1
|
Seraphim DM, Koga KH, Vacavant A, de Pina DR. How anatomical impairments found on CT affect perfusion percentage assessed by SPECT/CT scan? Ann Nucl Med 2024; 38:960-970. [PMID: 39179897 DOI: 10.1007/s12149-024-01969-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
AIM CT images can identify structural and opacity alterations of the lungs while nuclear medicine's lung perfusion studies show the homogeneity (or lack of) of blood perfusion on the organ. Therefore, the use of SPECT/CT in lung perfusion scintigraphies can help physicians to assess anatomical and functional alterations of the lungs and to differentiate between acute and chronic disease. OBJECTIVE To develop a computer-aided methodology to quantify the total global perfusion of the lungs via SPECT/CT images and to compare these results with parenchymal alterations obtained in CT images. METHODS 39 perfusion SPECT/CT images collected retrospectively from the Nuclear Medicine Facility of Botucatu Medical School's Clinics Hospital in São Paulo, Brazil, were analyzed. Anatomical lung impairments (emphysema, collapsed and infiltrated tissue) and the functional percentage of the lungs (blood perfusion) were quantified from CT and SPECT images, with the aid of the free, open-source software 3D Slicer. The results obtained with 3D Slicer (3D-TGP) were also compared to the total global perfusion of each patient's found on their medical report, obtained from visual inspection of planar images (2D-TGP). RESULTS This research developed a novel and practical methodology for obtaining lungs' total global perfusion from SPECT/CT images in a semiautomatic manner. 3D-TGP versus 2D-TGP showed a bias of 7% with a variation up to 67% between the two methods. Perfusion percentage showed a weak positive correlation with infiltration (p = 0.0070 and ρ = 0.43) and collapsed parenchyma (p = 0.040 and ρ = 0.33). CONCLUSIONS This research brings meaningful contributions to the scientific community because it used a free open-source software to quantify the lungs blood perfusion via SPECT/CT images and pointed that the relationship between parenchyma alterations and the organ's perfusion capability might not be so direct, given compensatory mechanisms.
Collapse
Affiliation(s)
- Daniel M Seraphim
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Av. Professor Mário Rubens Guimarães Montenegro, S/N, UNESP Campus de Botucatu, Botucatu, SP, CEP: 18618-687, Brazil
| | - Katia H Koga
- Medical School, São Paulo State University Julio de Mesquita Filho, Av. Prof. Mário Rubens Guimarães Montenegro, S/N, UNESP Campus de Botucatu, Botucatu, SP, CEP: 18618687, Brazil
| | - Antoine Vacavant
- CNRS, SIGMA Clermont, IUT Clermont Auvergne, Pascal Institute, Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - Diana R de Pina
- Medical School, São Paulo State University Julio de Mesquita Filho, Av. Prof. Mário Rubens Guimarães Montenegro, S/N, UNESP Campus de Botucatu, Botucatu, SP, CEP: 18618687, Brazil.
| |
Collapse
|
2
|
Lo Mastro A, Grassi E, Berritto D, Russo A, Reginelli A, Guerra E, Grassi F, Boccia F. Artificial intelligence in fracture detection on radiographs: a literature review. Jpn J Radiol 2024:10.1007/s11604-024-01702-4. [PMID: 39538068 DOI: 10.1007/s11604-024-01702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Fractures are one of the most common reasons of admission to emergency department affecting individuals of all ages and regions worldwide that can be misdiagnosed during radiologic examination. Accurate and timely diagnosis of fracture is crucial for patients, and artificial intelligence that uses algorithms to imitate human intelligence to aid or enhance human performs is a promising solution to address this issue. In the last few years, numerous commercially available algorithms have been developed to enhance radiology practice and a large number of studies apply artificial intelligence to fracture detection. Recent contributions in literature have described numerous advantages showing how artificial intelligence performs better than doctors who have less experience in interpreting musculoskeletal X-rays, and assisting radiologists increases diagnostic accuracy and sensitivity, improves efficiency, and reduces interpretation time. Furthermore, algorithms perform better when they are trained with big data on a wide range of fracture patterns and variants and can provide standardized fracture identification across different radiologist, thanks to the structured report. In this review article, we discuss the use of artificial intelligence in fracture identification and its benefits and disadvantages. We also discuss its current potential impact on the field of radiology and radiomics.
Collapse
Affiliation(s)
- Antonio Lo Mastro
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Enrico Grassi
- Department of Orthopaedics, University of Florence, Florence, Italy
| | - Daniela Berritto
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Russo
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alfonso Reginelli
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Egidio Guerra
- Emergency Radiology Department, "Policlinico Riuniti Di Foggia", Foggia, Italy
| | - Francesca Grassi
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Boccia
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
3
|
Stueckle CA, Haage P. The radiologist as a physician - artificial intelligence as a way to overcome tension between the patient, technology, and referring physicians - a narrative review. ROFO-FORTSCHR RONTG 2024; 196:1115-1124. [PMID: 38569517 DOI: 10.1055/a-2271-0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
BACKGROUND Large volumes of data increasing over time lead to a shortage of radiologists' time. The use of systems based on artificial intelligence (AI) offers opportunities to relieve the burden on radiologists. The AI systems are usually optimized for a radiological area. Radiologists must understand the basic features of its technical function in order to be able to assess the weaknesses and possible errors of the system and use the strengths of the system. This "explainability" creates trust in an AI system and shows its limits. METHOD Based on an expanded Medline search for the key words "radiology, artificial intelligence, referring physician interaction, patient interaction, job satisfaction, communication of findings, expectations", subjective additional relevant articles were considered for this narrative review. RESULTS The use of AI is well advanced, especially in radiology. The programmer should provide the radiologist with clear explanations as to how the system works. All systems on the market have strengths and weaknesses. Some of the optimizations are unintentionally specific, as they are often adapted too precisely to a certain environment that often does not exist in practice - this is known as "overfitting". It should also be noted that there are specific weak points in the systems, so-called "adversarial examples", which lead to fatal misdiagnoses by the AI even though these cannot be visually distinguished from an unremarkable finding by the radiologist. The user must know which diseases the system is trained for, which organ systems are recognized and taken into account by the AI, and, accordingly, which are not properly assessed. This means that the user can and must critically review the results and adjust the findings if necessary. Correctly applied AI can result in a time savings for the radiologist. If he knows how the system works, he only has to spend a short amount of time checking the results. The time saved can be used for communication with patients and referring physicians and thus contribute to higher job satisfaction. CONCLUSION Radiology is a constantly evolving specialty with enormous responsibility, as radiologists often make the diagnosis to be treated. AI-supported systems should be used consistently to provide relief and support. Radiologists need to know the strengths, weaknesses, and areas of application of these AI systems in order to save time. The time gained can be used for communication with patients and referring physicians. KEY POINTS · Explainable AI systems help to improve workflow and to save time.. · The physician must critically review AI results, under consideration of the limitations of the AI.. · The AI system will only provide useful results if it has been adapted to the data type and data origin.. · The communicating radiologist interested in the patient is important for the visibility of the discipline.. CITATION FORMAT · Stueckle CA, Haage P. The radiologist as a physician - artificial intelligence as a way to overcome tension between the patient, technology, and referring physicians - a narrative review. Fortschr Röntgenstr 2024; 196: 1115 - 1123.
Collapse
Affiliation(s)
| | - Patrick Haage
- Diagnostic and Interventional Radiology, HELIOS Universitätsklinikum Wuppertal, Germany
| |
Collapse
|
4
|
Fu T, Yan P, Zhou L, Lu Z, Liu A, Ding X, Vannucci J, Hofman P, Swierniak A, Szurowska E, Zhang J, Li S. DeepGR: a deep-learning prognostic model based on glycolytic radiomics for non-small cell lung cancer. Transl Lung Cancer Res 2024; 13:2746-2760. [PMID: 39507025 PMCID: PMC11535831 DOI: 10.21037/tlcr-24-716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024]
Abstract
Background Glycolysis proved to have a prognostic value in lung cancer; however, to identify glycolysis-related genomic markers is expensive and challenging. This study aimed at identifying glycolysis-related computed tomography (CT) radiomics features to develop a deep-learning prognostic model for non-small cell lung cancer (NSCLC). Methods The study included 274 NSCLC patients from cohorts of The Second Affiliated Hospital of Soochow University (SZ; n=64), the Cancer Genome Atlas (TCGA)-NSCLC dataset (n=74), and the Gene Expression Omnibus dataset (n=136). Initially, the glycolysis enrichment scores were evaluated using a single-sample gene set enrichment analysis, and the cut-off values were optimized to investigate the prognostic potential of glycolysis genes. Radiomic features were then extracted using LIFEx software. The least absolute reduction and selection operator (LASSO) algorithm was employed to determine the glycolytic CT radiomics features. A deep-learning prognostic model was constructed by integrating CT radiomics and clinical features. The biological functions of the model were analyzed by incorporating RNA sequencing data. Results Kaplan-Meier curves indicated that elevated glycolysis levels were associated with poorer survival outcomes. The LASSO algorithm identified 11 radiomic features that were then selected for inclusion in the deep-learning model. They have shown significant discrimination capability in assessing glycolysis status, achieving an area under the curve value of 0.8442. The glycolysis-based radiomics deep-learning model was named the DeepGR model. This model was able to effectively predict the clinical outcomes of NSCLC patients with AUCs of 0.8760 and 0.8259 in the SZ and TCGA cohorts, respectively. High-risk DeepGR scores were strongly associated with poor overall survival, resting memory CD4+ T cells, and a high response to programmed cell death protein 1 immunotherapy. Conclusions The DeepGR model effectively predicted the prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Tingting Fu
- Department of Radiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, China
| | - Peipei Yan
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lina Zhou
- Health Management Center, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhihua Lu
- Department of Radiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, China
| | - Ao Liu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiao Ding
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Jacopo Vannucci
- Thoracic Surgery Unit, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, IHU RespirERA, Pasteur Hospital, BB-0033-00025, CHU Nice, University Côte d’Azur, Nice, France
| | - Andrzej Swierniak
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Edyta Szurowska
- 2nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland
| | - Junjun Zhang
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shicheng Li
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Baeza S, Gil D, Sanchez C, Torres G, Carmezim J, Tebé C, Guasch I, Nogueira I, García-Reina S, Martínez-Barenys C, Mate JL, Andreo F, Rosell A. Radiomics and Clinical Data for the Diagnosis of Incidental Pulmonary Nodules and Lung Cancer Screening: Radiolung Integrative Predictive Model. Arch Bronconeumol 2024; 60 Suppl 2:S22-S30. [PMID: 38876917 DOI: 10.1016/j.arbres.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION Early diagnosis of lung cancer (LC) is crucial to improve survival rates. Radiomics models hold promise for enhancing LC diagnosis. This study assesses the impact of integrating a clinical and a radiomic model based on deep learning to predict the malignancy of pulmonary nodules (PN). METHODOLOGY Prospective cross-sectional study of 97 PNs from 93 patients. Clinical data included epidemiological risk factors and pulmonary function tests. The region of interest of each chest CT containing the PN was analysed. The radiomic model employed a pre-trained convolutional network to extract visual features. From these features, 500 with a positive standard deviation were chosen as inputs for an optimised neural network. The clinical model was estimated by a logistic regression model using clinical data. The malignancy probability from the clinical model was used as the best estimate of the pre-test probability of disease to update the malignancy probability of the radiomic model using a nomogram for Bayes' theorem. RESULTS The radiomic model had a positive predictive value (PPV) of 86%, an accuracy of 79% and an AUC of 0.67. The clinical model identified DLCO, obstruction index and smoking status as the most consistent clinical predictors associated with outcome. Integrating the clinical features into the deep-learning radiomic model achieves a PPV of 94%, an accuracy of 76% and an AUC of 0.80. CONCLUSIONS Incorporating clinical data into a deep-learning radiomic model improved PN malignancy assessment, boosting predictive performance. This study supports the potential of combined image-based and clinical features to improve LC diagnosis.
Collapse
Affiliation(s)
- Sonia Baeza
- Respiratory Medicine Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain; Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Debora Gil
- Computer Vision Center and Computer Science Department, UAB, Barcelona, Spain
| | - Carles Sanchez
- Computer Vision Center and Computer Science Department, UAB, Barcelona, Spain
| | - Guillermo Torres
- Computer Vision Center and Computer Science Department, UAB, Barcelona, Spain
| | - João Carmezim
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain; Biostatistics Support and Research Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Cristian Tebé
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain; Biostatistics Support and Research Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Ignasi Guasch
- Radiodiagnostic Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Isabel Nogueira
- Radiodiagnostic Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Samuel García-Reina
- Thoracic Surgery Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain; Departament de Cirugia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Martínez-Barenys
- Thoracic Surgery Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain; Departament de Cirugia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jose Luis Mate
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Felipe Andreo
- Respiratory Medicine Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain; Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoni Rosell
- Respiratory Medicine Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain; Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Wang D, Chen R, Wang W, Yang Y, Yu Y, Liu L, Yang F, Cui S. Prediction of short-term adverse clinical outcomes of acute pulmonary embolism using conventional machine learning and deep Learning based on CTPA images. J Thromb Thrombolysis 2024:10.1007/s11239-024-03044-4. [PMID: 39342072 DOI: 10.1007/s11239-024-03044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
To explore the predictive value of traditional machine learning (ML) and deep learning (DL) algorithms based on computed tomography pulmonary angiography (CTPA) images for short-term adverse outcomes in patients with acute pulmonary embolism (APE). This retrospective study enrolled 132 patients with APE confirmed by CTPA. Thrombus segmentation and texture feature extraction was performed using 3D-Slicer software. The least absolute shrinkage and selection operator (LASSO) algorithm was used for feature dimensionality reduction and selection, with optimal λ values determined using leave-one-fold cross-validation to identify texture features with non-zero coefficients. ML models (logistic regression, random forest, decision tree, support vector machine) and DL models (ResNet 50 and Vgg 19) were used to construct the prediction models. Model performance was evaluated using receiver operating characteristic (ROC) curves and the area under the curve (AUC). The cohort included 84 patients in the good prognosis group and 48 patients in the poor prognosis group. Univariate and multivariate logistic regression analyses showed that diabetes, RV/LV ≥ 1.0, and Qanadli index form independent risk factors predicting poor prognosis in patients with APE(P < 0.05). A total of 750 texture features were extracted, with 4 key features identified through screening. There was a weak positive correlation between texture features and clinical parameters. ROC curves analysis demonstrated AUC values of 0.85 (0.78-0.92), 0.76 (0.67-0.84), and 0.89 (0.83-0.95) for the clinical, texture feature, and combined models, respectively. In the ML models, the random forest model achieved the highest AUC (0.85), and the support vector machine model achieved the lowest AUC (0.62). And the AUCs for the DL models (ResNet 50 and Vgg 19) were 0.91 (95%CI: 0.90-0.92) and 0.94(95%CI: 0.93-0.95), respectively. Vgg 19 model demonstrated exceptional precision (0.93), recall (0.76), specificity (0.95) and F1 score (0.84). Both ML and DL models based on thrombus texture features from CTPA images demonstrated higher predictive efficacy for short-term adverse outcomes in patients with APE, especially the random forest and Vgg 19 models, potentially assisting clinical management in timely interventions to improve patient prognosis.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Rong Chen
- Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Wenjiang Wang
- Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Yue Yang
- Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Yaxi Yu
- Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Lan Liu
- Department of Medical Imaging, The First Affiliated Hospital of Hebei North University, 12 Changqing Road, Zhangjiakou, Hebei, 075000, China
| | - Fei Yang
- Department of Medical Imaging, The First Affiliated Hospital of Hebei North University, 12 Changqing Road, Zhangjiakou, Hebei, 075000, China.
| | - Shujun Cui
- Department of Medical Imaging, The First Affiliated Hospital of Hebei North University, 12 Changqing Road, Zhangjiakou, Hebei, 075000, China
| |
Collapse
|
7
|
Qu BQ, Wang Y, Pan YP, Cao PW, Deng XY. The scoring system combined with radiomics and imaging features in predicting the malignant potential of incidental indeterminate small (<20 mm) solid pulmonary nodules. BMC Med Imaging 2024; 24:234. [PMID: 39243018 PMCID: PMC11380408 DOI: 10.1186/s12880-024-01413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
OBJECTIVE Develop a practical scoring system based on radiomics and imaging features, for predicting the malignant potential of incidental indeterminate small solid pulmonary nodules (IISSPNs) smaller than 20 mm. METHODS A total of 360 patients with malignant IISSPNs (n = 213) and benign IISSPNs (n = 147) confirmed after surgery were retrospectively analyzed. The whole cohort was randomly divided into training and validation groups at a ratio of 7:3. The least absolute shrinkage and selection operator (LASSO) algorithm was used to debase the dimensions of radiomics features. Multivariate logistic analysis was performed to establish models. The receiver operating characteristic (ROC) curve, area under the curve (AUC), 95% confidence interval (CI), sensitivity and specificity of each model were recorded. Scoring system based on odds ratio was developed. RESULTS Three radiomics features were selected for further model establishment. After multivariate logistic analysis, the combined model including Mean, age, emphysema, lobulated and size, reached highest AUC of 0.877 (95%CI: 0.830-0.915), accuracy rate of 83.3%, sensitivity of 85.3% and specificity of 80.2% in the training group, followed by radiomics model (AUC: 0.804) and imaging model (AUC: 0.773). A scoring system with a cutoff value greater than 4 points was developed. If the score was larger than 8 points, the possibility of diagnosing malignant IISSPNs could reach at least 92.7%. CONCLUSION The combined model demonstrated good diagnostic performance in predicting the malignant potential of IISSPNs. A perfect accuracy rate of 100% can be achieved with a score exceeding 12 points in the user-friendly scoring system.
Collapse
Affiliation(s)
- Bai-Qiang Qu
- Department of Radiology, Wenling TCM Hospital Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, 317500, China
| | - Yun Wang
- Department of Nuclear medicine, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yue-Peng Pan
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Pei-Wei Cao
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xue-Ying Deng
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
8
|
Liu T, Zhang ZH, Zhou QH, Cheng QZ, Yang Y, Li JS, Zhang XM, Zhang JQ. MI-DenseCFNet: deep learning-based multimodal diagnosis models for Aureus and Aspergillus pneumonia. Eur Radiol 2024; 34:5066-5076. [PMID: 38231392 PMCID: PMC11254966 DOI: 10.1007/s00330-023-10578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
OBJECTIVE To build and merge a diagnostic model called multi-input DenseNet fused with clinical features (MI-DenseCFNet) for discriminating between Staphylococcus aureus pneumonia (SAP) and Aspergillus pneumonia (ASP) and to evaluate the significant correlation of each clinical feature in determining these two types of pneumonia using a random forest dichotomous diagnosis model. This will enhance diagnostic accuracy and efficiency in distinguishing between SAP and ASP. METHODS In this study, 60 patients with clinically confirmed SAP and ASP, who were admitted to four large tertiary hospitals in Kunming, China, were included. Thoracic high-resolution CT lung windows of all patients were extracted from the picture archiving and communication system, and the corresponding clinical data of each patient were collected. RESULTS The MI-DenseCFNet diagnosis model demonstrates an internal validation set with an area under the curve (AUC) of 0.92. Its external validation set demonstrates an AUC of 0.83. The model requires only 10.24s to generate a categorical diagnosis and produce results from 20 cases of data. Compared with high-, mid-, and low-ranking radiologists, the model achieves accuracies of 78% vs. 75% vs. 60% vs. 40%. Eleven significant clinical features were screened by the random forest dichotomous diagnosis model. CONCLUSION The MI-DenseCFNet multimodal diagnosis model can effectively diagnose SAP and ASP, and its diagnostic performance significantly exceeds that of junior radiologists. The 11 important clinical features were screened in the constructed random forest dichotomous diagnostic model, providing a reference for clinicians. CLINICAL RELEVANCE STATEMENT MI-DenseCFNet could provide diagnostic assistance for primary hospitals that do not have advanced radiologists, enabling patients with suspected infections like Staphylococcus aureus pneumonia or Aspergillus pneumonia to receive a quicker diagnosis and cut down on the abuse of antibiotics. KEY POINTS • MI-DenseCFNet combines deep learning neural networks with crucial clinical features to discern between Staphylococcus aureus pneumonia and Aspergillus pneumonia. • The comprehensive group had an area under the curve of 0.92, surpassing the proficiency of junior radiologists. • This model can enhance a primary radiologist's diagnostic capacity.
Collapse
Affiliation(s)
- Tong Liu
- The Second Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, Yunnan, 650032, People's Republic of China
| | - Zheng-Hua Zhang
- Medical Imaging Department, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, People's Republic of China
| | - Qi-Hao Zhou
- School of Information, Yunnan University, Kunming, Yunnan, 650032, People's Republic of China
| | - Qing-Zhao Cheng
- The Second Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, Yunnan, 650032, People's Republic of China
| | - Yue Yang
- The Second Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, Yunnan, 650032, People's Republic of China
| | - Jia-Shu Li
- The Second Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, Yunnan, 650032, People's Republic of China
| | - Xue-Mei Zhang
- The Second Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, Yunnan, 650032, People's Republic of China
| | - Jian-Qing Zhang
- The Second Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, Yunnan, 650032, People's Republic of China.
| |
Collapse
|
9
|
Bardoni C, Spaggiari L, Bertolaccini L. Artificial intelligence in lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:79. [PMID: 39118944 PMCID: PMC11304431 DOI: 10.21037/atm-22-2918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/12/2024] [Indexed: 08/10/2024]
Affiliation(s)
- Claudia Bardoni
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Lorenzo Spaggiari
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Luca Bertolaccini
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
10
|
Mu X, Cui C, Liao J, Wu Z, Hu L. Regional changes in brain metabolism during the progression of mild cognitive impairment: a longitudinal study based on radiomics. EJNMMI REPORTS 2024; 8:19. [PMID: 38945980 PMCID: PMC11214937 DOI: 10.1186/s41824-024-00206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/22/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND This study aimed to establish radiomics models based on positron emission tomography (PET) images to longitudinally predict transition from mild cognitive impairment (MCI) to Alzheimer's disease (AD). METHODS In our study, 278 MCI patients from the ADNI database were analyzed, where 60 transitioned to AD (pMCI) and 218 remained stable (sMCI) over 48 months. Patients were divided into a training set (n = 222) and a validation set (n = 56). We first employed voxel-based analysis of 18F-FDG PET images to identify brain regions that present significant SUV difference between pMCI and sMCI groups. Radiomic features were extracted from these regions, key features were selected, and predictive models were developed for individual and combined brain regions. The models' effectiveness was evaluated using metrics like AUC to determine the most accurate predictive model for MCI progression. RESULTS Voxel-based analysis revealed four brain regions implicated in the progression from MCI to AD. These include ROI1 within the Temporal lobe, ROI2 and ROI3 in the Thalamus, and ROI4 in the Limbic system. Among the predictive models developed for these individual regions, the model utilizing ROI4 demonstrated superior predictive accuracy. In the training set, the AUC for the ROI4 model was 0.803 (95% CI 0.736, 0.865), and in the validation set, it achieved an AUC of 0.733 (95% CI 0.559, 0.893). Conversely, the model based on ROI3 showed the lowest performance, with an AUC of 0.75 (95% CI 0.685, 0.809). Notably, the comprehensive model encompassing all identified regions (ROI total) outperformed the single-region models, achieving an AUC of 0.884 (95% CI 0.845, 0.921) in the training set and 0.816 (95% CI 0.705, 0.909) in the validation set, indicating significantly enhanced predictive capability for MCI progression to AD. CONCLUSION Our findings underscore the Limbic system as the brain region most closely associated with the progression from MCI to AD. Importantly, our study demonstrates that a PET brain radiomics model encompassing multiple brain regions (ROI total) significantly outperforms models based on single brain regions. This comprehensive approach more accurately identifies MCI patients at high risk of progressing to AD, offering valuable insights for non-invasive diagnostics and facilitating early and timely interventions in clinical settings.
Collapse
Affiliation(s)
- Xuxu Mu
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Caozhe Cui
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jue Liao
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Zhifang Wu
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Lingzhi Hu
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| |
Collapse
|
11
|
Li X, Zhang L, Ding M. Ultrasound-based radiomics for the differential diagnosis of breast masses: A systematic review and meta-analysis. JOURNAL OF CLINICAL ULTRASOUND : JCU 2024; 52:778-788. [PMID: 38606802 DOI: 10.1002/jcu.23690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/19/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
OBJECTIVES Ultrasound-based radiomics has demonstrated excellent diagnostic performance in differentiating benign and malignant breast masses. Given a few clinical studies on their diagnostic role, we conducted a meta-analysis of the potential effects of ultrasound-based radiomics for the differential diagnosis of breast masses, aiming to provide evidence-based medical basis for clinical research. MATERIALS AND METHODS We searched Embase, Web of Science, Cochrane Library, and PubMed databases from inception through to February 2023. The methodological quality assessment of the included studies was performed according to Quality Assessment of Diagnostic Accuracy Studies checklist. A diagnostic test accuracy systematic review and meta-analysis was performed in accordance with PRISMA guidelines. Sensitivity, specificity, and area under curve delineating benign and malignant lesions were recorded. We also used sensitivity analysis and subgroup analysis to explore potential sources of heterogeneity. Deeks' funnel plots was used to examine the publication bias. RESULTS A total of 11 studies were included in this meta-analysis. For the diagnosis of malignant breast masses worldwide, the overall mean rates of sensitivity and specificity of ultrasound-based radiomics were 0.90 (95% confidence interval [CI], 0.83-0.95) and 0.89 (95% CI, 0.82-0.94), respectively. The summary diagnostic odds ratio was 76 (95% CI, 26-219), and the area under the curve for the summary receiver operating characteristic curve was 0.95 (95% CI, 0.93-0.97). CONCLUSION Ultrasound-based radiomics has the potential to improve diagnostic accuracy to discriminate between benign and malignant breast masses, and could reduce unnecessary biopsies.
Collapse
Affiliation(s)
- Xuerong Li
- Hebei North University, Zhangjiakou, Hebei, China
| | | | - Manni Ding
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
12
|
Nemoto H, Saito M, Satoh Y, Komiyama T, Marino K, Aoki S, Suzuki H, Sano N, Nonaka H, Watanabe H, Funayama S, Onishi H. Evaluation of the performance of both machine learning models using PET and CT radiomics for predicting recurrence following lung stereotactic body radiation therapy: A single-institutional study. J Appl Clin Med Phys 2024; 25:e14322. [PMID: 38436611 PMCID: PMC11244675 DOI: 10.1002/acm2.14322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
PURPOSE Predicting recurrence following stereotactic body radiotherapy (SBRT) for non-small cell lung cancer provides important information for the feasibility of the individualized radiotherapy and allows to select the appropriate treatment strategy based on the risk of recurrence. In this study, we evaluated the performance of both machine learning models using positron emission tomography (PET) and computed tomography (CT) radiomic features for predicting recurrence after SBRT. METHODS Planning CT and PET images of 82 non-small cell lung cancer patients who performed SBRT at our hospital were used. First, tumors were delineated on each CT and PET of each patient, and 111 unique radiomic features were extracted, respectively. Next, the 10 features were selected using three different feature selection algorithms, respectively. Recurrence prediction models based on the selected features and four different machine learning algorithms were developed, respectively. Finally, we compared the predictive performance of each model for each recurrence pattern using the mean area under the curve (AUC) calculated following the 0.632+ bootstrap method. RESULTS The highest performance for local recurrence, regional lymph node metastasis, and distant metastasis were observed in models using Support vector machine with PET features (mean AUC = 0.646), Naive Bayes with PET features (mean AUC = 0.611), and Support vector machine with CT features (mean AUC = 0.645), respectively. CONCLUSIONS We comprehensively evaluated the performance of prediction model developed for recurrence following SBRT. The model in this study would provide information to predict the recurrence pattern and assist in making treatment strategies.
Collapse
Affiliation(s)
- Hikaru Nemoto
- Department of Advanced Biomedical ImagingUniversity of YamanashiChuoYamanashiJapan
- Department of RadiologyUniversity of YamanashiChuoYamanashiJapan
| | - Masahide Saito
- Department of RadiologyUniversity of YamanashiChuoYamanashiJapan
| | - Yoko Satoh
- Imaging CenterFujita Medical Innovation Center TokyoTokyoJapan
| | | | - Kan Marino
- Department of RadiologyUniversity of YamanashiChuoYamanashiJapan
| | - Shinichi Aoki
- Department of RadiologyUniversity of YamanashiChuoYamanashiJapan
| | - Hidekazu Suzuki
- Department of RadiologyUniversity of YamanashiChuoYamanashiJapan
| | - Naoki Sano
- Department of RadiologyUniversity of YamanashiChuoYamanashiJapan
| | - Hotaka Nonaka
- Department of RadiologyFuji City General HospitalFujiShizuokaJapan
| | - Hiroaki Watanabe
- Department of RadiologyYamanashi Central HospitalKofuYamanashiJapan
| | - Satoshi Funayama
- Department of RadiologyHamamatsu University school of medicineHamamatsuShizuokaJapan
| | - Hiroshi Onishi
- Department of RadiologyUniversity of YamanashiChuoYamanashiJapan
| |
Collapse
|
13
|
Baniasadi A, Das JP, Prendergast CM, Beizavi Z, Ma HY, Jaber MY, Capaccione KM. Imaging at the nexus: how state of the art imaging techniques can enhance our understanding of cancer and fibrosis. J Transl Med 2024; 22:567. [PMID: 38872212 PMCID: PMC11177383 DOI: 10.1186/s12967-024-05379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Both cancer and fibrosis are diseases involving dysregulation of cell signaling pathways resulting in an altered cellular microenvironment which ultimately leads to progression of the condition. The two disease entities share common molecular pathophysiology and recent research has illuminated the how each promotes the other. Multiple imaging techniques have been developed to aid in the early and accurate diagnosis of each disease, and given the commonalities between the pathophysiology of the conditions, advances in imaging one disease have opened new avenues to study the other. Here, we detail the most up-to-date advances in imaging techniques for each disease and how they have crossed over to improve detection and monitoring of the other. We explore techniques in positron emission tomography (PET), magnetic resonance imaging (MRI), second generation harmonic Imaging (SGHI), ultrasound (US), radiomics, and artificial intelligence (AI). A new diagnostic imaging tool in PET/computed tomography (CT) is the use of radiolabeled fibroblast activation protein inhibitor (FAPI). SGHI uses high-frequency sound waves to penetrate deeper into the tissue, providing a more detailed view of the tumor microenvironment. Artificial intelligence with the aid of advanced deep learning (DL) algorithms has been highly effective in training computer systems to diagnose and classify neoplastic lesions in multiple organs. Ultimately, advancing imaging techniques in cancer and fibrosis can lead to significantly more timely and accurate diagnoses of both diseases resulting in better patient outcomes.
Collapse
Affiliation(s)
- Alireza Baniasadi
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA.
| | - Jeeban P Das
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Conor M Prendergast
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| | - Zahra Beizavi
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| | - Hong Y Ma
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| | | | - Kathleen M Capaccione
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| |
Collapse
|
14
|
Gao S, Xu Z, Kang W, Lv X, Chu N, Xu S, Hou D. Artificial intelligence-driven computer aided diagnosis system provides similar diagnosis value compared with doctors' evaluation in lung cancer screening. BMC Med Imaging 2024; 24:141. [PMID: 38862884 PMCID: PMC11165751 DOI: 10.1186/s12880-024-01288-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 05/02/2024] [Indexed: 06/13/2024] Open
Abstract
OBJECTIVE To evaluate the consistency between doctors and artificial intelligence (AI) software in analysing and diagnosing pulmonary nodules, and assess whether the characteristics of pulmonary nodules derived from the two methods are consistent for the interpretation of carcinomatous nodules. MATERIALS AND METHODS This retrospective study analysed participants aged 40-74 in the local area from 2011 to 2013. Pulmonary nodules were examined radiologically using a low-dose chest CT scan, evaluated by an expert panel of doctors in radiology, oncology, and thoracic departments, as well as a computer-aided diagnostic(CAD) system based on the three-dimensional(3D) convolutional neural network (CNN) with DenseNet architecture(InferRead CT Lung, IRCL). Consistency tests were employed to assess the uniformity of the radiological characteristics of the pulmonary nodules. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic accuracy. Logistic regression analysis is utilized to determine whether the two methods yield the same predictive factors for cancerous nodules. RESULTS A total of 570 subjects were included in this retrospective study. The AI software demonstrated high consistency with the panel's evaluation in determining the position and diameter of the pulmonary nodules (kappa = 0.883, concordance correlation coefficient (CCC) = 0.809, p = 0.000). The comparison of the solid nodules' attenuation characteristics also showed acceptable consistency (kappa = 0.503). In patients diagnosed with lung cancer, the area under the curve (AUC) for the panel and AI were 0.873 (95%CI: 0.829-0.909) and 0.921 (95%CI: 0.884-0.949), respectively. However, there was no significant difference (p = 0.0950). The maximum diameter, solid nodules, subsolid nodules were the crucial factors for interpreting carcinomatous nodules in the analysis of expert panel and IRCL pulmonary nodule characteristics. CONCLUSION AI software can assist doctors in diagnosing nodules and is consistent with doctors' evaluations and diagnosis of pulmonary nodules.
Collapse
Affiliation(s)
- Shan Gao
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zexuan Xu
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Wanli Kang
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xinna Lv
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Naihui Chu
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
- Beijing Chest Hospital, Capital Medical University, Beijing, China.
| | - Shaofa Xu
- Beijing Chest Hospital, Capital Medical University, Beijing, China.
| | - Dailun Hou
- Beijing Chest Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Fang S, Wang Y, He Y, Yu T, Xie Y, Cai Y, Li W, Wang Y, Huang Z. Machine Learning Model Based on Radiomics for Preoperative Differentiation of Jaw Cystic Lesions. Otolaryngol Head Neck Surg 2024; 170:1561-1569. [PMID: 38557958 DOI: 10.1002/ohn.744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE This study aims to use machine learning techniques together with radiomics methods to build a preoperative predictive diagnostic model from spiral computed tomography (CT) images. The model is intended for the differential diagnosis of common jaw cystic lesions. STUDY DESIGN Retrospective, case-control study. SETTING This retrospective study was conducted at Sun Yat-sen Memorial Hospital of Sun Yat-sen University (Guangzhou, Guangdong, China). All the data used to build the predictive diagnostic model were collected from 160 patients, who were treated at the Department of Oral and Maxillofacial Surgery at Sun Yat-sen Memorial Hospital of Sun Yat-sen University between 2019 and 2023. METHODS We included a total of 160 patients in this study. We extracted 107 radiomic features from each patient's CT scan images. After a feature selection process, we chose 15 of these radiomic features to construct the predictive diagnostic model. RESULTS Among the preoperative predictive diagnostic models built using 3 different machine learning methods (support vector machine, random forest [RF], and multivariate logistic regression), the RF model showed the best predictive performance. It demonstrated a sensitivity of 0.923, a specificity of 0.643, an accuracy of 0.825, and an area under the receiver operating characteristic curve of 0.810. CONCLUSION The preoperative predictive model, based on spiral CT radiomics and machine learning algorithms, shows promising differential diagnostic capabilities. For common jaw cystic lesions, this predictive model has potential clinical application value, providing a scientific reference for treatment decisions.
Collapse
Affiliation(s)
- Songling Fang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Guangdong, Guangzhou, China
| | - Yuepeng Wang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Guangdong, Guangzhou, China
| | - Yilin He
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Guangdong, Guangzhou, China
| | - Taihui Yu
- Department of Radiology, Sun Yat-sen Memorial Hospital, Guangdong, Guangzhou, China
| | - Yutong Xie
- Australian Institute for Machine Learning, University of Adelaide, Adelaide, South Australia, Australia
| | - Yongkang Cai
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Guangdong, Guangzhou, China
| | - Wenhao Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Guangdong, Guangzhou, China
| | - Yan Wang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Guangdong, Guangzhou, China
| | - Zhiquan Huang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Guangdong, Guangzhou, China
| |
Collapse
|
16
|
Glandorf J, Vogel-Claussen J. Incidental pulmonary nodules - current guidelines and management. ROFO-FORTSCHR RONTG 2024; 196:582-590. [PMID: 38065544 DOI: 10.1055/a-2185-8714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
BACKGROUND Due to the greater use of high-resolution cross-sectional imaging, the number of incidental pulmonary nodules detected each year is increasing. Although the vast majority of incidental pulmonary nodules are benign, many early lung carcinomas could be diagnosed with consistent follow-up. However, for a variety of reasons, the existing recommendations are often not implemented correctly. Therefore, potential for improvement with respect to competence, communication, structure, and process is described. METHODS This article presents the recommendations for incidental pulmonary nodules from the current S3 guideline for lung cancer (July 2023). The internationally established recommendations (BTS guidelines and Fleischner criteria) are compared and further studies on optimized management were included after a systematic literature search in PubMed. RESULTS AND CONCLUSION In particular, AI-based software solutions are promising, as they can be used in a support capacity on several levels at once and can lead to simpler and more automated management. However, to be applicable in routine clinical practice, software must fit well into the radiology workflow and be integrated. In addition, "Lung Nodule Management" programs or clinics that follow a high-quality procedure for patients with incidental lung nodules or nodules detected by screening have been established in the USA. Similar structures might also be implemented in Germany in a future screening program in which patients with incidental pulmonary nodules could be included. KEY POINTS · Incidental pulmonary nodules are common but are often not adequately managed. · The updated S3 guideline for lung cancer now includes recommendations for incidental pulmonary nodules. · Competence, communication, structure, and process levels offer significant potential for improvement. CITATION FORMAT · Glandorf J, Vogel-Claussen J, . Incidental pulmonary nodules - current guidelines and management. Fortschr Röntgenstr 2024; 196: 582 - 590.
Collapse
Affiliation(s)
- Julian Glandorf
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
17
|
Gottardelli B, Gouthamchand V, Masciocchi C, Boldrini L, Martino A, Mazzarella C, Massaccesi M, Monshouwer R, Findhammer J, Wee L, Dekker A, Gambacorta MA, Damiani A. A distributed feature selection pipeline for survival analysis using radiomics in non-small cell lung cancer patients. Sci Rep 2024; 14:7814. [PMID: 38570606 PMCID: PMC10991291 DOI: 10.1038/s41598-024-58241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Predictive modelling of cancer outcomes using radiomics faces dimensionality problems and data limitations, as radiomics features often number in the hundreds, and multi-institutional data sharing is ()often unfeasible. Federated learning (FL) and feature selection (FS) techniques combined can help overcome these issues, as one provides the means of training models without exchanging sensitive data, while the other identifies the most informative features, reduces overfitting, and improves model interpretability. Our proposed FS pipeline based on FL principles targets data-driven radiomics FS in a multivariate survival study of non-small cell lung cancer patients. The pipeline was run across datasets from three institutions without patient-level data exchange. It includes two FS techniques, Correlation-based Feature Selection and LASSO regularization, and Cox Proportional-Hazard regression with Overall Survival as endpoint. Trained and validated on 828 patients overall, our pipeline yielded a radiomic signature comprising "intensity-based energy" and "mean discretised intensity". Validation resulted in a mean Harrell C-index of 0.59, showcasing fair efficacy in risk stratification. In conclusion, we suggest a distributed radiomics approach that incorporates preliminary feature selection to systematically decrease the feature set based on data-driven considerations. This aims to address dimensionality challenges beyond those associated with data constraints and interpretability concerns.
Collapse
Affiliation(s)
- Benedetta Gottardelli
- Department of Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Varsha Gouthamchand
- Clinical Data Science, GROW School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Carlotta Masciocchi
- Real World Data Facility, Gemelli Generator, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| | - Luca Boldrini
- Department of Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonella Martino
- Department of Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ciro Mazzarella
- Department of Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Mariangela Massaccesi
- Department of Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - René Monshouwer
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen Findhammer
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leonard Wee
- Department of Radiation Oncology (Maastro), GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Andre Dekker
- Department of Radiation Oncology (Maastro), GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Maria Antonietta Gambacorta
- Department of Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Andrea Damiani
- Real World Data Facility, Gemelli Generator, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
18
|
Chugh V, Basu A, Kaushik A, Manshu, Bhansali S, Basu AK. Employing nano-enabled artificial intelligence (AI)-based smart technologies for prediction, screening, and detection of cancer. NANOSCALE 2024; 16:5458-5486. [PMID: 38391246 DOI: 10.1039/d3nr05648a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Cancer has been classified as a diverse illness with a wide range of subgroups. Its early identification and prognosis, which have become a requirement of cancer research, are essential for clinical treatment. Patients have already benefited greatly from the use of artificial intelligence (AI), machine learning (ML), and deep learning (DL) algorithms in the field of healthcare. AI simulates and combines data, pre-programmed rules, and knowledge to produce predictions. Data are used to improve efficiency across several pursuits and tasks through the art of ML. DL is a larger family of ML methods based on representational learning and simulated neural networks. Support vector machines, convulsion neural networks, and artificial neural networks, among others, have been widely used in cancer research to construct prediction models that enable precise and effective decision-making. Although using these innovative methods can enhance our comprehension of how cancer progresses, further validation is required before these techniques can be used in routine clinical practice. We cover contemporary methods used in the modelling of cancer development in this article. The presented prediction models are built using a variety of guided ML approaches, as well as numerous input attributes and data collections. Early identification and cost-effective detection of cancer's progression are equally necessary for successful treatment of the disease. Smart material-based detection techniques can give end consumers a portable, affordable instrument to easily detect and monitor their health issues without the need for specialized knowledge. Owing to their cost-effectiveness, excellent sensitivity, multimodal detection capacity, and miniaturization aptitude, two-dimensional (2D) materials have a lot of prospects for clinical examination of various compounds as well as cancer biomarkers. The effectiveness of traditional devices is moving faster towards more useful techniques thanks to developments in 2D material-based biosensors/sensors. The most current developments in the design of 2D material-based biosensors/sensors-the next wave of cancer screening instruments-are also outlined in this article.
Collapse
Affiliation(s)
- Vibhas Chugh
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India.
| | - Adreeja Basu
- Biological Science, St. John's University, New York, NY 10301, United States
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, USA
| | - Manshu
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India.
| | - Shekhar Bhansali
- Electrical and Computer Engineering, Florida International University, Miami, FL 33199, USA
| | - Aviru Kumar Basu
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India.
| |
Collapse
|
19
|
Genet SAAM, Visser E, Youssef-El Soud M, Belderbos HNA, Stege G, de Saegher MEA, Westeinde SCV', Brunsveld L, Broeren MAC, van de Kerkhof D, Eduati F, van den Borne BEEM, Scharnhorst V. Strengths and challenges in current lung cancer care: Timeliness and diagnostic procedures in six Dutch hospitals. Lung Cancer 2024; 189:107477. [PMID: 38271919 DOI: 10.1016/j.lungcan.2024.107477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
OBJECTIVES Timely diagnosis of lung cancer (LC) is crucial to achieve optimal patient care and outcome. Moreover, the number of procedures required to obtain a definitive diagnosis can have a large influence on the life expectancy of a patient. Here, adherence with existing Dutch guidelines for timeliness and type and number of invasive and imaging procedures was assessed. MATERIALS AND METHODS 1096 patients with suspected LC were enrolled in this multicenter prospective study (NL9146). The overall survival, time from referral to the first appointment with the pulmonologist, time to diagnosis and treatment, and the number of imaging and invasive procedures were evaluated. Patients were divided into different diagnostic groupsearly- and advanced stage non-small-cell lung cancer (NSCLC), small-cell lung cancer (SCLC), large cell neuroendocrine carcinoma of the lung (LCNEC), patients without LC and patients without a definitive diagnosis. RESULTS The majority of patients (66 %) received a definitive diagnosis within 5 weeks, although the time to diagnosis of early-stage LC patients and patients without LC was significantly longer comparted to advanced stage LC. An increase in invasive procedures was seen for early-stage LC compared to advanced stage LC and for 13 % of the advanced stage non-squamous NSCLC patients up to three additional invasive procedures were performed solely to obtain sufficient material for NGS. For patients without a definitive diagnosis, 50 % did undergo at least one invasive procedure, while 11 % did not wish to undergo any invasive procedures. CONCLUSION These insights could aid in improved LC diagnostics and efficient implementation of new techniques like liquid biopsy and artificial intelligence. This may lead to more timely LC care, a decreased number of invasive procedures, less variability between the diagnostic trajectory of different patients and aid in obtaining a definitive diagnosis for all patients.
Collapse
Affiliation(s)
- Sylvia A A M Genet
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Catharina Hospital Eindhoven, Eindhoven, The Netherlands; Expert Center Clinical Chemistry Eindhoven, Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Esther Visser
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Catharina Hospital Eindhoven, Eindhoven, The Netherlands; Máxima Medical Center, Eindhoven/Veldhoven, The Netherlands; Expert Center Clinical Chemistry Eindhoven, Eindhoven, The Netherlands
| | | | | | | | | | | | - Luc Brunsveld
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Expert Center Clinical Chemistry Eindhoven, Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Maarten A C Broeren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Máxima Medical Center, Eindhoven/Veldhoven, The Netherlands; Expert Center Clinical Chemistry Eindhoven, Eindhoven, The Netherlands
| | - Daan van de Kerkhof
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Catharina Hospital Eindhoven, Eindhoven, The Netherlands; Expert Center Clinical Chemistry Eindhoven, Eindhoven, The Netherlands
| | - Federica Eduati
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Expert Center Clinical Chemistry Eindhoven, Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Volkher Scharnhorst
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Catharina Hospital Eindhoven, Eindhoven, The Netherlands; Expert Center Clinical Chemistry Eindhoven, Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
20
|
Sabry AH, I. Dallal Bashi O, Nik Ali N, Mahmood Al Kubaisi Y. Lung disease recognition methods using audio-based analysis with machine learning. Heliyon 2024; 10:e26218. [PMID: 38420389 PMCID: PMC10900411 DOI: 10.1016/j.heliyon.2024.e26218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/11/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
The use of computer-based automated approaches and improvements in lung sound recording techniques have made lung sound-based diagnostics even better and devoid of subjectivity errors. Using a computer to evaluate lung sound features more thoroughly with the use of analyzing changes in lung sound behavior, recording measurements, suppressing the presence of noise contaminations, and graphical representations are all made possible by computer-based lung sound analysis. This paper starts with a discussion of the need for this research area, providing an overview of the field and the motivations behind it. Following that, it details the survey methodology used in this work. It presents a discussion on the elements of sound-based lung disease classification using machine learning algorithms. This includes commonly prior considered datasets, feature extraction techniques, pre-processing methods, artifact removal methods, lung-heart sound separation, deep learning algorithms, and wavelet transform of lung audio signals. The study introduces studies that review lung screening including a summary table of these references and discusses the literature gaps in the existing studies. It is concluded that the use of sound-based machine learning in the classification of respiratory diseases has promising results. While we believe this material will prove valuable to physicians and researchers exploring sound-signal-based machine learning, large-scale investigations remain essential to solidify the findings and foster wider adoption within the medical community.
Collapse
Affiliation(s)
- Ahmad H. Sabry
- Department of Medical Instrumentation Engineering Techniques, Shatt Al-Arab University College, Basra, Iraq
| | - Omar I. Dallal Bashi
- Medical Technical Institute, Northern Technical University, 95G2+P34, Mosul, 41002, Iraq
| | - N.H. Nik Ali
- School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Yasir Mahmood Al Kubaisi
- Department of Sustainability Management, Dubai Academic Health Corporation, Dubai, 4545, United Arab Emirates
| |
Collapse
|
21
|
Kanan M, Alharbi H, Alotaibi N, Almasuood L, Aljoaid S, Alharbi T, Albraik L, Alothman W, Aljohani H, Alzahrani A, Alqahtani S, Kalantan R, Althomali R, Alameen M, Mufti A. AI-Driven Models for Diagnosing and Predicting Outcomes in Lung Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:674. [PMID: 38339425 PMCID: PMC10854661 DOI: 10.3390/cancers16030674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
(1) Background: Lung cancer's high mortality due to late diagnosis highlights a need for early detection strategies. Artificial intelligence (AI) in healthcare, particularly for lung cancer, offers promise by analyzing medical data for early identification and personalized treatment. This systematic review evaluates AI's performance in early lung cancer detection, analyzing its techniques, strengths, limitations, and comparative edge over traditional methods. (2) Methods: This systematic review and meta-analysis followed the PRISMA guidelines rigorously, outlining a comprehensive protocol and employing tailored search strategies across diverse databases. Two reviewers independently screened studies based on predefined criteria, ensuring the selection of high-quality data relevant to AI's role in lung cancer detection. The extraction of key study details and performance metrics, followed by quality assessment, facilitated a robust analysis using R software (Version 4.3.0). The process, depicted via a PRISMA flow diagram, allowed for the meticulous evaluation and synthesis of the findings in this review. (3) Results: From 1024 records, 39 studies met the inclusion criteria, showcasing diverse AI model applications for lung cancer detection, emphasizing varying strengths among the studies. These findings underscore AI's potential for early lung cancer diagnosis but highlight the need for standardization amidst study variations. The results demonstrate promising pooled sensitivity and specificity of 0.87, signifying AI's accuracy in identifying true positives and negatives, despite the observed heterogeneity attributed to diverse study parameters. (4) Conclusions: AI demonstrates promise in early lung cancer detection, showing high accuracy levels in this systematic review. However, study variations underline the need for standardized protocols to fully leverage AI's potential in revolutionizing early diagnosis, ultimately benefiting patients and healthcare professionals. As the field progresses, validated AI models from large-scale perspective studies will greatly benefit clinical practice and patient care in the future.
Collapse
Affiliation(s)
- Mohammed Kanan
- Department of Clinical Pharmacy, King Fahad Medical City, Riyadh 12211, Saudi Arabia
| | - Hajar Alharbi
- Department of Medicine, Gdansk Medical University, 80210 Gdansk, Poland
| | - Nawaf Alotaibi
- Department of Clinical Pharmacy, Northern Border University, Rafha 73213, Saudi Arabia
| | - Lubna Almasuood
- Department of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia
| | - Shahad Aljoaid
- Department of Medicine, University of Tabuk, Tabuk 47911, Saudi Arabia
| | - Tuqa Alharbi
- Department of Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Leen Albraik
- Department of Medicine, Al-Faisal University, Riyadh 12385, Saudi Arabia;
| | - Wojod Alothman
- Department of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31411, Saudi Arabia
| | - Hadeel Aljohani
- Department of Medicine and Surgery, King Abdulaziz University, Jeddah 22230, Saudi Arabia; (H.A.); (R.K.)
| | - Aghnar Alzahrani
- Department of Medicine, Al-Baha University, Al Bahah 65964, Saudi Arabia
| | - Sadeem Alqahtani
- Department of Pharmacy, King Khalid University, Abha 62217, Saudi Arabia
| | - Razan Kalantan
- Department of Medicine and Surgery, King Abdulaziz University, Jeddah 22230, Saudi Arabia; (H.A.); (R.K.)
| | - Raghad Althomali
- Department of Medicine, Taif University, Taif 26311, Saudi Arabia
| | - Maram Alameen
- Department of Medicine, Taif University, Taif 26311, Saudi Arabia
| | - Ahdab Mufti
- Department of Medicine, Ibn Sina National College, Jeddah 22230, Saudi Arabia
| |
Collapse
|
22
|
Grenier PA, Brun AL, Mellot F. [The contribution of artificial intelligence (AI) subsequent to the processing of thoracic imaging]. Rev Mal Respir 2024; 41:110-126. [PMID: 38129269 DOI: 10.1016/j.rmr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The contribution of artificial intelligence (AI) to medical imaging is currently the object of widespread experimentation. The development of deep learning (DL) methods, particularly convolution neural networks (CNNs), has led to performance gains often superior to those achieved by conventional methods such as machine learning. Radiomics is an approach aimed at extracting quantitative data not accessible to the human eye from images expressing a disease. The data subsequently feed machine learning models and produce diagnostic or prognostic probabilities. As for the multiple applications of AI methods in thoracic imaging, they are undergoing evaluation. Chest radiography is a practically ideal field for the development of DL algorithms able to automatically interpret X-rays. Current algorithms can detect up to 14 different abnormalities present either in isolation or in combination. Chest CT is another area offering numerous AI applications. Various algorithms have been specifically formed and validated for the detection and characterization of pulmonary nodules and pulmonary embolism, as well as segmentation and quantitative analysis of the extent of diffuse lung diseases (emphysema, infectious pneumonias, interstitial lung disease). In addition, the analysis of medical images can be associated with clinical, biological, and functional data (multi-omics analysis), the objective being to construct predictive approaches regarding disease prognosis and response to treatment.
Collapse
Affiliation(s)
- P A Grenier
- Délégation à la recherche clinique et l'innovation, hôpital Foch, Suresnes, France.
| | - A L Brun
- Service de radiologie, hôpital Foch, Suresnes, France
| | - F Mellot
- Service de radiologie, hôpital Foch, Suresnes, France
| |
Collapse
|
23
|
Li Y, Lyu B, Wang R, Peng Y, Ran H, Zhou B, Liu Y, Bai G, Huai Q, Chen X, Zeng C, Wu Q, Zhang C, Gao S. Machine learning-based radiomics to distinguish pulmonary nodules between lung adenocarcinoma and tuberculosis. Thorac Cancer 2024; 15:466-476. [PMID: 38191149 PMCID: PMC10883857 DOI: 10.1111/1759-7714.15216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Radiomics is increasingly utilized to distinguish pulmonary nodules between lung adenocarcinoma (LUAD) and tuberculosis (TB). However, it remains unclear whether different segmentation criteria, such as the inclusion or exclusion of the cavity region within nodules, affect the results. METHODS A total of 525 patients from two medical centers were retrospectively enrolled. The radiomics features were extracted according to two regions of interest (ROI) segmentation criteria. Multiple logistic regression models were trained to predict the pathology: (1) The clinical model relied on clinical-radiological semantic features; (2) The radiomics models (radiomics+ and radiomics-) utilized radiomics features from different ROIs (including or excluding cavities); (3) the composite models (composite+ and composite-) incorporated both above. RESULTS In the testing set, the radiomics+/- models and the composite+/- models still possessed efficient prediction performance (AUC ≥ 0.94), while the AUC of the clinical model was 0.881. In the validation set, the AUC of the clinical model was only 0.717, while that of the radiomics+/- models and the composite+/- models ranged from 0.801 to 0.825. The prediction performance of all the radiomics+/- and composite+/- models were significantly superior to that of the clinical model (p < 0.05). Whether the ROI segmentation included or excluded the cavity had no significant effect on these models (radiomics+ vs. radiomics-, composite+ model vs. composite-) (p > 0.05). CONCLUSIONS The present study established a machine learning-based radiomics strategy for differentiating LUAD from TB lesions. The ROI segmentation including or excluding the cavity region may exert no significant effect on the predictive ability.
Collapse
Affiliation(s)
- Yuan Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Baihan Lyu
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyChinese Academy of SciencesBeijingChina
| | - Rong Wang
- Department of Echocardiography, Fuwai Hospital/ National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yue Peng
- Department of Thoracic Surgery, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Haoyu Ran
- Department of Cardiothoracic Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Bolun Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yang Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qilin Huai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaowei Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chun Zeng
- Department of Radiologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Qingchen Wu
- Department of Cardiothoracic Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Cheng Zhang
- Department of Cardiothoracic Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
24
|
Liu X, Xu Y, Wang G, Ma X, Lin M, Zuo Y, Li W. Bronchiolar adenoma/ciliated muconodular papillary tumour: advancing clinical, pathological, and imaging insights for future perspectives. Clin Radiol 2024; 79:85-93. [PMID: 38049359 DOI: 10.1016/j.crad.2023.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/30/2023] [Indexed: 12/06/2023]
Abstract
Bronchiolar adenoma/ciliated muconodular papillary tumour (BA/CMPT) is a benign peripheral lung tumour composed of bilayered bronchiolar-type epithelium containing a continuous basal cell layer; however, the similarities in imaging and tissue biopsy findings at histopathology between BA/CMPT and malignant tumours, including lung adenocarcinoma, pose significant challenges in accurately diagnosing BA/CMPT preoperatively. This difficulty in differentiation often results in misdiagnosis and unnecessary overtreatment. The objective of this article is to provide a comprehensive and systematic review of BA/CMPT, encompassing its clinical manifestations, pathological basis, imaging features, and differential diagnosis. By enhancing healthcare professionals' understanding of this disease, we aim to improve the accuracy of preoperative BA/CMPT diagnosis. This improvement is crucial for the development of appropriate therapeutic strategies and the overall improvement of patient prognosis.
Collapse
Affiliation(s)
- X Liu
- Medical School, Kunming University of Science and Technology, Kunming 650500, P.R. China; Department of Radiology, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Y Xu
- Department of Pathology, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| | - G Wang
- Department of Radiology, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| | - X Ma
- Department of Scientific Research, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| | - M Lin
- Medical School, Kunming University of Science and Technology, Kunming 650500, P.R. China; Department of Radiology, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Y Zuo
- Department of Radiology, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China.
| | - W Li
- Department of Radiology, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China.
| |
Collapse
|
25
|
Lu J, Ji X, Liu X, Jiang Y, Li G, Fang P, Li W, Zuo A, Guo Z, Yang S, Ji Y, Lu D. Machine learning-based radiomics strategy for prediction of acquired EGFR T790M mutation following treatment with EGFR-TKI in NSCLC. Sci Rep 2024; 14:446. [PMID: 38172228 PMCID: PMC10764785 DOI: 10.1038/s41598-023-50984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
The epidermal growth factor receptor (EGFR) Thr790 Met (T790M) mutation is responsible for approximately half of the acquired resistance to EGFR-tyrosine kinase inhibitor (TKI) in non-small-cell lung cancer (NSCLC) patients. Identifying patients at diagnosis who are likely to develop this mutation after first- or second-generation EGFR-TKI treatment is crucial for better treatment outcomes. This study aims to develop and validate a radiomics-based machine learning (ML) approach to predict the T790M mutation in NSCLC patients at diagnosis. We collected retrospective data from 210 positive EGFR mutation NSCLC patients, extracting 1316 radiomics features from CT images. Using the LASSO algorithm, we selected 10 radiomics features and 2 clinical features most relevant to the mutations. We built models with 7 ML approaches and assessed their performance through the receiver operating characteristic (ROC) curve. The radiomics model and combined model, which integrated radiomics features and relevant clinical factors, achieved an area under the curve (AUC) of 0.80 (95% confidence interval [CI] 0.79-0.81) and 0.86 (0.87-0.88), respectively, in predicting the T790M mutation. Our study presents a convenient and noninvasive radiomics-based ML model for predicting this mutation at the time of diagnosis, aiding in targeted treatment planning for NSCLC patients with EGFR mutations.
Collapse
Affiliation(s)
- Jiameng Lu
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, 16766 Jingshilu, Lixia, Jinan, 250014, Shandong, People's Republic of China
- School of Microelectronics, Shandong University, Jinan, 250100, Shandong, People's Republic of China
| | - Xiaoqing Ji
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014, Shandong, People's Republic of China
| | - Xinyi Liu
- Graduate School of Shandong First Medical University, Jinan, 250000, Shandong, People's Republic of China
| | - Yunxiu Jiang
- Graduate School of Shandong First Medical University, Jinan, 250000, Shandong, People's Republic of China
| | - Gang Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Shandong Lung Cancer Institute, Shandong Institute of Neuroimmunology, Jinan, 250000, Shandong, China
| | - Ping Fang
- Department of Blood Transfusion, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Jinan, 250014, Shandong, China
| | - Wei Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Shandong Lung Cancer Institute, Shandong Institute of Neuroimmunology, Jinan, 250000, Shandong, China
| | - Anli Zuo
- Graduate School of Shandong First Medical University, Jinan, 250000, Shandong, People's Republic of China
| | - Zihan Guo
- Graduate School of Shandong First Medical University, Jinan, 250000, Shandong, People's Republic of China
| | - Shuran Yang
- Graduate School of Shandong First Medical University, Jinan, 250000, Shandong, People's Republic of China
| | - Yanbo Ji
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014, Shandong, People's Republic of China
| | - Degan Lu
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, 16766 Jingshilu, Lixia, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
26
|
Fan W, Liu H, Zhang Y, Chen X, Huang M, Xu B. Diagnostic value of artificial intelligence based on computed tomography (CT) density in benign and malignant pulmonary nodules: a retrospective investigation. PeerJ 2024; 12:e16577. [PMID: 38188164 PMCID: PMC10768667 DOI: 10.7717/peerj.16577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024] Open
Abstract
Objective To evaluate the diagnostic value of artificial intelligence (AI) in the detection and management of benign and malignant pulmonary nodules (PNs) using computed tomography (CT) density. Methods A retrospective analysis was conducted on the clinical data of 130 individuals diagnosed with PNs based on pathological confirmation. The utilization of AI and physicians has been employed in the diagnostic process of distinguishing benign and malignant PNs. The CT images depicting PNs were integrated into AI-based software. The gold standard for evaluating the accuracy of AI diagnosis software and physician interpretation was the pathological diagnosis. Results Out of 226 PNs screened from 130 patients diagnosed by AI and physician reading based on CT, 147 were confirmed by pathology. AI had a sensitivity of 94.69% and radiologists had a sensitivity of 85.40% in identifying PNs. The chi-square analysis indicated that the screening capacity of AI was superior to that of physician reading, with statistical significance (p < 0.05). 195 of the 214 PNs suggested by AI were confirmed pathologically as malignant, and 19 were identified as benign; among the 29 PNs suggested by AI as low risk, 13 were confirmed pathologically as malignant, and 16 were identified as benign. From the physician reading, 193 PNs were identified as malignant, 183 were confirmed malignant by pathology, and 10 appeared benign. Physician reading also identified 30 low-risk PNs, 19 of which were pathologically malignant and 11 benign. The physician readings and AI had kappa values of 0.432 and 0.547, respectively. The physician reading and AI area under curves (AUCs) were 0.814 and 0.798, respectively. Both of the diagnostic techniques had worthy diagnostic value, as indicated by their AUCs of >0.7. Conclusion It is anticipated that the use of AI-based CT diagnosis in the detection of PNs would increase the precision in early detection of lung carcinoma, as well as yield more precise evidence for clinical management.
Collapse
Affiliation(s)
- Wei Fan
- Department of Radiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Huitong Liu
- Department of Orthopaedics, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Yan Zhang
- Department of Radiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xiaolong Chen
- Department of Radiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Minggang Huang
- Department of Radiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Bingqiang Xu
- Department of Radiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
27
|
Zhang M, Wang Y, Lv M, Sang L, Wang X, Yu Z, Yang Z, Wang Z, Sang L. Trends and Hotspots in Global Radiomics Research: A Bibliometric Analysis. Technol Cancer Res Treat 2024; 23:15330338241235769. [PMID: 38465611 DOI: 10.1177/15330338241235769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Objectives: The purpose of this research is to summarize the structure of radiomics-based knowledge and to explore potential trends and priorities by using bibliometric analysis. Methods: Select radiomics-related publications from 2012 to October 2022 from the Science Core Collection Web site. Use VOSviewer (version 1.6.18), CiteSpace (version 6.1.3), Tableau (version 2022), Microsoft Excel and Rstudio's free online platforms (http://bibliometric.com) for co-writing, co-citing, and co-occurrence analysis of countries, institutions, authors, references, and keywords in the field. The visual analysis is also carried out on it. Results: The study included 6428 articles. Since 2012, there has been an increase in research papers based on radiomics. Judging by publications, China has made the largest contribution in this area. We identify the most productive institutions and authors as Fudan University and Tianjie. The top three magazines with the most publications are《FRONTIERS IN ONCOLOGY》, 《EUROPEAN RADIOLOGY》, and 《CANCERS》. According to the results of reference and keyword analysis, "deep learning, nomogram, ultrasound, f-18-fdg, machine learning, covid-19, radiogenomics" has been determined as the main research direction in the future. Conclusion: Radiomics is in a phase of vigorous development with broad prospects. Cross-border cooperation between countries and institutions should be strengthened in the future. It can be predicted that the development of deep learning-based models and multimodal fusion models will be the focus of future research. Advances in knowledge: This study explores the current state of research and hot spots in the field of radiomics from multiple perspectives, comprehensively, and objectively reflecting the evolving trends in imaging-related research and providing a reference for future research.
Collapse
Affiliation(s)
- Minghui Zhang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Yan Wang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Mutian Lv
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Li Sang
- Department of Acupuncture and Massage, Shouguang Hospital of Traditional Chinese Medicine, Weifang, P. R. China
| | - Xuemei Wang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Zijun Yu
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Ziyi Yang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Zhongqing Wang
- Department of Information Center, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Liang Sang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, P. R. China
| |
Collapse
|
28
|
Zhou S, Han S, Chen W, Bai X, Pan W, Han X, He X. Radiomics-based machine learning and deep learning to predict serosal involvement in gallbladder cancer. Abdom Radiol (NY) 2024; 49:3-10. [PMID: 37787963 DOI: 10.1007/s00261-023-04029-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 10/04/2023]
Abstract
OBJECTIVE Our study aimed to determine whether radiomics models based on contrast-enhanced computed tomography (CECT) have considerable ability to predict serosal involvement in gallbladder cancer (GBC) patients. MATERIALS AND METHODS A total of 152 patients diagnosed with GBC were retrospectively enrolled and divided into the serosal involvement group and no serosal involvement group according to paraffin pathology results. The regions of interest (ROIs) in the lesion on all CT images were drawn by two radiologists using ITK-SNAP software (version 3.8.0). A total of 412 features were extracted from the CT images of each patient. The Mann‒Whitney U test was applied to identify features with significant differences between groups. Seven machine learning algorithms and a deep learning model based on fully connected neural networks (f-CNNs) were used for radiomics model construction. The prediction efficacy of the models was evaluated using receiver operating characteristic (ROC) curve analysis. RESULTS Through the Mann‒Whitney U test, 75 of the 412 features extracted from the CT images of patients were significantly different between groups (P < 0.05). Among all the algorithms, logistic regression achieved the highest performance with an area under the curve (AUC) of 0.944 (sensitivity 0.889, specificity 0.8); the f-CNN deep learning model had an AUC of 0.916, and the model showed high predictive power for serosal involvement, with a sensitivity of 0.733 and a specificity of 0.801. CONCLUSION Radiomics models based on features derived from CECT showed convincing performances in predicting serosal involvement in GBC.
Collapse
Affiliation(s)
- Shengnan Zhou
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Shaoqi Han
- General Surgery Department, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Weijie Chen
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Xuesong Bai
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Weidong Pan
- Radiology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xianlin Han
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Xiaodong He
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
29
|
Zyla J, Marczyk M, Prazuch W, Sitkiewicz M, Durawa A, Jelitto M, Dziadziuszko K, Jelonek K, Kurczyk A, Szurowska E, Rzyman W, Widłak P, Polanska J. Combining Low-Dose Computer-Tomography-Based Radiomics and Serum Metabolomics for Diagnosis of Malignant Nodules in Participants of Lung Cancer Screening Studies. Biomolecules 2023; 14:44. [PMID: 38254644 PMCID: PMC10813699 DOI: 10.3390/biom14010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Radiomics is an emerging approach to support the diagnosis of pulmonary nodules detected via low-dose computed tomography lung cancer screening. Serum metabolome is a promising source of auxiliary biomarkers that could help enhance the precision of lung cancer diagnosis in CT-based screening. Thus, we aimed to verify whether the combination of these two techniques, which provides local/morphological and systemic/molecular features of disease at the same time, increases the performance of lung cancer classification models. The collected cohort consists of 1086 patients with radiomic and 246 patients with serum metabolomic evaluations. Different machine learning techniques, i.e., random forest and logistic regression were applied for each omics. Next, model predictions were combined with various integration methods to create a final model. The best single omics models were characterized by an AUC of 83% in radiomics and 60% in serum metabolomics. The model integration only slightly increased the performance of the combined model (AUC equal to 85%), which was not statistically significant. We concluded that radiomics itself has a good ability to discriminate lung cancer from benign lesions. However, additional research is needed to test whether its combination with other molecular assessments would further improve the diagnosis of screening-detected lung nodules.
Collapse
Affiliation(s)
- Joanna Zyla
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (J.Z.); (W.P.); (J.P.)
| | - Michal Marczyk
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (J.Z.); (W.P.); (J.P.)
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Wojciech Prazuch
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (J.Z.); (W.P.); (J.P.)
| | - Magdalena Sitkiewicz
- Department of Thoracic Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.S.); (A.D.); (W.R.)
| | - Agata Durawa
- Department of Thoracic Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.S.); (A.D.); (W.R.)
| | - Malgorzata Jelitto
- 2nd Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.J.); (K.D.); (E.S.); (P.W.)
| | - Katarzyna Dziadziuszko
- 2nd Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.J.); (K.D.); (E.S.); (P.W.)
| | - Karol Jelonek
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-100 Gliwice, Poland;
| | - Agata Kurczyk
- Department of Biostatistics and Bioinformatics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-100 Gliwice, Poland;
| | - Edyta Szurowska
- 2nd Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.J.); (K.D.); (E.S.); (P.W.)
| | - Witold Rzyman
- Department of Thoracic Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.S.); (A.D.); (W.R.)
| | - Piotr Widłak
- 2nd Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.J.); (K.D.); (E.S.); (P.W.)
| | - Joanna Polanska
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (J.Z.); (W.P.); (J.P.)
| |
Collapse
|
30
|
Lv X, Li Y, Wang B, Wang Y, Pan Y, Li C, Hou D. Multisequence MRI-based radiomics analysis for early prediction of the risk of T790M resistance in new brain metastases. Quant Imaging Med Surg 2023; 13:8599-8610. [PMID: 38106277 PMCID: PMC10722019 DOI: 10.21037/qims-23-822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/15/2023] [Indexed: 12/19/2023]
Abstract
Background Predicting whether T790M emerges early is crucial to the adjustment of targeted drugs for non-small cell lung cancer (NSCLC) patients. This study aimed to evaluate the risk of T790M resistance in progressive new brain metastases (BMs) based on multisequence magnetic resonance imaging (MRI) radiomics. Methods This retrospective study included 405 consecutive patients (training cohort: 294 patients; testing cohort: 111 patients) with proven NSCLC with disease progression of new BM. The radiomics features were separately extracted from T2-weighted imaging (T2WI), T2 fluid-attenuated inversion recovery (T2-FLAIR), diffusion-weighted imaging (DWI), and contrast-enhanced T1-weighted imaging (T1-CE) sequence of baseline MRI. Then, we calculated radiomics scores (rad-score) of the 4 sequences respectively and established predictive models (lesion- or patient-level) to evaluate T790M resistance within up to 14 months using random forest classifier. Receiver operating characteristic (ROC) curves and F1 scores were used to validate the performance of two models in both the training and testing cohort. Results There were significant differences in rad-scores of the four sequences between T790M-positive and negative groups whether in the training or testing cohort (P<0.05). The lesion-level model consisting of rad-scores showed excellent discrimination, with an area under the curve (AUC) and F1-score of 0.879 and 0.798 in the training cohort, and 0.834 and 0.742 in the testing cohort, respectively. The patient-level model also showed a favorable discriminatory ability with an AUC and F1 score of 0.851 and 0.837, which was confirmed with an AUC and F1 score of 0.734 and 0.716 in the testing cohort. Conclusions The MRI-based radiomics signatures may be new markers to identify patients at high risk of developing resistance in the early period.
Collapse
Affiliation(s)
- Xinna Lv
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ye Li
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bing Wang
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yichuan Wang
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yanxi Pan
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Department of Radiology, The Fourth People’s Hospital of Nanning, Nanning, China
| | - Chenghai Li
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Dailun Hou
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Lv X, Li Y, Xu X, Zheng Z, Li F, Fang K, Wang Y, Wang B, Hou D. Multisequence MRI-based radiomics nomogram for early prediction of osimertinib resistance in patients with non-small cell lung cancer brain metastases. Eur J Radiol Open 2023; 11:100521. [PMID: 37692549 PMCID: PMC10485591 DOI: 10.1016/j.ejro.2023.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023] Open
Abstract
Background Osimertinib resistance is a major problem in the course of targeted therapy for non-small cell lung cancer (NSCLC) patients. To develop and validate a multisequence MRI-based radiomics nomogram for early prediction of osimertinib resistance in NSCLC with brain metastases (BM). Methods Pretreatment brain MRI of 251 NSCLC patients proven with BM were retrospectively enrolled from two centers (training cohort: 196 patients; testing cohort: 55 patients). According to the gene test result of osimertinib resistance, patients were labeled as resistance and non-resistance groups (training cohort: 65 versus 131 patients; testing cohort: 25 versus 30 patients). Radiomics features were extracted from T2WI, T2 fluid-attenuated inversion recovery (T2-FLAIR), diffusion weighted imaging (DWI) and contrast-enhanced T1-weighted imaging (T1-CE) sequences separately and radiomics score (rad-score) were built from the four sequences. Then a multisequence MRI-based nomogram was developed and the predictive ability was evaluated by ROC curves and calibration curves. Results The rad-scores of the four sequences has significant differences between resistance and non-resistance groups in both training and testing cohorts. The nomogram achieved the highest predictive ability with area under the curve (AUC) of 0.989 (95 % confidence interval, 0.976-1.000) and 0.923 (95 % confidence interval, 0.851-0.995) in the training and testing cohort respectively. The calibration curves showed excellent concordance between the predicted and actual probability of osimertinib resistance using the radiomics nomogram. Conclusions The multisequence MRI-based radiomics nomogram can be used as a noninvasive auxiliary tool to identify candidates who were resistant to osimertinib, which could guide clinical therapy for NSCLC patients with BM.
Collapse
Affiliation(s)
- Xinna Lv
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Ye Li
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Xiaoyue Xu
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Ziwei Zheng
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Fang Li
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Kun Fang
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Yue Wang
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Bing Wang
- Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Dailun Hou
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
32
|
Hunter B, Argyros C, Inglese M, Linton-Reid K, Pulzato I, Nicholson AG, Kemp SV, L Shah P, Molyneaux PL, McNamara C, Burn T, Guilhem E, Mestas Nuñez M, Hine J, Choraria A, Ratnakumar P, Bloch S, Jordan S, Padley S, Ridge CA, Robinson G, Robbie H, Barnett J, Silva M, Desai S, Lee RW, Aboagye EO, Devaraj A. Radiomics-based decision support tool assists radiologists in small lung nodule classification and improves lung cancer early diagnosis. Br J Cancer 2023; 129:1949-1955. [PMID: 37932513 PMCID: PMC10703918 DOI: 10.1038/s41416-023-02480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/21/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Methods to improve stratification of small (≤15 mm) lung nodules are needed. We aimed to develop a radiomics model to assist lung cancer diagnosis. METHODS Patients were retrospectively identified using health records from January 2007 to December 2018. The external test set was obtained from the national LIBRA study and a prospective Lung Cancer Screening programme. Radiomics features were extracted from multi-region CT segmentations using TexLab2.0. LASSO regression generated the 5-feature small nodule radiomics-predictive-vector (SN-RPV). K-means clustering was used to split patients into risk groups according to SN-RPV. Model performance was compared to 6 thoracic radiologists. SN-RPV and radiologist risk groups were combined to generate "Safety-Net" and "Early Diagnosis" decision-support tools. RESULTS In total, 810 patients with 990 nodules were included. The AUC for malignancy prediction was 0.85 (95% CI: 0.82-0.87), 0.78 (95% CI: 0.70-0.85) and 0.78 (95% CI: 0.59-0.92) for the training, test and external test datasets, respectively. The test set accuracy was 73% (95% CI: 65-81%) and resulted in 66.67% improvements in potentially missed [8/12] or delayed [6/9] cancers, compared to the radiologist with performance closest to the mean of six readers. CONCLUSIONS SN-RPV may provide net-benefit in terms of earlier cancer diagnosis.
Collapse
Affiliation(s)
- Benjamin Hunter
- Imperial College London, Faculty of Medicine, Department of Surgery & Cancer, London, UK
| | - Christos Argyros
- Imperial College London, Faculty of Medicine, Department of Surgery & Cancer, London, UK
| | - Marianna Inglese
- Imperial College London, Faculty of Medicine, Department of Surgery & Cancer, London, UK
- Department of Biomedicine and Prevention, University of Rome, Tor Vergata, Italy
| | - Kristofer Linton-Reid
- Imperial College London, Faculty of Medicine, Department of Surgery & Cancer, London, UK
| | - Ilaria Pulzato
- The Royal Brompton and Harefield Hospitals, Guy's and St Thomas's NHS Foundation Trust, Department of Radiology, London, UK
| | - Andrew G Nicholson
- The Royal Brompton and Harefield Hospitals, Guy's and St Thomas's NHS Foundation Trust, Department of Histopathology, London, UK
- Imperial College London, National Heart and Lung Institute, London, UK
| | - Samuel V Kemp
- Nottingham University Hospitals NHS Trust, Department of Respiratory Medicine, Nottingham, UK
| | - Pallav L Shah
- Imperial College London, National Heart and Lung Institute, London, UK
- The Royal Brompton and Harefield Hospitals, Guy's and St Thomas's NHS Foundation Trust, Department of Respiratory Medicine, London, UK
| | - Philip L Molyneaux
- The Royal Brompton and Harefield Hospitals, Guy's and St Thomas's NHS Foundation Trust, Department of Respiratory Medicine, London, UK
| | - Cillian McNamara
- The Royal Brompton and Harefield Hospitals, Guy's and St Thomas's NHS Foundation Trust, Department of Radiology, London, UK
| | - Toby Burn
- Imperial College London, Faculty of Medicine, Department of Surgery & Cancer, London, UK
| | - Emily Guilhem
- King's College Hospital, Department of Radiology, London, UK
| | | | - Julia Hine
- The Royal Brompton and Harefield Hospitals, Guy's and St Thomas's NHS Foundation Trust, Department of Radiology, London, UK
| | - Anika Choraria
- The Royal Brompton and Harefield Hospitals, Guy's and St Thomas's NHS Foundation Trust, Department of Radiology, London, UK
| | - Prashanthi Ratnakumar
- Imperial College London, National Heart and Lung Institute, London, UK
- St Mary's Hospital, Imperial College Healthcare Trust, Department of Respiratory Medicine, London, UK
| | - Susannah Bloch
- Imperial College London, National Heart and Lung Institute, London, UK
- St Mary's Hospital, Imperial College Healthcare Trust, Department of Respiratory Medicine, London, UK
| | - Simon Jordan
- The Royal Brompton and Harefield Hospitals, Guy's and St Thomas's NHS Foundation Trust, Department of Thoracic Surgery, London, UK
| | - Simon Padley
- The Royal Brompton and Harefield Hospitals, Guy's and St Thomas's NHS Foundation Trust, Department of Radiology, London, UK
- Imperial College London, National Heart and Lung Institute, London, UK
| | - Carole A Ridge
- The Royal Brompton and Harefield Hospitals, Guy's and St Thomas's NHS Foundation Trust, Department of Radiology, London, UK
- Imperial College London, National Heart and Lung Institute, London, UK
| | - Graham Robinson
- The Royal United Hospital, Bath, Department of Radiology, Bath, UK
| | - Hasti Robbie
- King's College Hospital, Department of Radiology, London, UK
| | - Joseph Barnett
- Department of Radiology, Royal Free Hospital, London, UK
| | - Mario Silva
- Section of "Scienze Radiologiche", Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Sujal Desai
- The Royal Brompton and Harefield Hospitals, Guy's and St Thomas's NHS Foundation Trust, Department of Radiology, London, UK
- Imperial College London, National Heart and Lung Institute, London, UK
- Imperial College London, Margaret Turner-Warwick Centre for Fibrosing Lung Disease, London, UK
| | - Richard W Lee
- Imperial College London, National Heart and Lung Institute, London, UK
- Lung Unit, The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
- Early Diagnosis and Detection, Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Eric O Aboagye
- Imperial College London, Faculty of Medicine, Department of Surgery & Cancer, London, UK
| | - Anand Devaraj
- The Royal Brompton and Harefield Hospitals, Guy's and St Thomas's NHS Foundation Trust, Department of Radiology, London, UK.
- Imperial College London, National Heart and Lung Institute, London, UK.
| |
Collapse
|
33
|
Sang J, Ye X. Potential biomarkers for predicting immune response and outcomes in lung cancer patients undergoing thermal ablation. Front Immunol 2023; 14:1268331. [PMID: 38022658 PMCID: PMC10646301 DOI: 10.3389/fimmu.2023.1268331] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Thermal ablation is a promising alternative treatment for lung cancer. It disintegrates cancer cells and releases antigens, followed by the remodeling of local tumor immune microenvironment and the activation of anti-tumor immune responses, enhancing the overall effectiveness of the treatment. Biomarkers can offer insights into the patient's immune response and outcomes, such as local tumor control, recurrence, overall survival, and progression-free survival. Identifying and validating such biomarkers can significantly impact clinical decision-making, leading to personalized treatment strategies and improved patient outcomes. This review provides a comprehensive overview of the current state of research on potential biomarkers for predicting immune response and outcomes in lung cancer patients undergoing thermal ablation, including their potential role in lung cancer management, and the challenges and future directions.
Collapse
Affiliation(s)
| | - Xin Ye
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| |
Collapse
|
34
|
Huang Y, Huang X, Wang A, Chen Q, Chen G, Ye J, Wang Y, Qin Z, Xu K. Individualized treatment decision model for inoperable elderly esophageal squamous cell carcinoma based on multi-modal data fusion. BMC Med Inform Decis Mak 2023; 23:237. [PMID: 37872517 PMCID: PMC10594800 DOI: 10.1186/s12911-023-02339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND This research aimed to develop a model for individualized treatment decision-making in inoperable elderly patients with esophageal squamous cell carcinoma (ESCC) using machine learning methods and multi-modal data. METHODS A total of 189 inoperable elderly ESCC patients aged 65 or older who underwent concurrent chemoradiotherapy (CCRT) or radiotherapy (RT) were included. Multi-task learning models were created using machine learning techniques to analyze multi-modal data, including pre-treatment CT images, clinical information, and blood test results. Nomograms were constructed to predict the objective response rate (ORR) and progression-free survival (PFS) for different treatment strategies. Optimal treatment plans were recommended based on the nomograms. Patients were stratified into high-risk and low-risk groups using the nomograms, and survival analysis was performed using Kaplan-Meier curves. RESULTS The identified risk factors influencing ORR were histologic grade (HG), T stage and three radiomic features including original shape elongation, first-order skewness and original shape flatness, while risk factors influencing PFS included BMI, HG and three radiomic features including high gray-level run emphasis, first-order minimum and first-order skewness. These risk factors were incorporated into the nomograms as independent predictive factors. PFS was substantially different between the low-risk group (total score ≤ 110) and the high-risk group (total score > 110) according to Kaplan-Meier curves (P < 0.05). CONCLUSIONS The developed predictive models for ORR and PFS in inoperable elderly ESCC patients provide valuable insights for predicting treatment efficacy and prognosis. The nomograms enable personalized treatment decision-making and can guide optimal treatment plans for inoperable elderly ESCC patients.
Collapse
Affiliation(s)
- Yong Huang
- Department of Medical Oncology, The Second People's Hospital of Hefei, Hefei, China
| | - Xiaoyu Huang
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Anling Wang
- Scholl of Internet, Anhui University, Hefei, China
| | - Qiwei Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gong Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingya Ye
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yaru Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhihui Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kai Xu
- Scholl of Internet, Anhui University, Hefei, China.
| |
Collapse
|
35
|
Feuerecker B, Heimer MM, Geyer T, Fabritius MP, Gu S, Schachtner B, Beyer L, Ricke J, Gatidis S, Ingrisch M, Cyran CC. Artificial Intelligence in Oncological Hybrid Imaging. Nuklearmedizin 2023; 62:296-305. [PMID: 37802057 DOI: 10.1055/a-2157-6810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
BACKGROUND Artificial intelligence (AI) applications have become increasingly relevant across a broad spectrum of settings in medical imaging. Due to the large amount of imaging data that is generated in oncological hybrid imaging, AI applications are desirable for lesion detection and characterization in primary staging, therapy monitoring, and recurrence detection. Given the rapid developments in machine learning (ML) and deep learning (DL) methods, the role of AI will have significant impact on the imaging workflow and will eventually improve clinical decision making and outcomes. METHODS AND RESULTS The first part of this narrative review discusses current research with an introduction to artificial intelligence in oncological hybrid imaging and key concepts in data science. The second part reviews relevant examples with a focus on applications in oncology as well as discussion of challenges and current limitations. CONCLUSION AI applications have the potential to leverage the diagnostic data stream with high efficiency and depth to facilitate automated lesion detection, characterization, and therapy monitoring to ultimately improve quality and efficiency throughout the medical imaging workflow. The goal is to generate reproducible, structured, quantitative diagnostic data for evidence-based therapy guidance in oncology. However, significant challenges remain regarding application development, benchmarking, and clinical implementation. KEY POINTS · Hybrid imaging generates a large amount of multimodality medical imaging data with high complexity and depth.. · Advanced tools are required to enable fast and cost-efficient processing along the whole radiology value chain.. · AI applications promise to facilitate the assessment of oncological disease in hybrid imaging with high quality and efficiency for lesion detection, characterization, and response assessment. The goal is to generate reproducible, structured, quantitative diagnostic data for evidence-based oncological therapy guidance.. · Selected applications in three oncological entities (lung, prostate, and neuroendocrine tumors) demonstrate how AI algorithms may impact imaging-based tasks in hybrid imaging and potentially guide clinical decision making..
Collapse
Affiliation(s)
- Benedikt Feuerecker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Partner site Munich, DKTK German Cancer Consortium, Munich, Germany
| | - Maurice M Heimer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Geyer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Sijing Gu
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Sergios Gatidis
- Department of Radiology, University Hospital Tübingen, Tübingen, Germany
- MPI, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Michael Ingrisch
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Clemens C Cyran
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
36
|
Habert P, Decoux A, Chermati L, Gibault L, Thomas P, Varoquaux A, Le Pimpec-Barthes F, Arnoux A, Juquel L, Chaumoitre K, Garcia S, Gaubert JY, Duron L, Fournier L. Best imaging signs identified by radiomics could outperform the model: application to differentiating lung carcinoid tumors from atypical hamartomas. Insights Imaging 2023; 14:148. [PMID: 37726504 PMCID: PMC10509085 DOI: 10.1186/s13244-023-01484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVES Lung carcinoids and atypical hamartomas may be difficult to differentiate but require different treatment. The aim was to differentiate these tumors using contrast-enhanced CT semantic and radiomics criteria. METHODS Between November 2009 and June 2020, consecutives patient operated for hamartomas or carcinoids with contrast-enhanced chest-CT were retrospectively reviewed. Semantic criteria were recorded and radiomics features were extracted from 3D segmentations using Pyradiomics. Reproducible and non-redundant radiomics features were used to training a random forest algorithm with cross-validation. A validation-set from another institution was used to evaluate of the radiomics signature, the 3D 'median' attenuation feature (3D-median) alone and the mean value from 2D-ROIs. RESULTS Seventy-three patients (median 58 years [43‒70]) were analyzed (16 hamartomas; 57 carcinoids). The radiomics signature predicted hamartomas vs carcinoids on the external dataset (22 hamartomas; 32 carcinoids) with an AUC = 0.76. The 3D-median was the most important in the model. Density thresholds < 10 HU to predict hamartoma and > 60 HU to predict carcinoids were chosen for their high specificity > 0.90. On the external dataset, sensitivity and specificity of the 3D-median and 2D-ROIs were, respectively, 0.23, 1.00 and 0.13, 1.00 < 10 HU; 0.63, 0.95 and 0.69, 0.91 > 60 HU. The 3D-median was more reproducible than 2D-ROIs (ICC = 0.97 95% CI [0.95‒0.99]; bias: 3 ± 7 HU limits of agreement (LoA) [- 10‒16] vs. ICC = 0.90 95% CI [0.85‒0.94]; bias: - 0.7 ± 21 HU LoA [- 4‒40], respectively). CONCLUSIONS A radiomics signature can distinguish hamartomas from carcinoids with an AUC = 0.76. Median density < 10 HU and > 60 HU on 3D or 2D-ROIs may be useful in clinical practice to diagnose these tumors with confidence, but 3D is more reproducible. CRITICAL RELEVANCE STATEMENT Radiomic features help to identify the most discriminating imaging signs using random forest. 'Median' attenuation value (Hounsfield units), extracted from 3D-segmentations on contrast-enhanced chest-CTs, could distinguish carcinoids from atypical hamartomas (AUC = 0.85), was reproducible (ICC = 0.97), and generalized to an external dataset. KEY POINTS • 3D-'Median' was the best feature to differentiate carcinoids from atypical hamartomas (AUC = 0.85). • 3D-'Median' feature is reproducible (ICC = 0.97) and was generalized to an external dataset. • Radiomics signature from 3D-segmentations differentiated carcinoids from atypical hamartomas with an AUC = 0.76. • 2D-ROI value reached similar performance to 3D-'median' but was less reproducible (ICC = 0.90).
Collapse
Affiliation(s)
- Paul Habert
- Imaging Department, Hopital Nord, APHM, Aix Marseille University, Marseille, France.
- LIIE, Aix Marseille Univ, Marseille, France.
- PARCC UMRS 970, INSERM, Université Paris Cité, Paris, France.
| | - Antoine Decoux
- PARCC UMRS 970, INSERM, Université Paris Cité, Paris, France
| | - Lilia Chermati
- Imaging Department, Hopital Nord, APHM, Aix Marseille University, Marseille, France
| | - Laure Gibault
- Department of Pathology, Hôpital Européen Georges Pompidou, Assistance, Publique Hôpitaux de Paris, Paris, France
| | - Pascal Thomas
- Service de Chirurgie Thoracique et Transplantation Pulmonaire, Hôpital Nord, Chemin des Bourrely, Aix Marseille Université, 13015, Marseille, France
| | - Arthur Varoquaux
- Department of Radiology, La Conception Hospital, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille University, 13005, Marseille, France
| | | | - Armelle Arnoux
- AP-HP, Hopital Européen Georges Pompidou, Unité de Recherche Clinique, Centre d'Investigation Clinique 1418 Épidémiologie Clinique, INSERM, Université Paris Cité, Paris, France
| | - Loïc Juquel
- Service d'anatomie et Cytologie Pathologiques, Hôpital Nord, Chemin Des Bourrely, 13015, Marseille, France
- U1068-CRCM, Aix Marseille Université, 13015, Marseille, France
| | - Kathia Chaumoitre
- Imaging Department, Hopital Nord, APHM, Aix Marseille University, Marseille, France
| | - Stéphane Garcia
- Service d'anatomie et Cytologie Pathologiques, Hôpital Nord, Chemin Des Bourrely, 13015, Marseille, France
- U1068-CRCM, Aix Marseille Université, 13015, Marseille, France
| | - Jean-Yves Gaubert
- LIIE, Aix Marseille Univ, Marseille, France
- Department of Radiology, AP-HM, Hôpital La Timone, 13005, Marseille, France
| | - Loïc Duron
- PARCC UMRS 970, INSERM, Université Paris Cité, Paris, France
- Department of Neuroradiology, Alphonse de Rothschild Foundation Hospital, 75019, Paris, France
| | - Laure Fournier
- AP-HP, Hopital Européen Georges Pompidou, PARCC UMRS 970, INSERM, Université Paris Cité, Paris, France
| |
Collapse
|
37
|
Malík M, Dzian A, Števík M, Vetešková Š, Al Hakim A, Hliboký M, Magyar J, Kolárik M, Bundzel M, Babič F. Lung Ultrasound Reduces Chest X-rays in Postoperative Care after Thoracic Surgery: Is There a Role for Artificial Intelligence?-Systematic Review. Diagnostics (Basel) 2023; 13:2995. [PMID: 37761362 PMCID: PMC10527627 DOI: 10.3390/diagnostics13182995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Chest X-ray (CXR) remains the standard imaging modality in postoperative care after non-cardiac thoracic surgery. Lung ultrasound (LUS) showed promising results in CXR reduction. The aim of this review was to identify areas where the evaluation of LUS videos by artificial intelligence could improve the implementation of LUS in thoracic surgery. METHODS A literature review of the replacement of the CXR by LUS after thoracic surgery and the evaluation of LUS videos by artificial intelligence after thoracic surgery was conducted in Medline. RESULTS Here, eight out of 10 reviewed studies evaluating LUS in CXR reduction showed that LUS can reduce CXR without a negative impact on patient outcome after thoracic surgery. No studies on the evaluation of LUS signs by artificial intelligence after thoracic surgery were found. CONCLUSION LUS can reduce CXR after thoracic surgery. We presume that artificial intelligence could help increase the LUS accuracy, objectify the LUS findings, shorten the learning curve, and decrease the number of inconclusive results. To confirm this assumption, clinical trials are necessary. This research is funded by the Slovak Research and Development Agency, grant number APVV 20-0232.
Collapse
Affiliation(s)
- Marek Malík
- Department of Thoracic Surgery, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital in Martin, Kollárova 4248/2, 036 59 Martin, Slovakia
| | - Anton Dzian
- Department of Thoracic Surgery, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital in Martin, Kollárova 4248/2, 036 59 Martin, Slovakia
| | - Martin Števík
- Radiology Department, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital in Martin, Kollárova 4248/2, 036 59 Martin, Slovakia
| | - Štefánia Vetešková
- Radiology Department, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital in Martin, Kollárova 4248/2, 036 59 Martin, Slovakia
| | - Abdulla Al Hakim
- Department of Thoracic Surgery, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital in Martin, Kollárova 4248/2, 036 59 Martin, Slovakia
| | - Maroš Hliboký
- Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 040 01 Košice, Slovakia
| | - Ján Magyar
- Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 040 01 Košice, Slovakia
| | - Michal Kolárik
- Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 040 01 Košice, Slovakia
| | - Marek Bundzel
- Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 040 01 Košice, Slovakia
| | - František Babič
- Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 040 01 Košice, Slovakia
| |
Collapse
|
38
|
Huang W, Zhang H, Ge Y, Duan S, Ma Y, Wang X, Zhou X, Zhou T, Tu W, Wang Y, Liu S, Dong P, Fan L. Radiomics-based Machine Learning Methods for Volume Doubling Time Prediction of Pulmonary Ground-glass Nodules With Baseline Chest Computed Tomography. J Thorac Imaging 2023; 38:304-314. [PMID: 37423615 DOI: 10.1097/rti.0000000000000725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
PURPOSE Reliable prediction of volume doubling time (VDT) is essential for the personalized management of pulmonary ground-glass nodules (GGNs). We aimed to determine the optimal VDT prediction method by comparing different machine learning methods only based on the baseline chest computed tomography (CT) images. MATERIALS AND METHODS Seven classical machine learning methods were evaluated in terms of their stability and performance for VDT prediction. The VDT, calculated by the preoperative and baseline CT, was divided into 2 groups with a cutoff value of 400 days. A total of 90 GGNs from 3 hospitals constituted the training set, and 86 GGNs from the fourth hospital served as the external validation set. The training set was used for feature selection and model training, and the validation set was used to evaluate the predictive performance of the model independently. RESULTS The eXtreme Gradient Boosting showed the highest predictive performance (accuracy: 0.890±0.128 and area under the ROC curve (AUC): 0.896±0.134), followed by the neural network (NNet) (accuracy: 0.865±0.103 and AUC: 0.886±0.097). While regarding stability, the NNet showed the highest robustness against data perturbation (relative SDs [%] of mean AUC: 10.9%). Therefore, the NNet was chosen as the final model, achieving high accuracy of 0.756 in the external validation set. CONCLUSION The NNet is a promising machine learning method to predict the VDT of GGNs, which would assist in the personalized follow-up and treatment strategies for GGNs reducing unnecessary follow-up and radiation dose.
Collapse
Affiliation(s)
- Wenjun Huang
- School of Medical Imaging, Weifang Medical University
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai
| | - Hanxiao Zhang
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu
| | - Yanming Ge
- School of Medical Imaging, Weifang Medical University
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang
| | - Shaofeng Duan
- GE Healthcare, Precision Health Institution, Shanghai
| | - Yanqing Ma
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province
| | - Xiaoling Wang
- Department of Radiology, Deyang People's Hospital, Deyang, Sichuan Province, China
| | - Xiuxiu Zhou
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai
| | - Taohu Zhou
- School of Medical Imaging, Weifang Medical University
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai
| | - Wenting Tu
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai
| | - Yun Wang
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai
| | - Shiyuan Liu
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai
| | - Peng Dong
- School of Medical Imaging, Weifang Medical University
| | - Li Fan
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai
| |
Collapse
|
39
|
Li Y, Lv X, Wang B, Xu Z, Wang Y, Sun M, Hou D. Predicting EGFR T790M Mutation in Brain Metastases Using Multisequence MRI-Based Radiomics Signature. Acad Radiol 2023; 30:1887-1895. [PMID: 36586758 DOI: 10.1016/j.acra.2022.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
RATIONALE AND OBJECTIVES Timely identifying T790M mutation for non-small cell lung cancer (NSCLC) patients with brain metastases (BM) is essential to adjust targeted treatment strategies. To develop and validate radiomics models based on multisequence MRI for differentiating patients with T790M resistance from no T790M mutation in BM and explore the optimal sequence for prediction. MATERIALS AND METHODS This retrospective study enrolled 233 patients with proven of BM in NSCLC which included 95 with T790M and 138 without T790M from two hospitals as the training cohort and testing cohort separately. Radiomics features extracted from T2WI, T2 fluid-attenuated inversion recovery (T2-FLAIR), diffusion weighted imaging (DWI) and contrast-enhanced T1-weighted imaging (T1-CE) sequence respectively. The most predictable features were selected based on the maximal information coefficient and Boruta method. Then four radiomics models were built to characterize T790M mutation by random forest classifier. ROC curves, F1 score and DCA curves were constructed to validate the capability and verify the performance of four models. RESULTS The DWI model showed best performance with AUC and F1 score of 0.886 and 0.789 in the training cohort, 0.850 and 0.743 in the testing cohort. DCA curves also showed higher overall net benefit from the DWI model than from the remaining three models in the testing cohort. Other three models also had some classification power whether in the training or testing cohort, especially T2-FLAIR model. CONCLUSION Multisequence MRI-based radiomics has potential to predict the emergence of EGFR T790M resistance mutations especially the radiomics signature based on DWI sequence.
Collapse
Affiliation(s)
- Ye Li
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, China (Y.L., X.L., Z.X., M.S.); Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China (B.W., Y,W.)
| | - Xinna Lv
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, China (Y.L., X.L., Z.X., M.S.); Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China (B.W., Y,W.)
| | - Bing Wang
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, China (Y.L., X.L., Z.X., M.S.); Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China (B.W., Y,W.)
| | - Zexuan Xu
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, China (Y.L., X.L., Z.X., M.S.); Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China (B.W., Y,W.)
| | - Yichuan Wang
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, China (Y.L., X.L., Z.X., M.S.); Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China (B.W., Y,W.)
| | - Mengyan Sun
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, China (Y.L., X.L., Z.X., M.S.); Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China (B.W., Y,W.)
| | - Dailun Hou
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, China (Y.L., X.L., Z.X., M.S.); Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China (B.W., Y,W.).
| |
Collapse
|
40
|
Huang X, He S, Wang J, Yang S, Wang Y, Ye X. Lesion detection with fine-grained image categorization for myopic traction maculopathy (MTM) using optical coherence tomography. Med Phys 2023; 50:5398-5409. [PMID: 37490302 DOI: 10.1002/mp.16623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Myopic traction maculopathy (MTM) are retinal disorder caused by traction force on the macula, which can lead to varying degrees of vision loss in eyes with high myopia. Optical coherence tomography (OCT) is an effective imaging technique for diagnosing, detecting and classifying retinopathy. MTM has been classified into different patterns by OCT, corresponding to different clinical strategies. PURPOSE We aimed to engineer a deep learning model that can automatically identify MTM in highly myopic (HM) eyes using OCT images. METHODS A five-class classification model was developed using 2837 OCT images from 958 HM patients. We adopted a ResNet-34 architecture to train the model to identify MTM: no MTM (class 0), extra-foveal maculoschisis (class 1), inner lamellar macular hole (class 2), outer foveoschisis (class 3), and discontinuity or detachment of foveal outer hyperreflective layers (class 4). An independent test set of 604 images from 173 HM patients was used to evaluate the model's performance. Classification performance was assessed according to the area under the curve (AUC), accuracy, sensitivity, specificity. RESULTS Our model exhibited a high training performance for classification (F1-score of 0.953; AUCs of 0.961 to 0.998). In test set, it achieved sensitivities (91.67%-97.78 %) and specificities (98.33%-99.17%) as good as, or better than, those of experienced clinicians. Heatmaps were generated to provide visual explanations. CONCLUSIONS We established a deep learning model for MTM classification using OCT images. This model performed equally well or better than retinal specialists and is suitable for large-scale screening and identifying MTM in HM eyes.
Collapse
Affiliation(s)
- Xingru Huang
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK
| | - Shucheng He
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Jun Wang
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shangchao Yang
- School of Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yaqi Wang
- College of Media Engineering, Communication University of Zhejiang, Hangzhou, Zhejiang, China
| | - Xin Ye
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| |
Collapse
|
41
|
Cellina M, Cacioppa LM, Cè M, Chiarpenello V, Costa M, Vincenzo Z, Pais D, Bausano MV, Rossini N, Bruno A, Floridi C. Artificial Intelligence in Lung Cancer Screening: The Future Is Now. Cancers (Basel) 2023; 15:4344. [PMID: 37686619 PMCID: PMC10486721 DOI: 10.3390/cancers15174344] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Lung cancer has one of the worst morbidity and fatality rates of any malignant tumour. Most lung cancers are discovered in the middle and late stages of the disease, when treatment choices are limited, and patients' survival rate is low. The aim of lung cancer screening is the identification of lung malignancies in the early stage of the disease, when more options for effective treatments are available, to improve the patients' outcomes. The desire to improve the efficacy and efficiency of clinical care continues to drive multiple innovations into practice for better patient management, and in this context, artificial intelligence (AI) plays a key role. AI may have a role in each process of the lung cancer screening workflow. First, in the acquisition of low-dose computed tomography for screening programs, AI-based reconstruction allows a further dose reduction, while still maintaining an optimal image quality. AI can help the personalization of screening programs through risk stratification based on the collection and analysis of a huge amount of imaging and clinical data. A computer-aided detection (CAD) system provides automatic detection of potential lung nodules with high sensitivity, working as a concurrent or second reader and reducing the time needed for image interpretation. Once a nodule has been detected, it should be characterized as benign or malignant. Two AI-based approaches are available to perform this task: the first one is represented by automatic segmentation with a consequent assessment of the lesion size, volume, and densitometric features; the second consists of segmentation first, followed by radiomic features extraction to characterize the whole abnormalities providing the so-called "virtual biopsy". This narrative review aims to provide an overview of all possible AI applications in lung cancer screening.
Collapse
Affiliation(s)
- Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, 20121 Milano, Italy;
| | - Laura Maria Cacioppa
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (L.M.C.); (N.R.); (A.B.)
- Division of Interventional Radiology, Department of Radiological Sciences, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, 60126 Ancona, Italy
| | - Maurizio Cè
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (M.C.); (V.C.); (M.C.); (Z.V.); (D.P.); (M.V.B.)
| | - Vittoria Chiarpenello
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (M.C.); (V.C.); (M.C.); (Z.V.); (D.P.); (M.V.B.)
| | - Marco Costa
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (M.C.); (V.C.); (M.C.); (Z.V.); (D.P.); (M.V.B.)
| | - Zakaria Vincenzo
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (M.C.); (V.C.); (M.C.); (Z.V.); (D.P.); (M.V.B.)
| | - Daniele Pais
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (M.C.); (V.C.); (M.C.); (Z.V.); (D.P.); (M.V.B.)
| | - Maria Vittoria Bausano
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (M.C.); (V.C.); (M.C.); (Z.V.); (D.P.); (M.V.B.)
| | - Nicolò Rossini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (L.M.C.); (N.R.); (A.B.)
| | - Alessandra Bruno
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (L.M.C.); (N.R.); (A.B.)
| | - Chiara Floridi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (L.M.C.); (N.R.); (A.B.)
- Division of Interventional Radiology, Department of Radiological Sciences, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, 60126 Ancona, Italy
- Division of Radiology, Department of Radiological Sciences, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, 60126 Ancona, Italy
| |
Collapse
|
42
|
Gong X, Liu X, Xie X, Wang Y. Progress in research on ultrasound radiomics for predicting the prognosis of breast cancer. CANCER INNOVATION 2023; 2:283-289. [PMID: 38089749 PMCID: PMC10686118 DOI: 10.1002/cai2.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/20/2023] [Accepted: 06/09/2023] [Indexed: 10/15/2024]
Abstract
Breast cancer is the most common malignant tumor and the leading cause of cancer-related deaths in women worldwide. Effective means of predicting the prognosis of breast cancer are very helpful in guiding treatment and improving patients' survival. Features extracted by radiomics reflect the genetic and molecular characteristics of a tumor and are related to its biological behavior and the patient's prognosis. Thus, radiomics provides a new approach to noninvasive assessment of breast cancer prognosis. Ultrasound is one of the commonest clinical means of examining breast cancer. In recent years, some results of research into ultrasound radiomics for diagnosing breast cancer, predicting lymph node status, treatment response, recurrence and survival times, and other aspects, have been published. In this article, we review the current research status and technical challenges of ultrasound radiomics for predicting breast cancer prognosis. We aim to provide a reference for radiomics researchers, promote the development of ultrasound radiomics, and advance its clinical application.
Collapse
Affiliation(s)
- Xuantong Gong
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xuefeng Liu
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC)Beihang UniversityBeijingChina
| | - Xiaozheng Xie
- School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Yong Wang
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
43
|
Tang FH, Fong YW, Yung SH, Wong CK, Tu CL, Chan MT. Radiomics-Clinical AI Model with Probability Weighted Strategy for Prognosis Prediction in Non-Small Cell Lung Cancer. Biomedicines 2023; 11:2093. [PMID: 37626590 PMCID: PMC10452490 DOI: 10.3390/biomedicines11082093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, we propose a radiomics clinical probability-weighted model for the prediction of prognosis for non-small cell lung cancer (NSCLC). The model combines radiomics features extracted from radiotherapy (RT) planning images with clinical factors such as age, gender, histology, and tumor stage. CT images with radiotherapy structures of 422 NSCLC patients were retrieved from The Cancer Imaging Archive (TCIA). Radiomic features were extracted from gross tumor volumes (GTVs). Five machine learning algorithms, namely decision trees (DT), random forests (RF), extreme boost (EB), support vector machine (SVM) and generalized linear model (GLM) were optimized by a voted ensemble machine learning (VEML) model. A probabilistic weighted approach is used to incorporate the uncertainty associated with both radiomic and clinical features and to generate a probabilistic risk score for each patient. The performance of the model is evaluated using a receiver operating characteristic (ROC). The Radiomic model, clinical factor model, and combined radiomic clinical probability-weighted model demonstrated good performance in predicting NSCLC survival with AUC of 0.941, 0.856 and 0.949, respectively. The combined radiomics clinical probability-weighted enhanced model achieved significantly better performance than the radiomic model in 1-year survival prediction (chi-square test, p < 0.05). The proposed model has the potential to improve NSCLC prognosis and facilitate personalized treatment decisions.
Collapse
Affiliation(s)
- Fuk-Hay Tang
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
44
|
Felfli M, Liu Y, Zerka F, Voyton C, Thinnes A, Jacques S, Iannessi A, Bodard S. Systematic Review, Meta-Analysis and Radiomics Quality Score Assessment of CT Radiomics-Based Models Predicting Tumor EGFR Mutation Status in Patients with Non-Small-Cell Lung Cancer. Int J Mol Sci 2023; 24:11433. [PMID: 37511192 PMCID: PMC10380456 DOI: 10.3390/ijms241411433] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Assessment of the quality and current performance of computed tomography (CT) radiomics-based models in predicting epidermal growth factor receptor (EGFR) mutation status in patients with non-small-cell lung carcinoma (NSCLC). Two medical literature databases were systematically searched, and articles presenting original studies on CT radiomics-based models for predicting EGFR mutation status were retrieved. Forest plots and related statistical tests were performed to summarize the model performance and inter-study heterogeneity. The methodological quality of the selected studies was assessed via the Radiomics Quality Score (RQS). The performance of the models was evaluated using the area under the curve (ROC AUC). The range of the Risk RQS across the selected articles varied from 11 to 24, indicating a notable heterogeneity in the quality and methodology of the included studies. The average score was 15.25, which accounted for 42.34% of the maximum possible score. The pooled Area Under the Curve (AUC) value was 0.801, indicating the accuracy of CT radiomics-based models in predicting the EGFR mutation status. CT radiomics-based models show promising results as non-invasive alternatives for predicting EGFR mutation status in NSCLC patients. However, the quality of the studies using CT radiomics-based models varies widely, and further harmonization and prospective validation are needed before the generalization of these models.
Collapse
Affiliation(s)
- Mehdi Felfli
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Yan Liu
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Fadila Zerka
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Charles Voyton
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Alexandre Thinnes
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Sebastien Jacques
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
| | - Antoine Iannessi
- Median Technologies, F-06560 Valbonne, France; (M.F.); (Y.L.); (F.Z.); (C.V.); (A.T.); (S.J.); (A.I.)
- Centre Antoine Lacassagne, F-06100 Nice, France
| | - Sylvain Bodard
- AP-HP, Service d’Imagerie Adulte, Hôpital Necker Enfants Malades, Université de Paris Cité, F-75015 Paris, France
- CNRS UMR 7371, INSERM U 1146, Laboratoire d’Imagerie Biomédicale, Sorbonne Université, F-75006 Paris, France
| |
Collapse
|
45
|
Evangelista L, Fiz F, Laudicella R, Bianconi F, Castello A, Guglielmo P, Liberini V, Manco L, Frantellizzi V, Giordano A, Urso L, Panareo S, Palumbo B, Filippi L. PET Radiomics and Response to Immunotherapy in Lung Cancer: A Systematic Review of the Literature. Cancers (Basel) 2023; 15:3258. [PMID: 37370869 PMCID: PMC10296704 DOI: 10.3390/cancers15123258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this review is to provide a comprehensive overview of the existing literature concerning the applications of positron emission tomography (PET) radiomics in lung cancer patient candidates or those undergoing immunotherapy. MATERIALS AND METHODS A systematic review was conducted on databases and web sources. English-language original articles were considered. The title and abstract were independently reviewed to evaluate study inclusion. Duplicate, out-of-topic, and review papers, or editorials, articles, and letters to editors were excluded. For each study, the radiomics analysis was assessed based on the radiomics quality score (RQS 2.0). The review was registered on the PROSPERO database with the number CRD42023402302. RESULTS Fifteen papers were included, thirteen were qualified as using conventional radiomics approaches, and two used deep learning radiomics. The content of each study was different; indeed, seven papers investigated the potential ability of radiomics to predict PD-L1 expression and tumor microenvironment before starting immunotherapy. Moreover, two evaluated the prediction of response, and four investigated the utility of radiomics to predict the response to immunotherapy. Finally, two papers investigated the prediction of adverse events due to immunotherapy. CONCLUSIONS Radiomics is promising for the evaluation of TME and for the prediction of response to immunotherapy, but some limitations should be overcome.
Collapse
Affiliation(s)
- Laura Evangelista
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Francesco Fiz
- Nuclear Medicine Department, E.O. “Ospedali Galliera”, 16128 Genoa, Italy;
- Nuclear Medicine Department and Clinical Molecular Imaging, University Hospital, 72076 Tübingen, Germany
| | - Riccardo Laudicella
- Unit of Nuclear Medicine, Biomedical Department of Internal and Specialist Medicine, University of Palermo, 90100 Palermo, Italy;
| | - Francesco Bianconi
- Department of Engineering, Università degli Studi di Perugia, Via Goffredo Duranti, 06125 Perugia, Italy;
| | - Angelo Castello
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Priscilla Guglielmo
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy;
| | - Virginia Liberini
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100 Cuneo, Italy;
| | - Luigi Manco
- Medical Physics Unit, Azienda USL of Ferrara, 45100 Ferrara, Italy;
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy;
| | - Alessia Giordano
- Nuclear Medicine Unit, IRCCS CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy;
| | - Luca Urso
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy;
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, 41124 Modena, Italy;
| | - Barbara Palumbo
- Section of Nuclear Medicine and Health Physics, Department of Medicine and Surgery, Università degli Studi di Perugia, 06125 Perugia, Italy;
| | - Luca Filippi
- Nuclear Medicine Section, Santa Maria Goretti Hospital, 04100 Latina, Italy;
| |
Collapse
|
46
|
Skwirczyński M, Tabor Z, Lasek J, Schneider Z, Gibała S, Kucybała I, Urbanik A, Obuchowicz R. Deep Learning Algorithm for Differentiating Patients with a Healthy Liver from Patients with Liver Lesions Based on MR Images. Cancers (Basel) 2023; 15:3142. [PMID: 37370752 PMCID: PMC10296219 DOI: 10.3390/cancers15123142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The problems in diagnosing the state of a vital organ such as the liver are complex and remain unresolved. These problems are underscored by frequently published studies on this issue. At the same time, demand for imaging diagnostics, preferably using a method that can detect the disease at the earliest possible stage, is constantly increasing. In this paper, we present liver diseases in the context of diagnosis, diagnostic problems, and possible elimination. We discuss the dataset and methods and present the stages of the pipeline we developed, leading to multiclass segmentation of the liver in multiparametric MR image into lesions and normal tissue. Finally, based on the processing results, each case is classified as either a healthy liver or a liver with lesions. For the training set, the AUC ROC is 0.925 (standard error 0.013 and a p-value less than 0.001), and for the test set, the AUC ROC is 0.852 (standard error 0.039 and a p-value less than 0.001). Further refinements to the proposed pipeline are also discussed. The proposed approach could be used in the detection of focal lesions in the liver and the description of liver tumors. Practical application of the developed multi-class segmentation method represents a key step toward standardizing the medical evaluation of focal lesions in the liver.
Collapse
Affiliation(s)
- Maciej Skwirczyński
- Faculty of Mathematics and Computer Science, Jagiellonian University, 30-348 Krakow, Poland
| | - Zbisław Tabor
- Faculty of Electrical Engineering, Automatics, Computer Science, and Biomedical Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Julia Lasek
- Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Zofia Schneider
- Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Science and Technology, 30-059 Krakow, Poland
| | | | - Iwona Kucybała
- Department of Diagnostic Imaging, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | - Andrzej Urbanik
- Department of Diagnostic Imaging, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | - Rafał Obuchowicz
- Department of Diagnostic Imaging, Jagiellonian University Medical College, 31-501 Krakow, Poland
| |
Collapse
|
47
|
Dunn B, Pierobon M, Wei Q. Automated Classification of Lung Cancer Subtypes Using Deep Learning and CT-Scan Based Radiomic Analysis. Bioengineering (Basel) 2023; 10:690. [PMID: 37370621 DOI: 10.3390/bioengineering10060690] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Artificial intelligence and emerging data science techniques are being leveraged to interpret medical image scans. Traditional image analysis relies on visual interpretation by a trained radiologist, which is time-consuming and can, to some degree, be subjective. The development of reliable, automated diagnostic tools is a key goal of radiomics, a fast-growing research field which combines medical imaging with personalized medicine. Radiomic studies have demonstrated potential for accurate lung cancer diagnoses and prognostications. The practice of delineating the tumor region of interest, known as segmentation, is a key bottleneck in the development of generalized classification models. In this study, the incremental multiple resolution residual network (iMRRN), a publicly available and trained deep learning segmentation model, was applied to automatically segment CT images collected from 355 lung cancer patients included in the dataset "Lung-PET-CT-Dx", obtained from The Cancer Imaging Archive (TCIA), an open-access source for radiological images. We report a failure rate of 4.35% when using the iMRRN to segment tumor lesions within plain CT images in the lung cancer CT dataset. Seven classification algorithms were trained on the extracted radiomic features and tested for their ability to classify different lung cancer subtypes. Over-sampling was used to handle unbalanced data. Chi-square tests revealed the higher order texture features to be the most predictive when classifying lung cancers by subtype. The support vector machine showed the highest accuracy, 92.7% (0.97 AUC), when classifying three histological subtypes of lung cancer: adenocarcinoma, small cell carcinoma, and squamous cell carcinoma. The results demonstrate the potential of AI-based computer-aided diagnostic tools to automatically diagnose subtypes of lung cancer by coupling deep learning image segmentation with supervised classification. Our study demonstrated the integrated application of existing AI techniques in the non-invasive and effective diagnosis of lung cancer subtypes, and also shed light on several practical issues concerning the application of AI in biomedicine.
Collapse
Affiliation(s)
- Bryce Dunn
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA
| | - Mariaelena Pierobon
- School of Systems Biology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA 22030, USA
| | - Qi Wei
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
48
|
Zhang Y, Qian F, Teng J, Wang H, Yu H, Chen Q, Wang L, Zhu J, Yu Y, Yuan J, Cai W, Xu N, Zhu H, Lu Y, Yao M, Zhu J, Dong J, Yu L, Ren H, Yang J, Sun J, Zhong H, Han B. China lung cancer screening (CLUS) version 2.0 with new techniques implemented: Artificial intelligence, circulating molecular biomarkers and autofluorescence bronchoscopy. Lung Cancer 2023; 181:107262. [PMID: 37263180 DOI: 10.1016/j.lungcan.2023.107262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVE The present study, CLUS version 2.0, was conducted to evaluate the performance of new techniques in improving the implementation of lung cancer screening and to validate the efficacy of LDCT in reducing lung cancer-specific mortality in a high-risk Chinese population. METHODS From July 2018 to February 2019, high-risk participants from six screening centers in Shanghai were enrolled in our study. Artificial intelligence, circulating molecular biomarkers and autofluorescencebronchoscopy were applied during screening. RESULTS A total of 5087 eligible high-risk participants were enrolled in the study; 4490 individuals were invited, and 4395 participants (97.9%) finally underwent LDCT detection. Positive screening results were observed in 857 (19.5%) participants. Solid nodules represented 53.6% of all positive results, while multiple nodules were the most common location type (26.8%). Up to December 2020, 77 participants received lung resection or biopsy, including 70 lung cancers, 2 mediastinal tumors, 1 tracheobronchial tumor, 1 malignant pleural mesothelioma and 3 benign nodules. Lung cancer patients accounted for 1.6% of all the screened participants, and 91.4% were in the early stage (stage 0-1). CONCLUSIONS LDCT screening can detect a high proportion of early-stage lung cancer patients in a Chinese high-risk population. The utilization of new techniques would be conducive to improving the implementation of LDCT screening.
Collapse
Affiliation(s)
- Yanwei Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangfei Qian
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Teng
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Wang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Yu
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qunhui Chen
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Wang
- Xuhui District Health Commission, Shanghai, China
| | - Jingjing Zhu
- Xuhui District Center for Disease Control, Shanghai, China
| | | | - Junyi Yuan
- Information Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiming Cai
- Department of Outpatient, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Xu
- Tianlin Community Health Center, Shanghai, China
| | - Huixian Zhu
- Xujiahui Community Health Center, Shanghai, China
| | - Yun Lu
- Hongmei Community Health Center, Shanghai, China
| | - Mingling Yao
- Caohejing Community Health Center, Shanghai, China
| | - Jiayu Zhu
- Xietu Community Health Center, Shanghai, China
| | | | - Lingming Yu
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Ren
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiancheng Yang
- Dianei Technology, Shanghai, China; Shanghai Jiao Tong University, Shanghai, China; Computer Vision Laboratory, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Jiayuan Sun
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hua Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
49
|
Sfayyih AH, Sabry AH, Jameel SM, Sulaiman N, Raafat SM, Humaidi AJ, Kubaiaisi YMA. Acoustic-Based Deep Learning Architectures for Lung Disease Diagnosis: A Comprehensive Overview. Diagnostics (Basel) 2023; 13:diagnostics13101748. [PMID: 37238233 DOI: 10.3390/diagnostics13101748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Lung auscultation has long been used as a valuable medical tool to assess respiratory health and has gotten a lot of attention in recent years, notably following the coronavirus epidemic. Lung auscultation is used to assess a patient's respiratory role. Modern technological progress has guided the growth of computer-based respiratory speech investigation, a valuable tool for detecting lung abnormalities and diseases. Several recent studies have reviewed this important area, but none are specific to lung sound-based analysis with deep-learning architectures from one side and the provided information was not sufficient for a good understanding of these techniques. This paper gives a complete review of prior deep-learning-based architecture lung sound analysis. Deep-learning-based respiratory sound analysis articles are found in different databases including the Plos, ACM Digital Libraries, Elsevier, PubMed, MDPI, Springer, and IEEE. More than 160 publications were extracted and submitted for assessment. This paper discusses different trends in pathology/lung sound, the common features for classifying lung sounds, several considered datasets, classification methods, signal processing techniques, and some statistical information based on previous study findings. Finally, the assessment concludes with a discussion of potential future improvements and recommendations.
Collapse
Affiliation(s)
- Alyaa Hamel Sfayyih
- Department of Electrical and Electronic Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia
| | - Ahmad H Sabry
- Department of Computer Engineering, Al-Nahrain University Al Jadriyah Bridge, Baghdad 64074, Iraq
| | | | - Nasri Sulaiman
- Department of Electrical and Electronic Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia
| | - Safanah Mudheher Raafat
- Department of Control and Systems Engineering, University of Technology, Baghdad 10011, Iraq
| | - Amjad J Humaidi
- Department of Control and Systems Engineering, University of Technology, Baghdad 10011, Iraq
| | - Yasir Mahmood Al Kubaiaisi
- Department of Sustainability Management, Dubai Academic Health Corporation, Dubai 4545, United Arab Emirates
| |
Collapse
|
50
|
Huang T, Fan B, Qiu Y, Zhang R, Wang X, Wang C, Lin H, Yan T, Dong W. Application of DCE-MRI radiomics signature analysis in differentiating molecular subtypes of luminal and non-luminal breast cancer. Front Med (Lausanne) 2023; 10:1140514. [PMID: 37181350 PMCID: PMC10166881 DOI: 10.3389/fmed.2023.1140514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Background The goal of this study was to develop and validate a radiomics signature based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) preoperatively differentiating luminal and non-luminal molecular subtypes in patients with invasive breast cancer. Methods One hundred and thirty-five invasive breast cancer patients with luminal (n = 78) and non-luminal (n = 57) molecular subtypes were divided into training set (n = 95) and testing set (n = 40) in a 7:3 ratio. Demographics and MRI radiological features were used to construct clinical risk factors. Radiomics signature was constructed by extracting radiomics features from the second phase of DCE-MRI images and radiomics score (rad-score) was calculated. Finally, the prediction performance was evaluated in terms of calibration, discrimination, and clinical usefulness. Results Multivariate logistic regression analysis showed that no clinical risk factors were independent predictors of luminal and non-luminal molecular subtypes in invasive breast cancer patients. Meanwhile, the radiomics signature showed good discrimination in the training set (AUC, 0.86; 95% CI, 0.78-0.93) and the testing set (AUC, 0.80; 95% CI, 0.65-0.95). Conclusion The DCE-MRI radiomics signature is a promising tool to discrimination luminal and non-luminal molecular subtypes in invasive breast cancer patients preoperatively and noninvasively.
Collapse
Affiliation(s)
- Ting Huang
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Bing Fan
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yingying Qiu
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Rui Zhang
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xiaolian Wang
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Chaoxiong Wang
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Huashan Lin
- Department of Pharmaceutical Diagnosis, GE Healthcare, Changsha, China
| | - Ting Yan
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Wentao Dong
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|