shanliang Ye
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Zhongwen Zheng
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Shanying Liao
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People’s Republic of China
| |
Collapse
|
7
|
Ornella MSC, Badrinath N, Kim KA, Kim JH, Cho E, Hwang TH, Kim JJ. Immunotherapy for Peritoneal Carcinomatosis: Challenges and Prospective Outcomes. Cancers (Basel) 2023; 15:cancers15082383. [PMID: 37190310 DOI: 10.3390/cancers15082383] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Peritoneal metastasis, also known as peritoneal carcinomatosis (PC), is a refractory cancer that is typically resistant to conventional therapies. The typical treatment for PC is a combination of cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). Recently, research in this area has seen significant advances, particularly in immunotherapy as an alternative therapy for PC, which is very encouraging. Catumaxomab is a trifunctional antibody intraperitoneal (IP) immunotherapy authorized in Europe that can be used to diminish malignant ascites by targeting EpCAM. Intraperitoneal (IP) immunotherapy breaks immunological tolerance to treat peritoneal illness. Increasing T-cell responses and vaccination against tumor-associated antigens are two methods of treatment. CAR-T cells, vaccine-based therapeutics, dendritic cells (DCs) in combination with pro-inflammatory cytokines and NKs, adoptive cell transfer, and immune checkpoint inhibitors are promising treatments for PC. Carcinoembryonic antigen-expressing tumors are suppressed by IP administration of CAR-T cells. This reaction was strengthened by anti-PD-L1 or anti-Gr1. When paired with CD137 co-stimulatory signaling, CAR-T cells for folate receptor cancers made it easier for T-cell tumors to find their way to and stay alive in the body.
Collapse
Affiliation(s)
- Mefotse Saha Cyrelle Ornella
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Narayanasamy Badrinath
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Kyeong-Ae Kim
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Jung Hee Kim
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Euna Cho
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Tae-Ho Hwang
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Jae-Joon Kim
- Division of Hematology & Oncology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
8
|
Aoki M, Kadowaki S, Takahashi N, Suzuki T, Oshima K, Ando T, Yamamoto Y, Kawakami K, Kito Y, Matsumoto T, Shimozaki K, Miyazaki Y, Yamaguchi T, Nagase M, Tamura T, Amanuma Y, Esaki T, Miura Y, Akiyoshi K, Baba E, Makiyama A, Negoro Y, Nakashima K, Sugimoto N, Nagashima K, Shoji H, Boku N. Pattern of disease progression during third-line or later chemotherapy with nivolumab associated with poor prognosis in advanced gastric cancer: a multicenter retrospective study in Japan. Gastric Cancer 2023; 26:132-144. [PMID: 36316527 PMCID: PMC9813080 DOI: 10.1007/s10120-022-01349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Accelerated tumor growth during immunotherapy in pre-existing measurable lesions, hyperprogressive disease (HPD), has been reported. However, progression of non-measurable lesions and new lesions are frequently observed in patients with advanced gastric cancer (AGC). METHODS This retrospective study involved AGC patients at 24 Japanese institutions who had measurable lesions and received nivolumab after ≥ 2 lines of chemotherapy. HPD was defined as a ≥ two-fold increase in the tumor growth rate of measurable lesions. The pattern of disease progression was classified according to new lesions in different organs and ascites appeared/increase of ascites. RESULTS Of 245 patients, 147 (60.0%) showed progressive disease (PD) as the best response and 41 (16.7%) showed HPD during nivolumab monotherapy. There was no significant difference in overall survival (OS) between patients with HPD and those with PD other than HPD (median OS 5.0 vs 4.8 months; hazard ratio [HR] 1.0, 95% confidence interval [CI] 0.6-1.5; p = 1.0). Fifty-three patients developed new lesions in different organs and 58 had appearance/increase of ascites; these patients showed shorter OS than those without each of these features (median OS 3.3 vs 7.1 months, HR 1.8, 95% CI 1.2-2.7, p = 0.0031 for new lesions, and 3.0 vs 7.8 months, HR 2.6, 95% CI 1.8-3.8, p < 0.0001 for ascites). Thirty-one patients who had both features showed the worst prognosis (median OS 2.6 months). CONCLUSIONS New lesions in different organs and appearance/increase of ascites, rather than the original definition of HPD, are the patterns of disease progression associated with poor prognosis in AGC patients receiving nivolumab whose best response was PD.
Collapse
Affiliation(s)
- Masahiko Aoki
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Early Clinical Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigenori Kadowaki
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Aichi, Japan
| | - Naoki Takahashi
- Division of Gastroenterology, Saitama Cancer Center, Saitama, Japan
| | - Takeshi Suzuki
- Department of Gastroenterology, The Cancer Institute Hospital, Tokyo, Japan
| | - Kotoe Oshima
- Department of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Takayuki Ando
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Yoshiyuki Yamamoto
- Department of Gastroenterology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kentaro Kawakami
- Department of Medical Oncology, Keiyukai Sapporo Hospital, Hokkaido, Japan
| | - Yosuke Kito
- Department of Medical Oncology, Ishikawa Prefectural Central Hospital, Ishikawa, Japan
| | - Toshihiko Matsumoto
- Department of Internalmedicine, Himeji Red Cross Hospital, Hyogo, Japan
- Cancer Treatment Center, Kansai Medical University Hospital, Osaka, Japan
| | - Keitaro Shimozaki
- Division of Gastroenterology and Hepatology, Depart of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | - Toshifumi Yamaguchi
- Cancer Chemotherapy Center, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Michitaka Nagase
- Department of Medical Oncology, Saku Central Hospital Advanced Care Center, Nagano, Japan
| | - Takao Tamura
- Department of Medical Oncology, Kindai University Nara Hospital, Nara, Japan
| | - Yusuke Amanuma
- Clinical Trial Promotion Department, Chiba Cancer Center, Chiba, Japan
| | - Taito Esaki
- Department of Gastrointestinal and Medical Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Yuji Miura
- Department of Medical Oncology, Toranomon Hospital, Tokyo, Japan
| | - Kohei Akiyoshi
- Department of Medical Oncology, Osaka City General Hospital, Osaka, Japan
| | - Eishi Baba
- Department of Oncology and Social Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Akitaka Makiyama
- Department of Hematology/Oncology, Japan Community Healthcare Organization Kyushu Hospital, Fukuoka, Japan
- Cancer Center, Gifu University Hospital, Gifu, Japan
| | - Yuji Negoro
- Division of Gastroenterological Medicine, Kochi Health Sciences Center, Kochi, Japan
| | - Koji Nakashima
- Department of Clinical Oncology, University of Miyazaki Hospital, Miyazaki, Japan
| | - Naotoshi Sugimoto
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Narikazu Boku
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.
- Department of Oncology and General Medicine, IMSUT Hospital, Institute of Medical Science, University of Tokyo, 4-6-1 Shiroganedai, Minato-Ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
9
|
Zeng J, Ran K, Li X, Tao L, Wang Q, Ren J, Hu R, Zhu Y, Liu Z, Yu L. A novel small molecule RK-019 inhibits FGFR2-amplification gastric cancer cell proliferation and induces apoptosis in vitro and in vivo. Front Pharmacol 2022; 13:998199. [PMID: 36210834 PMCID: PMC9532703 DOI: 10.3389/fphar.2022.998199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
Gastric cancer (GC) is one of the most malignant cancers and is estimated to be fifth in incidence ratio and the third leading cause of cancer death worldwide. Despite advances in GC treatment, poor prognosis and low survival rate necessitate the development of novel treatment options. Fibroblast growth factor receptors (FGFRs) have been suggested to be potential targets for GC treatment. In this study, we report a novel selective FGFR inhibitor, RK-019, with a pyrido [1, 2-a] pyrimidinone skeleton. In vitro, RK-019 showed excellent FGFR1-4 inhibitory activities and strong anti-proliferative effects against FGFR2-amplification (FGFR2-amp) GC cells, including SNU-16 and KATO III cells. Treatment with RK-019 suppressed phosphorylation of FGFR and its downstream pathway proteins, such as FRS2, PLCγ, AKT, and Erk, resulting in cell cycle arrest and induction of apoptosis. Furthermore, daily oral administration of RK-019 could attenuate tumor xenograft growth with no adverse effects. Here, we reported a novel specific FGFR inhibitor, RK-019, with potent anti-FGFR2-amp GC activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Jun Zeng
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Ran
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, China
| | - Xinyue Li
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Longyue Tao
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qiwei Wang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiangtao Ren
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Hu
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yongxia Zhu
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhihao Liu
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Abstract
Like most solid tumours, the microenvironment of epithelial-derived gastric adenocarcinoma (GAC) consists of a variety of stromal cell types, including fibroblasts, and neuronal, endothelial and immune cells. In this article, we review the role of the immune microenvironment in the progression of chronic inflammation to GAC, primarily the immune microenvironment driven by the gram-negative bacterial species Helicobacter pylori. The infection-driven nature of most GACs has renewed awareness of the immune microenvironment and its effect on tumour development and progression. About 75-90% of GACs are associated with prior H. pylori infection and 5-10% with Epstein-Barr virus infection. Although 50% of the world's population is infected with H. pylori, only 1-3% will progress to GAC, with progression the result of a combination of the H. pylori strain, host susceptibility and composition of the chronic inflammatory response. Other environmental risk factors include exposure to a high-salt diet and nitrates. Genetically, chromosome instability occurs in ~50% of GACs and 21% of GACs are microsatellite instability-high tumours. Here, we review the timeline and pathogenesis of the events triggered by H. pylori that can create an immunosuppressive microenvironment by modulating the host's innate and adaptive immune responses, and subsequently favour GAC development.
Collapse
|
11
|
Lee J, Choi SH, Baek JH, Baek DW, Kim JG, Kang BW. Clinical Impact of Prognostic Nutrition Index for Advanced Gastric Cancer Patients with Peritoneal Metastases Treated Nivolumab Monotherapy. Chonnam Med J 2022; 58:24-28. [PMID: 35169556 PMCID: PMC8813651 DOI: 10.4068/cmj.2022.58.1.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 11/06/2022] Open
Abstract
Although nivolumab shows survival benefits for patients with advanced gastric cancer (AGC), predictive biomarkers for nivolumab treatment in AGC remain unclear, especially in the case of peritoneal metastases. This study investigated the clinical significance of the prognostic nutrition index (PNI), reflecting the host nutritional status and immunity, in AGC patients undergoing nivolumab monotherapy. This study retrospectively analyzed 53 AGC patients who received nivolumab between October 2017 and February 2021. Among them, 35 patients with peritoneal metastases were reviewed to investigate the relationship between the PNI and oncological outcomes. The PNI was calculated as 10×serum albumin level (g/dl)+0.005×total lymphocyte count (per mm3) at the first administration of nivolumab. With a median follow-up duration of 2.0 (0.3-13.5) months, the median overall survival (OS) was 2.0 months. The overall response and disease-control rates were 0.0% and 20.0%, respectively. Among the 35 patients, 13 patients were identified as a high-PNI group. In the univariate analysis, the high-PNI group showed a significantly longer PFS and OS than the low-PNI group. In the multivariate analysis, the high-PNI was independently associated with a longer PFS (p=0.021) and OS (p=0.022). The PNI can be useful for predicting PFS and OS in AGC patients with peritoneal metastases. However, further studies are required to validate these results in AGC and new strategies are needed to improve the outcome for AGC patients with peritoneal metastases.
Collapse
Affiliation(s)
- Jungmin Lee
- Department of Oncology/Hematology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Kyungpook National University Cancer Research Institute, Daegu, Korea
| | - Soo Ho Choi
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jin Ho Baek
- Department of Oncology/Hematology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Kyungpook National University Cancer Research Institute, Daegu, Korea
| | - Dong Won Baek
- Department of Oncology/Hematology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Kyungpook National University Cancer Research Institute, Daegu, Korea
| | - Jong Gwang Kim
- Department of Oncology/Hematology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Kyungpook National University Cancer Research Institute, Daegu, Korea
| | - Byung Woog Kang
- Department of Oncology/Hematology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Kyungpook National University Cancer Research Institute, Daegu, Korea
| |
Collapse
|
12
|
Ruiz Hispán E, Pedregal M, Cristobal I, García-Foncillas J, Caramés C. Immunotherapy for Peritoneal Metastases from Gastric Cancer: Rationale, Current Practice and Ongoing Trials. J Clin Med 2021; 10:4649. [PMID: 34682772 PMCID: PMC8539177 DOI: 10.3390/jcm10204649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023] Open
Abstract
Peritoneal metastases from gastric cancer play a key role in the fatal prognosis of the disease. The lack of efficacy of actual therapeutic approaches together with the outcomes achieved with checkpoint inhibitors in gastric cancer compel us to address the current state-of-the-art immunotherapy treatment of peritoneal dissemination. The immunogenicity of the peritoneum has been described to be particularly active at omentum and peritoneal lymph nodes. Also, both innate and acquired immunity seems to be involved at different molecular levels. Recent works show PDL1 expression being less present at the peritoneal level; however, some clinical trials have begun to yield results. For example, the ATTRACTION-2 trial has demonstrated the activity of Nivolumab in heavily pretreated patients even though peritoneal metastases were diagnosed in a 30% of them. Despite positive results in the metastatic setting, peritoneal responses to systemic checkpoint inhibitors remains unclear, therefore, new strategies for intraperitoneal immunotherapy are being proposed for different ongoing clinical trials.
Collapse
Affiliation(s)
- Eva Ruiz Hispán
- Department of Oncology, Fundación Jiménez Díaz University Hospital, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; (E.R.H.); (M.P.)
| | - Manuel Pedregal
- Department of Oncology, Fundación Jiménez Díaz University Hospital, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; (E.R.H.); (M.P.)
| | - Ion Cristobal
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM Madrid, 28040 Madrid, Spain;
| | - Jesús García-Foncillas
- Department of Oncology, Fundación Jiménez Díaz University Hospital, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; (E.R.H.); (M.P.)
| | - Cristina Caramés
- Department of Oncology, Fundación Jiménez Díaz University Hospital, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; (E.R.H.); (M.P.)
| |
Collapse
|
13
|
DUOX2, a New Biomarker for Disseminated Gastric Cancer's Response to Low Dose Radiation in Mice. Cancers (Basel) 2021; 13:cancers13164186. [PMID: 34439340 PMCID: PMC8392330 DOI: 10.3390/cancers13164186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
Treatment options are rather limited for gastrointestinal cancer patients whose disease has disseminated into the intra-abdominal cavity. Here, we designed pre-clinical studies to evaluate the potential application of chemopotentiation by Low Dose Fractionated Radiation Therapy (LDFRT) for disseminated gastric cancer and evaluate the role of a likely biomarker, Dual Oxidase 2 (DUOX2). Nude mice were injected orthotopically with human gastric cancer cells expressing endogenous or reduced levels of DUOX2 and randomly assigned to four treatment groups: 1; vehicle alone, 2; modified regimen of docetaxel, cisplatin and 5'-fluorouracil (mDCF) for three consecutive days, 3; Low Dose- Whole Abdomen Radiation Therapy (LD-WART) (5 fractions of 0.15 Gy in three days), 4; mDCF and LD-WART. The combined regimen increased the odds of preventing cancer dissemination (mDCF + LD-WART OR = 4.16; 80% CI = 1.0, 17.29) in the DUOX2 positive tumors, while tumors expressing lower DUOX2 levels were more responsive to mDCF alone with no added benefit from LD-WART. The molecular mechanisms underlying DUOX2 effects in response to the combined regimen include NF-κB upregulation. These data are particularly important since our study indicates that about 33% of human stomach adenocarcinoma do not express DUOX2. DUOX2 thus seems a likely biomarker for potential clinical application of chemopotentiation by LD-WART.
Collapse
|
14
|
Liu J, Knani I, Gross-Cohen M, Hu J, Wang S, Tang L, Ilan N, Yang S, Vlodavsky I. Role of heparanase 2 (Hpa2) in gastric cancer. Neoplasia 2021; 23:966-978. [PMID: 34343822 PMCID: PMC8349917 DOI: 10.1016/j.neo.2021.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
We report that gastric cancer patients exhibiting high levels of heparanase 2 (Hpa2) survive longer. Similarly, mice administrated with gastric carcinoma cells engineered to overexpress Hpa2 produced smaller tumors and survived longer than mice administrated with control cells. These beneficial effects were found to associate with increased phosphorylation of AMP-activated protein kinase (AMPK) that play an instrumental role in cell metabolism and is situated at the center of a tumor suppressor network. We also found that MG132, an inhibitor of the proteasome that results in proteotoxic stress, prominently enhances Hpa2 expression. Notably, Hpa2 induction by MG132 appeared to be mediated by AMPK, thus establishing a loop that feeds itself where Hpa2 enhances AMPK phosphorylation that, in turn, induces Hpa2 expression, possibly leading to attenuation of gastric tumorigenesis.
Heparanase is highly implicated in tumor metastasis due to its capacity to cleave heparan sulfate and, consequently, remodel the extracellular matrix underlying epithelial and endothelial cells. In striking contrast, only little attention was given to its close homolog, heparanase 2 (Hpa2), possibly because it lacks heparan sulfate-degrading activity typical of heparanase. We subjected sections of gastric carcinoma to immunostaining and correlated Hpa2 immunoreactivity with clinical records, including tumor grade, stage and patients' status. We over-expressed Hpa2 in gastric carcinoma cell lines and examined their tumorigenic properties in vitro and in vivo. We also evaluated the expression of Hpa2 by gastric carcinoma cells following inhibition of the proteasome, leading to proteotoxic stress, and the resulting signaling responsible for Hpa2 gene regulation. Here, we report that gastric cancer patients exhibiting high levels of Hpa2 survive longer. Similarly, mice administrated with gastric carcinoma cells engineered to over-express Hpa2 produced smaller tumors and survived longer than mice administrated with control cells. This was associated with increased phosphorylation of AMP-activated protein kinase (AMPK), a kinase that is situated at the center of a tumor suppressor network. We also found that MG132, an inhibitor of the proteasome that results in proteotoxic stress, prominently enhances Hpa2 expression. Notably, Hpa2 induction by MG132 appeared to be mediated by AMPK, and AMPK was found to induce the expression of Hpa2, thus establishing a loop that feeds itself where Hpa2 enhances AMPK phosphorylation that, in turn, induces Hpa2 expression, leading to attenuation of gastric tumorigenesis. These results indicate that high levels of Hpa2 in some tumors are due to stress conditions that tumors often experience due to their high rates of cell proliferation and high metabolic demands. This increase in Hpa2 levels by the stressed tumors appears critically important for patient outcomes.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Ibrahim Knani
- Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion, Haifa, Israel
| | - Miriam Gross-Cohen
- Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion, Haifa, Israel
| | - Jiaxi Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Neta Ilan
- Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion, Haifa, Israel
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Israel Vlodavsky
- Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion, Haifa, Israel.
| |
Collapse
|