1
|
Zheng Y, Wang L, Yin L, Yao Z, Tong R, Xue J, Lu Y. Lung Cancer Stem Cell Markers as Therapeutic Targets: An Update on Signaling Pathways and Therapies. Front Oncol 2022; 12:873994. [PMID: 35719973 PMCID: PMC9204354 DOI: 10.3389/fonc.2022.873994] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells, a relatively small group of self-renewing cancer cells, were first isolated from acute myeloid leukemia. These cells can play a crucial role in tumor metastasis, relapse, and therapy resistance. The cancer stem cell theory may be applied to lung cancer and explain the inefficiency of traditional treatments and eventual recurrence. However, because of the unclear accuracy and illusive biological function of cancer stem cells, some researchers remain cautious about this theory. Despite the ongoing controversy, cancer stem cells are still being investigated, and their biomarkers are being discovered for application in cancer diagnosis, targeted therapy, and prognosis prediction. Potential lung cancer stem cell markers mainly include surface biomarkers such as CD44, CD133, epithelial cell adhesion molecule, and ATP-binding cassette subfamily G member 2, along with intracellular biomarkers such as aldehyde dehydrogenase, sex-determining region Y-box 2, NANOG, and octamer-binding transcription factor 4. These markers have different structures and functions but are closely associated with the stem potential and uncontrollable proliferation of tumor cells. The aberrant activation of major signaling pathways, such as Notch, Hedgehog, and Wnt, may be associated with the expression and regulation of certain lung cancer stem cell markers, thus leading to lung cancer stem cell maintenance, chemotherapy resistance, and cancer promotion. Treatments targeting lung cancer stem cell markers, including antibody drugs, nanoparticle drugs, chimeric antigen receptor T-cell therapy, and other natural or synthetic specific inhibitors, may provide new hope for patients who are resistant to conventional lung cancer therapies. This review provides comprehensive and updated data on lung cancer stem cell markers with regard to their structures, functions, signaling pathways, and promising therapeutic target approaches, aiming to elucidate potential new therapies for lung cancer.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Laduona Wang
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Limei Yin
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuoran Yao
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ruizhan Tong
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jianxin Xue
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - You Lu
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Martín-Medina A, Cerón-Pisa N, Martinez-Font E, Shafiek H, Obrador-Hevia A, Sauleda J, Iglesias A. TLR/WNT: A Novel Relationship in Immunomodulation of Lung Cancer. Int J Mol Sci 2022; 23:6539. [PMID: 35742983 PMCID: PMC9224119 DOI: 10.3390/ijms23126539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023] Open
Abstract
The most frequent cause of death by cancer worldwide is lung cancer, and the 5-year survival rate is still very poor for patients with advanced stage. Understanding the crosstalk between the signaling pathways that are involved in disease, especially in metastasis, is crucial to developing new targeted therapies. Toll-like receptors (TLRs) are master regulators of the immune responses, and their dysregulation in lung cancer is linked to immune escape and promotes tumor malignancy by facilitating angiogenesis and proliferation. On the other hand, over-activation of the WNT signaling pathway has been reported in lung cancer and is also associated with tumor metastasis via induction of Epithelial-to-mesenchymal-transition (EMT)-like processes. An interaction between both TLRs and the WNT pathway was discovered recently as it was found that the TLR pathway can be activated by WNT ligands in the tumor microenvironment; however, the implications of such interactions in the context of lung cancer have not been discussed yet. Here, we offer an overview of the interaction of TLR-WNT in the lung and its potential implications and role in the oncogenic process.
Collapse
Affiliation(s)
- Aina Martín-Medina
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
| | - Noemi Cerón-Pisa
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
| | - Esther Martinez-Font
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
- Medical Oncology Department, Hospital Universitario Son Espases, 07120 Palma, Spain
| | - Hanaa Shafiek
- Chest Diseases Department, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Antònia Obrador-Hevia
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
- Molecular Diagnosis Unit, Hospital Universitario Son Espases, 07120 Palma, Spain
| | - Jaume Sauleda
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
- Department of Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Amanda Iglesias
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
3
|
Ngernsombat C, Prattapong P, Larbcharoensub N, Khotthong K, Janvilisri T. WNT8B as an Independent Prognostic Marker for Nasopharyngeal Carcinoma. ACTA ACUST UNITED AC 2021; 28:2529-2539. [PMID: 34287269 PMCID: PMC8293245 DOI: 10.3390/curroncol28040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Members of the Wnt signaling pathway have been shown to play a role in nasopharyngeal carcinoma (NPC) progression. AIM The purpose of this study was to investigate WNT8B protein expression in NPC patients using tissue microarray (TMA) analysis and to evaluate its correlation with patient survival and clinical parameters. METHODS A total of 82 NPC cases, together with six normal nasopharyngeal tissue samples, were targeted to construct the TMA blocks. The WNT8B protein expression was evaluated by immunohistochemistry and its correlation to the clinicopathological features was investigated. RESULTS Sixty-two of 82 (75.6%) cases exhibited high WNT8B protein expression while 20/82 (24.4%) cases appeared to have low WNT8B expression. The univariate analysis revealed that systemic metastasis was associated with patient 5-year survival. The multivariate Cox proportional hazard regression analysis showed that WNT8B expression and systemic metastasis were significantly associated with the survival of NPC patients. Furthermore, there was no correlation found between the WNT8B protein expression and other clinicopathological parameters. CONCLUSION Our results suggest that the expression of WNT8B is associated with NPC patients' survival and could serve as an independent prognostic factor for NPC patients.
Collapse
Affiliation(s)
- Chawalit Ngernsombat
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.N.); (P.P.)
| | - Pongphol Prattapong
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.N.); (P.P.)
| | - Noppadol Larbcharoensub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital Mahidol University, Bangkok 10400, Thailand;
| | | | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence:
| |
Collapse
|
4
|
Menju T, Date H. Lung cancer and epithelial-mesenchymal transition. Gen Thorac Cardiovasc Surg 2021; 69:781-789. [PMID: 33754237 DOI: 10.1007/s11748-021-01595-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Lung cancer (LC) is a leading cause of cancer-related death worldwide. Epithelial-mesenchymal transition (EMT) is a well-known phenomenon that promotes the invasive and metastatic capabilities of LC. Especially, EMT is assumed to be a pivotal mechanism for tumor cell invasion and metastasis, thereby limiting the efficacy of surgery and medical treatments, resulting in poor patient prognoses. Thus, the elucidation and reversal of EMT could provide changes in therapeutic strategies for LC. To overcome the limitations of currents treatment regimens for LC, it is important for surgeons to be familiar with this complex tumor characteristic. In this review, the activating signaling pathways underlying EMT and the associated tumor phenotypes are briefly described.
Collapse
Affiliation(s)
- Toshi Menju
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, 54, Shogoin Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, 54, Shogoin Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
5
|
Azbazdar Y, Karabicici M, Erdal E, Ozhan G. Regulation of Wnt Signaling Pathways at the Plasma Membrane and Their Misregulation in Cancer. Front Cell Dev Biol 2021; 9:631623. [PMID: 33585487 PMCID: PMC7873896 DOI: 10.3389/fcell.2021.631623] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Wnt signaling is one of the key signaling pathways that govern numerous physiological activities such as growth, differentiation and migration during development and homeostasis. As pathway misregulation has been extensively linked to pathological processes including malignant tumors, a thorough understanding of pathway regulation is essential for development of effective therapeutic approaches. A prominent feature of cancer cells is that they significantly differ from healthy cells with respect to their plasma membrane composition and lipid organization. Here, we review the key role of membrane composition and lipid order in activation of Wnt signaling pathway by tightly regulating formation and interactions of the Wnt-receptor complex. We also discuss in detail how plasma membrane components, in particular the ligands, (co)receptors and extracellular or membrane-bound modulators, of Wnt pathways are affected in lung, colorectal, liver and breast cancers that have been associated with abnormal activation of Wnt signaling. Wnt-receptor complex components and their modulators are frequently misexpressed in these cancers and this appears to correlate with metastasis and cancer progression. Thus, composition and organization of the plasma membrane can be exploited to develop new anticancer drugs that are targeted in a highly specific manner to the Wnt-receptor complex, rendering a more effective therapeutic outcome possible.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Mustafa Karabicici
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Esra Erdal
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
6
|
Emetine Synergizes with Cisplatin to Enhance Anti-Cancer Efficacy against Lung Cancer Cells. Int J Mol Sci 2019; 20:ijms20235914. [PMID: 31775307 PMCID: PMC6928603 DOI: 10.3390/ijms20235914] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/18/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023] Open
Abstract
Cisplatin is still the primary therapeutic choice for advanced lung cancers without driver mutations. The occurrence of cisplatin resistance is a major clinical problem in lung cancer treatment. The natural extracted agent emetine reportedly has anticancer effects. This study aimed to explore the possible role of emetine in cisplatin resistance. We used cell viability, Western blot, and Wnt reporter assays to show that emetine suppresses proliferation, β-catenin expression, and Wnt/β-catenin signaling in non-small cell lung cancer (NSCLC). The synergism of emetine and cisplatin was assessed by constructing isobolograms and calculating combination index (CI) values using the Chou-Talalay method. Emetine effectively synergized with cisplatin to suppress the proliferation of cancer cells. Furthermore, nuclear β-catenin and cancer stem cell-related markers were upregulated in the cisplatin-resistant subpopulation of CL1-0 cells. Emetine enhanced the anticancer efficacy of cisplatin and synergized with cisplatin in the cisplatin-resistant subpopulation of CL1-0 cells. Taken together, these data suggest that emetine could suppress the growth of NSCLC cells through the Wnt/β-catenin pathway and contribute to a synergistic effect in combination with cisplatin.
Collapse
|
7
|
Liao YJ, Yin XL, Deng Y, Peng XW. PRC1 gene silencing inhibits proliferation, invasion, and angiogenesis of retinoblastoma cells through the inhibition of the Wnt/β-catenin signaling pathway. J Cell Biochem 2019; 120:16840-16852. [PMID: 31144388 DOI: 10.1002/jcb.28942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
Abstract
Retinoblastoma is an ocular malignancy occurring in childhood. The current study evaluates the ability of silenced PRC1 on retinoblastoma cell proliferation, and angiogenesis via the Wnt/β-catenin signaling pathway. A total of 36 cases of retinoblastoma tissues (n = 36) and normal retinal tissues (n = 10) were selected in the current study. Retinoblastoma cells presenting with the high PRC1 messenger RNA (mRNA) expression were selected among the WERI-Rb-1, HXO-RB44, Y79, SO-Rb50, and SO-Rb70 cells lines, and were transfected with siRNA-PRC1 and LiCl (the activator of the Wnt/β-catenin pathway). The expressions of PRC1, VEGF, Wnt1, β-catenin, CyclinD1, extent of β-catenin, and GSK-3β phosphorylation were evaluated. Cell proliferation, cell-cycle distribution, and cell invasion of retinoblastoma cells were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry, and Transwell assay. The angiogenesis of retinoblastoma cells was detected by tube formation assay. HXO-RB44 and WERI-Rb-1 cells were selected owing to the highest PRC1 mRNA expression. Meanwhile, PRC2 gene silencing presented lower expression levels of PRC1, VEGF, Wnt1, β-catenin, CyclinD1, extent of β-catenin and GSK-3β phosphorylation, decreased proliferation and invasion abilities, extended G0/G1 phase, and shortened S and G2/M phases of HXO-RB44 and WERI-Rb-1 cells, suggesting the silenced PRC2 inactivated Wnt/β-catenin pathway, so as to further restrain the retinoblastoma cell proliferation, invasion, and angiogenesis. These results support the view that PRC1 gene silencing could suppress the proliferation, and angiogenesis of retinoblastoma cells by repressing the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yu-Jun Liao
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Xiao-Long Yin
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Yan Deng
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Xiao-Wei Peng
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| |
Collapse
|
8
|
Li T, Wang X, Jing L, Li Y. MiR-1-3p Inhibits Lung Adenocarcinoma Cell Tumorigenesis via Targeting Protein Regulator of Cytokinesis 1. Front Oncol 2019; 9:120. [PMID: 30881920 PMCID: PMC6405482 DOI: 10.3389/fonc.2019.00120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most lethal malignancies, posing a threat to human health. However, the molecular mechanisms underlying LUAD development remain largely unknown. In this study, we found that miR-1-3p was significantly downregulated in human LUAD tissues and cell lines and played an inhibitory role in LUAD cell tumorigenesis, as evidenced by the significantly reduced viability, migration, and invasion of LUAD cells in response to miR-1-3p overexpression. Mechanistically, microRNA (miR)-1-3p physically interacted with the 3′-untranslated region (UTR) of protein regulator of cytokinesis 1 (PRC1) mRNA, leading to downregulation of PRC1. Overexpression of PRC1 reversed the inhibitory effects of miR-1-3p on LUAD cell tumorigenesis, suggesting that the miR-1-3p/PRC1 axis is majorly involved in suppressing LUAD development and progression. Consistently, PRC1 was dramatically induced in LUAD tissues and cell lines as well as associated with a poor prognosis in LUAD patients. Taken together, our study identified the miR-1-3p/PRC1 axis as an important regulatory mechanism contributing to LUAD inhibition and provided valuable clues for the future development of therapeutic strategies against LUAD.
Collapse
Affiliation(s)
- Tao Li
- Department of Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Xiuxiu Wang
- Department of Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Lijun Jing
- Department of Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Li
- Department of Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
9
|
Sun J, Liu NB, Zhuang HQ, Zhao LJ, Yuan ZY, Wang P. Celecoxib-erlotinib combination treatment enhances radiosensitivity in A549 human lung cancer cell. Cancer Biomark 2018; 19:45-50. [PMID: 28282799 DOI: 10.3233/cbm-160323] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Radiosensitivity by blocking the epidermal growth factor receptor and cyclooxygenase-2 pathways with erlotinib and celecoxib in A549 human lung cancer cell was investigated. METHODS MTT assays were used to detect the antitumor effects of erlotinib and celecoxib in A549 cells. Colony formation assays were used to evaluate the antitumor effects. Flow cytometry analysis was used to assess the cell cycle and cell apoptosis, and western blotting analysis was performed to evaluate the expression of AKT and phosphorylated AKT. RESULTS Either erlotinib or celecoxib inhibited the A549 cell proliferation in a dose-dependent manner. Combining Erlotinib or celecoxib with radiation can suppress the cell colony formation and the Dq, D0, SF2 of the combining erlotinib or celecoxib with radiation was lower than in the combinations either erlotinib or celecoxib with radiation (t= 6.62, P< 0.05). The SER of radiation with celecoxib or erlotinib and celecoxib and erlotinib were 1.299, 1.503 and 2.217, respectively. The Flow cytometry analysis results showed that either celecoxib or erlotinib could induce G0/G1 arrest, and reduction of S phase cell proportion, especially when combinations erlotinib-celecoxib with radiation. Either celecoxib or erlotinib could enhance radiation-induced apoptosis, especially significant when combinations erlotinib-celecoxib with radiation. Moreover, radiation can promote the expression of pAKT, and the pAKT was remarkably lowest in the combinations erlotinib-celecoxib with radiation group (t= 4.89, P< 0.05). CONCLUSIONS Blocking both EGFR- and COX-2-related pathways could enhance the antitumor effect of radiation. The underlying mechanisms including the enhancement of apoptosis and radiation-induced G0/G1 arrest, possibly via inhibiting the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Jian Sun
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ning-Bo Liu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hong-Qing Zhuang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lun-Jun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.,Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
10
|
Tao J, Shi L, Huang L, Shi H, Chen H, Wang Y, Wang T. EZH2 is involved in silencing of WNT5A during epithelial-mesenchymal transition of colon cancer cell line. J Cancer Res Clin Oncol 2017; 143:2211-2219. [PMID: 28748258 DOI: 10.1007/s00432-017-2479-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE Transforming growth factor-β (TGF-β) induction of epithelial-mesenchymal transition (EMT) in SW480 was established as a system for studies of colon cancer metastasis. However, the epigenetic mechanisms underlying this process remain unknown. In mammal, polycomb repressive complex-2 (PRC2) is a highly conserved histone methyltransferase involved in epigenetic regulations. Enhancer of zeste Homolog 2 (EZH2) is the catalytic subunit of PRC2, which catalyzes methylation of lysine 27 of histone H3 (H3K27). METHODS An inducible EMT system in colorectal cancer was utilized to study its mechanistic and phenotypic changes. Particularly, gene expression analysis was studied after immunoprecipitation. RESULTS In this study, we reported that EZH2 is significantly enriched in the promoter region of WNT5A after TGF-β induction in SW480 colon cancer cell line, which in turn silenced the expression of WNT5A. Furthermore, EZH2 inhibitor antagonized the TGF-β-induced morphological conversion associated with epithelial-mesenchymal transition (EMT). Conversely, inhibition of histone H3K27me3 reader CBX does not affect the WNT5A expression level during TGF-β-induced EMT. CONCLUSIONS Our results indicate that EZH2 was essential for the silencing of WNT5A during TGF-β-induced epithelial-mesenchymal transition of colon cancer cells.
Collapse
Affiliation(s)
- Jianxin Tao
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Liping Shi
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Longchang Huang
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Haoze Shi
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Hang Chen
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Yixin Wang
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Tong Wang
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, People's Republic of China.
| |
Collapse
|
11
|
Zhan P, Zhang B, Xi GM, Wu Y, Liu HB, Liu YF, Xu WJ, Zhu QQ, Cai F, Zhou ZJ, Miu YY, Wang XX, Jin JJ, Li Q, Qian LP, Lv TF, Song Y. PRC1 contributes to tumorigenesis of lung adenocarcinoma in association with the Wnt/β-catenin signaling pathway. Mol Cancer 2017. [PMID: 28646916 PMCID: PMC5483280 DOI: 10.1186/s12943-017-0682-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Protein regulator of cytokinesis-1 (PRC1) belongs to the microtubule-associated proteins (MAPs) family, and is involved in cytokinesis. Recent investigations suggest PRC1 involvement in human carcinogenesis, including breast carcinoma, hepatocellular carcinoma and etc. However, whether PRC1 contributes to lung adenocarcinoma tumorigenesis remains unknown. Methods Quantitative reverse-transcription polymerase chain reaction (qRT-PCR), Western blotting and Immunohistochemical staining (IHC) were used to evaluate and contrast the PRC1 expression profile in lung adenocarcinoma and adjacent normal lung tissues. We examined the clinical use of PRC1 in lung adenocarcinoma prognosis. Additionally, the tumorigenesis impact of PRC1 in lung adenocarcinoma cells was verified via in vitro and in vivo metastasis and tumorigenesis assays. Notably, Next Generation Sequencing (NGS) was performed to investigate the molecular mechanism underlying the oncogenic role of PRC1 in lung adenocarcinoma. Results PRC1 mRNA and protein expressions were upregulated in lung adenocarcinoma tissues compared to adjacent normal lung tissues. PRC1 protein overexpression correlated with lymph node metastasis and was an independent poor prognostic factor for lung adenocarcinoma patients. Our data implied that PRC1 depletion limited the proliferation and invasion of lung adenocarcinoma cells in vitro and lowered tumor development and lung metastasis in vivo. Remarkably, limiting PRC1 substantially prompted G2/M phase cell cycle arrest and apoptosis. Mechanistically, by conducting NGS on PRC1-depleted A549 cells and control cells, we discovered that PRC1 expression was significantly correlated with the Wnt signaling pathway. Conclusions This investigation offers confirmation that PRC1 is a prognostic and promising therapeutic biomarker for people with lung adenocarcinoma and takes on a key part in the activation of the Wnt/β-catenin pathway in lung adenocarcinoma development. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0682-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, 210002, China.,Department of Respiratory Medicine, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, 210029, China
| | - Bin Zhang
- Department of Gastroenterology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Guang-Min Xi
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, 210002, China
| | - Ying Wu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, 210002, China
| | - Hong-Bing Liu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, 210002, China
| | - Ya-Fang Liu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, 210002, China
| | - Wu-Jian Xu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, 210002, China
| | - Qing-Qing Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, 210002, China
| | - Feng Cai
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, 210002, China
| | - Ze-Jun Zhou
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, 210002, China
| | - Ying-Ying Miu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, 210002, China
| | - Xiao-Xia Wang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, 210002, China
| | - Jia-Jia Jin
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, 210002, China
| | - Qian Li
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, 210002, China
| | - Li-Ping Qian
- Centre for Experimental Animal, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Tang-Feng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China. .,Nanjing University Institute of Respiratory Medicine, Nanjing, 210002, China.
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China. .,Nanjing University Institute of Respiratory Medicine, Nanjing, 210002, China.
| |
Collapse
|
12
|
Chen Y, Min L, Ren C, Xu X, Yang J, Sun X, Wang T, Wang F, Sun C, Zhang X. miRNA-148a serves as a prognostic factor and suppresses migration and invasion through Wnt1 in non-small cell lung cancer. PLoS One 2017; 12:e0171751. [PMID: 28199399 PMCID: PMC5310808 DOI: 10.1371/journal.pone.0171751] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/25/2017] [Indexed: 01/09/2023] Open
Abstract
Lung cancer is the leading cause of cancer death in the world, and aberrant expression of miRNA is a common feature during the cancer initiation and development. Our previous study showed that levels of miRNA-148a assessed by quantitative real-time polymerase chain reaction (qRT-PCR) were a good prognosis factor for non-small cell lung cancer (NSCLC) patients. In this study, we used high-throughput formalin-fixed and paraffin-embedded (FFPE) lung cancer tissue arrays and in situ hybridization (ISH) to determine the clinical significances of miRNA-148a and aimed to find novel target of miRNA-148a in lung cancer. Our results showed that there were 86 of 159 patients with low miRNA-148a expression and miRNA-148a was significantly down-regulated in primary cancer tissues when compared with their adjacent normal lung tissues. Low expression of miRNA-148a was strongly associated with high tumor grade, lymph node (LN) metastasis and a higher risk of tumor-related death in NSCLC. Lentivirus mediated overexpression of miRNA-148a inhibited migration and invasion of A549 and H1299 lung cancer cells. Furthermore, we validated Wnt1 as a direct target of miRNA-148a. Our data showed that the Wnt1 expression was negatively correlated with the expression of miRNA-148a in both primary cancer tissues and their corresponding adjacent normal lung tissues. In addition, overexpression of miRNA-148a inhibited Wnt1 protein expression in cancer cells. And knocking down of Wnt-1 by siRNA had the similar effect of miRNA-148a overexpression on cell migration and invasion in lung cancer cells. In conclusion, our results suggest that miRNA-148a inhibited cell migration and invasion through targeting Wnt1 and this might provide a new insight into the molecular mechanisms of lung cancer metastasis.
Collapse
Affiliation(s)
- Yong Chen
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Lingfeng Min
- Departments of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Chuanli Ren
- Departments of Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Xingxiang Xu
- Departments of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianqi Yang
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinchen Sun
- Department of Radiotherapy, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Wang
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Fang Wang
- Departments of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Changjiang Sun
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- * E-mail: (XZZ); (CJS)
| | - Xizhi Zhang
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- * E-mail: (XZZ); (CJS)
| |
Collapse
|