1
|
Bumpers QA, Pipal RW, Benz-Weeden AM, Brewster JT, Cook A, Crooks AL, Cruz C, Dwulet NC, Gaudino JJ, Golec D, Harrison JA, Hartley DP, Hassanien SH, Hicken EJ, Kahn D, Laird ER, Lemieux C, Lewandowski N, McCown J, McDonald MG, McNulty O, Mou TC, Nguyen P, Oko L, Opie LP, Otten J, Peck SC, Polites VC, Randall SD, Rosen RZ, Savechenkov P, Simpson H, Singh A, Sparks D, Wickersham K, Wollenberg L, Wong CE, Wong J, Wu WI, Elsayed MSA, Hinklin RJ, Tang TP. Discovery of Pyrazolopyrazines as Selective, Potent, and Mutant-Active MET Inhibitors with Intracranial Efficacy. J Med Chem 2024; 67:14466-14477. [PMID: 39088797 DOI: 10.1021/acs.jmedchem.4c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Mesenchymal-epithelial transition factor (MET) is a receptor tyrosine kinase that serves a critical function in numerous developmental, morphogenic, and proliferative signaling pathways. If dysregulated, MET has been shown to be involved in the development and survival of several cancers, including non-small cell lung cancer (NSCLC), renal cancer, and other epithelial tumors. Currently, the clinical efficacy of FDA approved MET inhibitors is limited by on-target acquired resistance, dose-limiting toxicities, and less than optimal efficacy against brain metastasis. Therefore, there is still an unmet medical need for the development of MET inhibitors to address these issues. Herein we report the application of structure-based design for the discovery and development of a novel class of brain-penetrant MET inhibitors with enhanced activity against clinically relevant mutations and improved selectivity. Compound 13 with a MET D1228N cell line IC50 value of 23 nM showed good efficacy in an intracranial tumor model and increased the median overall survival of the animals to 100% when dosed orally at 100 mg/kg daily for 21 days.
Collapse
Affiliation(s)
- Quinn A Bumpers
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Robert W Pipal
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Anna M Benz-Weeden
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - James T Brewster
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Adam Cook
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Amy L Crooks
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Cole Cruz
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Natalie C Dwulet
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - John J Gaudino
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Daniel Golec
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Jacqueline A Harrison
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Dylan P Hartley
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Sherif H Hassanien
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Erik J Hicken
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Dean Kahn
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Ellen R Laird
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Christine Lemieux
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Nicholas Lewandowski
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Joseph McCown
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Matthew G McDonald
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Oren McNulty
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Tung-Chung Mou
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Phong Nguyen
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Lauren Oko
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Lisa Pieti Opie
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Jennifer Otten
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Spencer C Peck
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Viktor C Polites
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Samuel D Randall
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Rachel Z Rosen
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Pavel Savechenkov
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Helen Simpson
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Anurag Singh
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Drew Sparks
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Kyle Wickersham
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Lance Wollenberg
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Christina E Wong
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Jim Wong
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Wen-I Wu
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Mohamed S A Elsayed
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Ronald J Hinklin
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Tony P Tang
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| |
Collapse
|
2
|
Thu YM, Suzawa K, Tomida S, Ochi K, Tsudaka S, Takatsu F, Date K, Matsuda N, Iwata K, Nakata K, Shien K, Yamamoto H, Okazaki M, Sugimoto S, Toyooka S. PAI-1 mediates acquired resistance to MET-targeted therapy in non-small cell lung cancer. PLoS One 2024; 19:e0300644. [PMID: 38758826 PMCID: PMC11101109 DOI: 10.1371/journal.pone.0300644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/03/2024] [Indexed: 05/19/2024] Open
Abstract
Mechanisms underlying primary and acquired resistance to MET tyrosine kinase inhibitors (TKIs) in managing non-small cell lung cancer remain unclear. In this study, we investigated the possible mechanisms acquired for crizotinib in MET-amplified lung carcinoma cell lines. Two MET-amplified lung cancer cell lines, EBC-1 and H1993, were established for acquired resistance to MET-TKI crizotinib and were functionally elucidated. Genomic and transcriptomic data were used to assess the factors contributing to the resistance mechanism, and the alterations hypothesized to confer resistance were validated. Multiple mechanisms underlie acquired resistance to crizotinib in MET-amplified lung cancer cell lines. In EBC-1-derived resistant cells, the overexpression of SERPINE1, the gene encoding plasminogen activator inhibitor-1 (PAI-1), mediated the drug resistance mechanism. Crizotinib resistance was addressed by combination therapy with a PAI-1 inhibitor and PAI-1 knockdown. Another mechanism of resistance in different subline cells of EBC-1 was evaluated as epithelial-to-mesenchymal transition with the upregulation of antiapoptotic proteins. In H1993-derived resistant cells, MEK inhibitors could be a potential therapeutic strategy for overcoming resistance with downstream mitogen-activated protein kinase pathway activation. In this study, we revealed the different mechanisms of acquired resistance to the MET inhibitor crizotinib with potential therapeutic application in patients with MET-amplified lung carcinoma.
Collapse
Affiliation(s)
- Yin Min Thu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Kosuke Ochi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shimpei Tsudaka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Fumiaki Takatsu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keiichi Date
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Naoki Matsuda
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuma Iwata
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaro Nakata
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mikio Okazaki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
3
|
Lee TS, Kim JY, Lee MH, Cho IR, Paik WH, Ryu JK, Kim YT, Lee SH. Savolitinib: A Promising Targeting Agent for Cancer. Cancers (Basel) 2023; 15:4708. [PMID: 37835402 PMCID: PMC10571651 DOI: 10.3390/cancers15194708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023] Open
Abstract
Savolitinib is a highly selective small molecule inhibitor of the mesenchymal epithelial transition factor (MET) tyrosine kinase, primarily developed for the treatment of non-small cell lung cancer (NSCLC) with MET mutations. It is also being investigated as a treatment for breast, head and neck, colorectal, gastric, pancreatic, and other gastrointestinal cancers. In both preclinical and clinical studies, it has demonstrated efficacy in lung, kidney, and stomach cancers. Savolitinib is an oral anti-cancer medication taken as a 600 mg dose once daily. It can be used as a monotherapy in patients with non-small cell lung cancer with MET mutations and in combination with epidermal growth factor receptor (EGFR) inhibitors for patients who have developed resistance to them. Furthermore, savolitinib has shown positive results in gastric cancer treatment, particularly in combination with docetaxel. As a result, this review aims to validate its efficacy in NSCLC and suggests its potential application in other gastrointestinal cancers, such as pancreatic cancer, based on related research in gastric and renal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sang Hyub Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (T.S.L.); (J.Y.K.); (M.H.L.); (I.R.C.); (W.H.P.); (J.K.R.); (Y.-T.K.)
| |
Collapse
|
4
|
Leone GM, Candido S, Lavoro A, Vivarelli S, Gattuso G, Calina D, Libra M, Falzone L. Clinical Relevance of Targeted Therapy and Immune-Checkpoint Inhibition in Lung Cancer. Pharmaceutics 2023; 15:1252. [PMID: 37111737 PMCID: PMC10142433 DOI: 10.3390/pharmaceutics15041252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Lung cancer (LC) represents the second most diagnosed tumor and the malignancy with the highest mortality rate. In recent years, tremendous progress has been made in the treatment of this tumor thanks to the discovery, testing, and clinical approval of novel therapeutic approaches. Firstly, targeted therapies aimed at inhibiting specific mutated tyrosine kinases or downstream factors were approved in clinical practice. Secondly, immunotherapy inducing the reactivation of the immune system to efficiently eliminate LC cells has been approved. This review describes in depth both current and ongoing clinical studies, which allowed the approval of targeted therapies and immune-checkpoint inhibitors as standard of care for LC. Moreover, the present advantages and pitfalls of new therapeutic approaches will be discussed. Finally, the acquired importance of human microbiota as a novel source of LC biomarkers, as well as therapeutic targets to improve the efficacy of available therapies, was analyzed. Therapy against LC is increasingly becoming holistic, taking into consideration not only the genetic landscape of the tumor, but also the immune background and other individual variables, such as patient-specific gut microbial composition. On these bases, in the future, the research milestones reached will allow clinicians to treat LC patients with tailored approaches.
Collapse
Affiliation(s)
- Gian Marco Leone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy;
| |
Collapse
|
5
|
Collie GW, Barlind L, Bazzaz S, Börjesson U, Dale IL, Disch JS, Habeshian S, Jetson R, Khurana P, Madin A, Michaelides IN, Peng L, Snijder A, Stubbs CJ. Discovery of a selective c-MET inhibitor with a novel binding mode. Bioorg Med Chem Lett 2022; 75:128948. [PMID: 35987508 DOI: 10.1016/j.bmcl.2022.128948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022]
Abstract
The c-MET receptor tyrosine kinase has received considerable attention as a cancer drug target yet there remains a need for inhibitors which are selective for c-MET and able to target emerging drug-resistant mutants. We report here the discovery, by screening a DNA-encoded chemical library, of a highly selective c-MET inhibitor which was shown by X-ray crystallography to bind to the kinase in an unprecedented manner. These results represent a novel mode of inhibiting c-MET with a small molecule and may provide a route to targeting drug-resistant forms of the kinase whilst avoiding potential toxicity issues associated with broad kinome inhibition.
Collapse
Affiliation(s)
| | - Louise Barlind
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sana Bazzaz
- X-Chem, Inc., Waltham, MA 02453, United States
| | - Ulf Börjesson
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ian L Dale
- Discovery Sciences, R&D, AstraZeneca, Cambridge, U.K
| | | | | | | | | | - Andrew Madin
- Discovery Sciences, R&D, AstraZeneca, Cambridge, U.K
| | | | - Ling Peng
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, PR China
| | - Arjan Snijder
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | |
Collapse
|
6
|
Chen Y, Lu X, Gao L, Dean DC, Liu Y. Spheroid-induced heterogeneity and plasticity of uveal melanoma cells. Cell Oncol (Dordr) 2022; 45:309-321. [PMID: 35404029 PMCID: PMC9050762 DOI: 10.1007/s13402-022-00671-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE The mechanism underlying cancer heterogeneity and plasticity remains elusive, in spite of the fact that multiple hypotheses have been put forward. We intended to clarify this heterogeneity in uveal melanoma (UM) by looking for evidence of cancer stem cell involvement and a potential role of ZEB1 in cancer cell plasticity. METHODS Spheroids derived from human UM cells as well as xenograft tumors in nude mice were dissected for signs of heterogeneity and plasticity. Two human UM cell lines were studied: the epithelioid type C918 cell line and the spindle type OCM1 cell line. We knocked down ZEB1 in both cell lines to investigate its involvement in the regulation of stem-like cell formation and vascularization by qRT-PCR, immunohistochemistry, flow cytometry, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays. RESULTS We found that a small side population (SP) in OCM1 showed stem cell-like properties such as heterogeneity, remote dissemination and nuclear dye exclusion after spheroid formation in vitro. ZEB1 regulated UM stem cell generation indirectly by promoting cell proliferation to form large size tumors in vivo and spheroid in vitro, and directly by binding to stemness genes such as TERT and ABCB1. In addition, we found that ZEB1 participates in vasculogenic mimicry system formation through the regulation of CD34 and VE-cadherin expression. CONCLUSIONS From our data we conclude that cancer stem cells may contribute to UM heterogeneity and plasticity and that ZEB1 may play a regulatory role in it.
Collapse
Affiliation(s)
- Yao Chen
- Hunan Key Laboratory of Ophthalmology, Eye Center of Xiangya Hospital, Central South University, National Clinical Medical Center for Geriatric Diseases of Xiangya Hospital, Changsha, China
| | - Xiaoqin Lu
- Department of Medicine, James Graham Brown Cancer Center, Birth Defects Center, University of Louisville School of Medicine, Louisville, KY USA
| | - Ling Gao
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Douglas C. Dean
- Department of Medicine, James Graham Brown Cancer Center, Birth Defects Center, University of Louisville School of Medicine, Louisville, KY USA
| | - Yongqing Liu
- Department of Medicine, James Graham Brown Cancer Center, Birth Defects Center, University of Louisville School of Medicine, Louisville, KY USA
| |
Collapse
|