1
|
Liu Y, Dai S, Liu Z, He L, Zhu L, Qin Z, Fan H, Fang F, Xie Y, Peng X. Serum tumor markers and outcomes in lung cancer patients with brain metastases: a retrospective longitudinal cohort study. Transl Lung Cancer Res 2024; 13:2282-2295. [PMID: 39430320 PMCID: PMC11484733 DOI: 10.21037/tlcr-24-404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/12/2024] [Indexed: 10/22/2024]
Abstract
Background Serum tumor markers (STMs) are recommended for cancer diagnosis and surveillance. However, their role in lung cancer with brain metastases (BM) is not yet clear. We aim to analyze the roles of baseline levels of STMs or ongoing STM surveillance on survival. Methods This retrospective longitudinal cohort study included 1,169 lung cancer patients with BM. The STM data during disease course were collected. Distinct trajectory groups were identified using the latent class growth mixed model (LCGMM). The roles of STMs on survival were further analyzed using Kaplan-Meier analysis and Cox proportional hazard models. Results Serum levels of cytokeratin-19 fragment (CYFRA21-1) (P<0.001), carcinoembryonic antigen (CEA) (P=0.005) and neuron-specific enolase (NSE) (P<0.001) at baseline exhibited significant correlation with overall survival (OS) of patients with BM, serving as independent prognostic factors. Further analysis indicated that baseline CYFRA21-1, CEA, NSE as well as status of key driver genes were independent prognostic factors in non-small cell lung cancer (NSCLC) patients with BM, while for small cell lung cancer (SCLC) patients with BM, baseline NSE and receiving chemotherapy show independent correlations with survival. Furthermore, we delineated the dynamic trajectories of STMs based on changes in disease course. More specifically, compared to those showing a baseline-high trend in CEA levels, the survival of patients with either persistently-rising or consistently normal levels seemed to be more promising. For CYFRA21-1, both early-rising and later-rising trends were observed, indicating a prognosis inferior to that of individuals with normal-level trajectory. Likewise, for NSE, patients with persistently-rising or persistently-descending trends showed no significantly survival difference. However, in comparison with the status of driver genes, receiving radiotherapy and targeted therapy, the dynamic changes in STM levels lacked independent prognostic significance. Further analysis indicated that among BM patients lacking key driver genes, NSE trajectory (P<0.05), CYFRA21-1 trajectory (P<0.05) and receiving chemotherapy (P<0.001) were independent prognostic factors. Conclusions Baseline levels of serum CYFRA21-1, CEA and NSE, as well as status of key driver genes are recommended for evaluating BM patients' outcome. Dynamic changes of STMs during disease course were not significantly associated with the final outcome of BM patients.
Collapse
Affiliation(s)
- Yingtong Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuang Dai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zheran Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling He
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lili Zhu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zijian Qin
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haohan Fan
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Fang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuping Xie
- Department of Oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Melosky B, Vincent MD, McGuire AL, Brade AM, Chu Q, Cheema P, Martins I, Spicer JD, Snow S, Juergens RA. Modern era systemic therapies: Expanding concepts of cure in early and locally advanced non-small cell lung cancer. Int J Cancer 2024; 155:963-978. [PMID: 38900018 DOI: 10.1002/ijc.35031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 06/21/2024]
Abstract
Cure of cancer is a sensitive and multidimensional concept that is challenging to define, difficult to assert at the individual patient level, and often surrounded by controversy. The notion of cure in non-small cell lung cancer (NSCLC) has changed and continues to evolve with improvements in diagnosis and treatment. Targeted and immune therapies have recently entered the treatment landscape of stage I-III NSCLC. While some initial pivotal trials of such agents failed to improve survival, recently approved epidermal growth factor receptor (EGFR) inhibitors (in EGFR-mutated NSCLC) and immune checkpoint inhibitors have shown delays in disease recurrence or progression and unprecedented survival gains compared to previous standards of care. Additional data is now emerging supporting the benefit of treatment strategies based on alternation-matched targeting (anaplastic lymphoma kinase [ALK] inhibition in ALK-altered disease) and immune checkpoint inhibition in stage I-III NSCLC. Similar to previous developments in the treatment of early and locally advanced NSCLC, it is expected that statistically significant and clinically meaningful trial-level benefits will translate into real-world benefits, including improvements in cure measures. Parallel advances in molecular testing (e.g., circulating tumor DNA analyses) are also allowing for a deeper and more comprehensive characterization of disease status and treatment response. Given the impact that curative-intent treatments have on survival, it is critical that various stakeholders, including clinicians and patients, are aware of new opportunities to pursue cure in stage I-III NSCLC.
Collapse
Affiliation(s)
- Barbara Melosky
- BCCA Vancouver Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark D Vincent
- London Regional Cancer Centre, University of Western Ontario, London, Ontario, Canada
| | - Anna L McGuire
- Vancouver Coastal Health Research Institute, University of British Colombia, Vancouver, British Columbia, Canada
| | - Anthony M Brade
- Trillium Health Partners, University of Toronto, Mississauga, Ontario, Canada
| | - Quincy Chu
- Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Parneet Cheema
- William Osler Health System, University of Toronto, Brampton, Ontario, Canada
| | | | - Jonathan D Spicer
- McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Stephanie Snow
- QEII Health Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rosalyn A Juergens
- Juravinski Cancer Centre, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Wu WF, Lai KM, Chen CH, Wang BC, Chen YJ, Shen CW, Chen KY, Lin EC, Chen CC. Predicting the T790M mutation in non-small cell lung cancer (NSCLC) using brain metastasis MR radiomics: a study with an imbalanced dataset. Discov Oncol 2024; 15:447. [PMID: 39277568 PMCID: PMC11401825 DOI: 10.1007/s12672-024-01333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Early detection of T790M mutation in exon 20 of epidermal growth factor receptor (EGFR) in non-small cell lung cancer (NSCLC) patients with brain metastasis is crucial for optimizing treatment strategies. In this study, we developed radiomics models to distinguish NSCLC patients with T790M-positive mutations from those with T790M-negative mutations using multisequence MR images of brain metastasis despite an imbalanced dataset. Various resampling techniques and classifiers were employed to identify the most effective strategy. METHODS Radiomic analyses were conducted on a dataset comprising 125 patients, consisting of 18 with EGFR T790M-positive mutations and 107 with T790M-negative mutations. Seventeen first- and second-order statistical features were selected from CET1WI, T2WI, T2FLAIR, and DWI images. Four classifiers (logistic regression, support vector machine, random forest [RF], and extreme gradient boosting [XGBoost]) were evaluated under 13 different resampling conditions. RESULTS The area under the curve (AUC) value achieved was 0.89, using the SVM-SMOTE oversampling method in combination with the XGBoost classifier. This performance was measured against the AUC reported in the literature, serving as an upper-bound reference. Additionally, comparable results were observed with other oversampling methods paired with RF or XGBoost classifiers. CONCLUSIONS Our study demonstrates that, even when dealing with an imbalanced EGFR T790M dataset, reasonable predictive outcomes can be achieved by employing an appropriate combination of resampling techniques and classifiers. This approach has significant potential for enhancing T790M mutation detection in NSCLC patients with brain metastasis.
Collapse
Affiliation(s)
- Wen-Feng Wu
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600, Taiwan
| | - Kuan-Ming Lai
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600, Taiwan
- Central Taiwan University of Science and Technology Institute of Radiological Science, Taichung, 406, Taiwan
| | - Chia-Hung Chen
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600, Taiwan
- Central Taiwan University of Science and Technology Institute of Radiological Science, Taichung, 406, Taiwan
| | - Bai-Chuan Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Yi-Jen Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Chia-Wei Shen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Kai-Yan Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Eugene C Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan.
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, 621, Taiwan.
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, No. 539, Zhongxiao Rd., East Dist., Chiayi City, 60002, Taiwan.
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan.
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan.
| |
Collapse
|
4
|
Yang D, Munai E, Zeng S, Tao D, Yuan Z, Du L, Zhou W, Wu Y, Zhu XD. Triple therapy boosts survival in NSCLC patients with brain metastases: a retrospective cohort study of chemotherapy, ICIs, and antiangiogenic agents. Cancer Immunol Immunother 2024; 73:226. [PMID: 39237636 PMCID: PMC11377371 DOI: 10.1007/s00262-024-03797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Treatment of brain metastases (BMs) in non-small cell lung cancer (NSCLC) patients, especially those with non-sensitive genetic mutations, is hindered by limited drug delivery through the blood-brain barrier (BBB). This retrospective study explores the efficacy of systemic treatments during brain metastasis to radiotherapy evaluation window in improving patient survival. METHODS In this retrospective cohort study, we evaluated 209 NSCLC patients with non-sensitive mutations and BMs, treated between 2016 and 2023 at two tertiary medical centers (Chongqing University Cancer Hospital and Guangxi Medical University Cancer Hospital). The patients were divided into three groups, namely chemotherapy alone (C; n = 95), chemotherapy plus immune checkpoint inhibitors (ICIs) (C + I; n = 62), and chemotherapy with ICIs and antiangiogenic therapy (A) (C + I + A; n = 52). Statistical analyses were performed using R software, version 4.3.3. Categorical variables were compared using Fisher's exact test, and survival curves were estimated with the Kaplan-Meier method and compared via the log-rank test. Univariate and multivariate Cox regression models were used to assess factors associated with overall survival (OS). Bayesian model averaging (BMA) was employed to address model uncertainty and improve result robustness. Subgroup analyses evaluated treatment-related mortality risk. RESULTS From an initial cohort of 658 NSCLC patients with BMs, 209 were analyzed with a median age of 59; the majority were male (80.9%) and diagnosed with adenocarcinoma (78.9%). Univariate analysis identified significant variables influencing outcomes, including BMs radiotherapy EQD2, BMs count, local thoracic treatment, BMs radiotherapy field, intracranial response, and systemic treatment post-BMs diagnosis. The C + I + A regimen significantly improved median OS to 23.6 months compared to 11.4 months with C and 16.2 months with C + I, with a hazard ratio (HR) of 0.60 (95% CI: 0.43-0.82; P < 0.0001). The two-year OS rate was highest in the C + I + A group at 38.5%, versus 10.5% in C and 20.4% in C + I (P < 0.001). Cox regression and BMA analyses confirmed the stability of BMA in providing HR estimates, yielding area under the curve (AUC) values of 0.785 for BMA and 0.793 for the Cox model, with no significant difference in predictive performance. Subgroup analysis revealed a 71% mortality risk reduction with C + I + A (HR: 0.29; 95% CI: 0.18-0.47; P < 0.0001), showing consistent benefits regardless of patient sex, BMs count, extracranial metastases presence, and local thoracic treatments. Treatment sequence analysis indicated a median OS of 33.4 months for patients starting with A, though not statistically significant (HR: 0.59; P = 0.36). The overall incidence of radiation-induced brain injury was low at 3.3%, with rates in the C, C + I, and C + I + A groups being 3.2%, 4.8%, and 1.9%, respectively (P = 0.683). CONCLUSION Our study demonstrates the significant benefit of the C + I + A combination therapy in improving OS and reducing mortality risk in NSCLC patients with non-sensitive gene-mutated BMs. The sequential administration of A followed by ICIs shows a promising synergistic effect with cranial radiotherapy, highlighting the potential for optimized treatment sequencing. These findings emphasize the efficacy of tailored combination therapies in complex oncological care and suggest that our approach could lead to meaningful improvements in clinical outcomes for this challenging patient population.
Collapse
Affiliation(s)
- Dingyi Yang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, No. 71, He Di Road, Nanning, 530021, Guangxi, China
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Erha Munai
- School of Medicine, Chongqing University, Chongqing, China
| | - Siwei Zeng
- School of Medicine, Chongqing University, Chongqing, China
| | - Dan Tao
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Ze Yuan
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Liang Du
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Wei Zhou
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Yongzhong Wu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, No. 71, He Di Road, Nanning, 530021, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.
| |
Collapse
|
5
|
Kanematsu R, Hanakita J, Takahashi T, Minami M, Mitsuya K. Long-term survival following molecular-targeted therapy for intramedullary non-small-cell lung cancer metastasis. Surg Neurol Int 2024; 15:312. [PMID: 39246760 PMCID: PMC11380904 DOI: 10.25259/sni_603_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Background Intramedullary spinal cord metastases (ICSMs) are very rarely curable; these patients typically have very short-term survival rates. Here, a 22-year-old male with non-small-cell lung cancer (NSCLC) later developed ICSM twice; the first C4-C7 tumor responded well to surgery, radiation, and alectinib molecular-targeted therapy. The secondary ICSM C1 lesion seen years later (i.e., likely due to alectinib having been stopped) resolved once alectinib was again administered. Case Description A 22-year-old male with a limited smoking history presented with advanced non-small-cell lung cancer (NSCLC) treated with pulmonary surgery followed by radiotherapy and chemotherapy. Four years later, he developed cervical myelopathy attributed to a C4-C7 stage IV NSCLC ICSM (i.e., notably associated with an anaplastic lymphoma kinase [ALK] rearrangement). After cervical surgery and irradiation (40 Gy/20 fr) of the resection cavity, he was also given alectinib; the patient remained disease-free for the next 7 years, remaining on alectinib. However, 1 year after alectinib was discontinued, he experienced a newly occurrent C1 ICSM lesion; the alectinib was restarted, and his tumor regressed over the next 3 years. At present, 14 years after the original ICSM surgery, the patient remains disease free but continued alectinib (Karnofsky Performance Scale: 90%). Conclusion Although the prognosis for ICSM is generally poor, molecular-targeted therapies, such as alectinib, as administered in this case, may provide long-term survival for patients with ALK-positive NSCLC tumors.
Collapse
Affiliation(s)
- Ryo Kanematsu
- Spinal Disorders Center, Fujieda Heisei Memorial Hospital, Fujieda, Japan
| | - Junya Hanakita
- Spinal Disorders Center, Fujieda Heisei Memorial Hospital, Fujieda, Japan
| | | | - Manabu Minami
- Spinal Disorders Center, Fujieda Heisei Memorial Hospital, Fujieda, Japan
| | - Koichi Mitsuya
- Spinal Disorders Center, Division of Neurosurgery, Shizuoka Cancer Center, Nagaizumi, Japan
| |
Collapse
|
6
|
Fuorivia V, Attili I, Corvaja C, Asnaghi R, Carnevale Schianca A, Trillo Aliaga P, Del Signore E, Spitaleri G, Passaro A, de Marinis F. Management of Non-Metastatic Non-Small Cell Lung Cancer (NSCLC) with Driver Gene Alterations: An Evolving Scenario. Curr Oncol 2024; 31:5121-5139. [PMID: 39330007 PMCID: PMC11431721 DOI: 10.3390/curroncol31090379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
The ever-growing knowledge regarding NSCLC molecular biology has brought innovative therapies into clinical practice; however, the treatment situation in the non-metastatic setting is rapidly evolving. Indeed, immunotherapy-based perioperative treatments are currently considered the standard of care for patients with resectable NSCLC in the absence of EGFR mutations or ALK gene rearrangements. Recently, data have been presented on the use of tyrosine kinase inhibitors (TKIs) in the adjuvant and locally advanced setting for patients with NSCLC harboring such driver gene alterations. The aim of the current work is to review the available evidence on the use of targeted treatments in the non-metastatic setting, together with a summary of the ongoing trials designed for actionable gene alterations other than EGFR and ALK. To date, 3-year adjuvant osimertinib treatment has been demonstrated to improve DFS and OS and to reduce CNS recurrence in resected EGFR-mutated NSCLC in stage IB-IIIA (TNM 7th edition). The use of osimertinib after chemo-radiation in stage III unresectable EGFR-mutated NSCLC showed the relevant PFS improvement. In the ALK-positive setting, 2-year alectinib treatment was shown to clearly improve DFS compared to adjuvant standard chemotherapy in resected NSCLC with stage IB (≥4 cm)-IIIA (TNM 7th edition). Several trials are ongoing to establish the optimal adjuvant TKI treatment duration, as well as neoadjuvant TKI strategies in EGFR- and ALK-positive disease, and (neo)adjuvant targeted treatments in patients with actionable gene alterations other than EGFR or ALK. In conclusion, our review depicts how the current treatment scenario is expected to rapidly change in the context of non-metastatic NSCLC with actionable gene alterations, hence appropriate molecular testing from the early stages has become crucial to establish the most adequate approaches both in the perioperative and the locally advanced disease.
Collapse
Affiliation(s)
- Valeria Fuorivia
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Ilaria Attili
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy (A.P.)
| | - Carla Corvaja
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy (A.P.)
| | - Riccardo Asnaghi
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | | | - Pamela Trillo Aliaga
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy (A.P.)
| | - Ester Del Signore
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy (A.P.)
| | - Gianluca Spitaleri
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy (A.P.)
| | - Antonio Passaro
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy (A.P.)
| | - Filippo de Marinis
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy (A.P.)
| |
Collapse
|
7
|
Shen M, Lin Q, Zou X, Wu Y, Lin Z, Shao L, Hong J, Chen J. The Effect of Intracranial Control After Intracranial Local Therapy on the Prognosis of Patients with Brain Metastasis of Lung Adenocarcinoma. Cancer Manag Res 2024; 16:977-988. [PMID: 39099763 PMCID: PMC11294678 DOI: 10.2147/cmar.s476837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose The aim of the present study was to assess the clinical outcomes and prognostic factors of lung adenocarcinoma patients with brain metastases (BMs) after intracranial local therapy. Patients and Methods A total of 83 lung adenocarcinoma patients with BMs who underwent craniotomy combined with radiotherapy or intracranial radiotherapy alone were retrospectively analyzed. The intracranial tumor response was determined according to the Response Assessment in Neuro-Oncology of Brain Metastases (RANO-BM) criteria. The median overall survival (OS), intracranial progression-free survival (iPFS), and related prognostic factors were analyzed with the Kaplan‒Meier estimator method and Cox proportional hazards regression model. Results Among 83 patients, 20 patients received craniotomy combined with radiotherapy, and 63 patients received intracranial radiotherapy alone. Following intracranial local therapy, 11 patients (13.3%) achieved complete response (CR); among them, 8 patients underwent neurosurgical resection. In addition, 32 patients (38.55%) achieved partial response (PR), 32 patients (38.55%) experienced stable disease (SD), and 8 (9.6%) experienced progressive disease (PD). The median follow-up period was 25.4 months (range 0.8-49.6 months). The median follow-up time for the iPFS was 16.2 months (range 0.6-41.2 months). The median OS, iPFS were 28.2 months and 24.7 months. Epidermal growth factor receptor (EGFR) / anaplastic lymphoma kinase (ALK) mutations (HR 3.216, 95% confidence interval (CI) 1.269-8.150, p = 0.014) and iPFS (HR 0.881, 95% CI 0.836-0.929, p < 0.001) were found to be beneficial factors for OS. An intracranial-tumor CR was associated with a longer iPFS (PR: HR 0.052, 95% CI 0.009-0.297, p = 0.001; SD: HR 0.081, 95% CI 0.025-0.259, p < 0.001; PD: HR 0.216, 95% CI 0.077-0.606, p = 0.004). Conclusion Prolonged iPFS was associated with better OS in lung adenocarcinoma patients with BMs following intracranial local therapy, and mutations of EGFR / ALK or an intracranial-tumor CR are independent prognostic factors for prolonged survival.
Collapse
Affiliation(s)
- Minmin Shen
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Qiaojing Lin
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - Xi Zou
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Yufan Wu
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - Zhihong Lin
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - Linglong Shao
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - JinSheng Hong
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Jinmei Chen
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| |
Collapse
|
8
|
Boldig C, Boldig K, Mokhtari S, Etame AB. A Review of the Molecular Determinants of Therapeutic Response in Non-Small Cell Lung Cancer Brain Metastases. Int J Mol Sci 2024; 25:6961. [PMID: 39000069 PMCID: PMC11241836 DOI: 10.3390/ijms25136961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Lung cancer is a leading cause of cancer-related morbidity and mortality worldwide. Metastases in the brain are a common hallmark of advanced stages of the disease, contributing to a dismal prognosis. Lung cancer can be broadly classified as either small cell lung cancer (SCLC) or non-small cell lung cancer (NSCLC). NSCLC represents the most predominant histology subtype of lung cancer, accounting for the majority of lung cancer cases. Recent advances in molecular genetics, coupled with innovations in small molecule drug discovery strategies, have facilitated both the molecular classification and precision targeting of NSCLC based on oncogenic driver mutations. Furthermore, these precision-based strategies have demonstrable efficacy across the blood-brain barrier, leading to positive outcomes in patients with brain metastases. This review provides an overview of the clinical features of lung cancer brain metastases, as well as the molecular mechanisms that drive NSCLC oncogenesis. We also explore how precision medicine-based strategies can be leveraged to improve NSCLC brain metastases.
Collapse
Affiliation(s)
- Catherine Boldig
- Department of Neurology, University of South Florida, 2 Tampa General Circle, Tampa, FL 33606, USA
| | - Kimberly Boldig
- Department of Internal Medicine, University of Florida Jacksonville, 655 W. 8th St., Jacksonville, FL 32209, USA
| | - Sepideh Mokhtari
- Moffitt Cancer Center, Department of Neuro-Oncology, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Arnold B Etame
- Moffitt Cancer Center, Department of Neuro-Oncology, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Chaudhary S, Siddiqui JA, Appadurai MI, Maurya SK, Murakonda SP, Blowers E, Swanson BJ, Nasser MW, Batra SK, Lakshmanan I, Ganti AK. Dissecting the MUC5AC/ANXA2 signaling axis: implications for brain metastasis in lung adenocarcinoma. Exp Mol Med 2024; 56:1450-1460. [PMID: 38825648 PMCID: PMC11263355 DOI: 10.1038/s12276-024-01255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 06/04/2024] Open
Abstract
Non-small cell lung carcinoma (NSCLC) exhibits a heightened propensity for brain metastasis, posing a significant clinical challenge. Mucin 5ac (MUC5AC) plays a pivotal role in the development of lung adenocarcinoma (LUAD); however, its role in causing brain metastases remains unknown. In this study, we aimed to investigate the contribution of MUC5AC to brain metastasis in patients with LUAD utilizing various brain metastasis models. Our findings revealed a substantial increase in the MUC5AC level in LUAD brain metastases (LUAD-BrM) samples and brain-tropic cell lines compared to primary samples or parental control cell lines. Intriguingly, depletion of MUC5AC in brain-tropic cells led to significant reductions in intracranial metastasis and tumor growth, and improved survival following intracardiac injection, in contrast to the observations in the control groups. Proteomic analysis revealed that mechanistically, MUC5AC depletion resulted in decreased expression of metastasis-associated molecules. There were increases in epithelial-to-mesenchymal transition, tumor invasiveness, and metastasis phenotypes in tumors with high MUC5AC expression. Furthermore, immunoprecipitation and proteomic analysis revealed a novel interaction of MUC5AC with Annexin A2 (ANXA2), which activated downstream matrix metalloproteases and facilitated extracellular matrix degradation to promote metastasis. Disrupting MUC5AC-ANXA2 signaling with a peptide inhibitor effectively abrogated the metastatic process. Additionally, treatment of tumor cells with an astrocyte-conditioned medium or the chemokine CCL2 resulted in upregulation of MUC5AC expression and enhanced brain colonization. In summary, our study demonstrates that the MUC5AC/ANXA2 signaling axis promotes brain metastasis, suggesting a potential therapeutic paradigm for LUAD patients with high MUC5AC expression.
Collapse
Affiliation(s)
- Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
- Fred & Pamela Buffett Cancer Center University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Muthamil Iniyan Appadurai
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Swathi P Murakonda
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Elizabeth Blowers
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-1850, USA
| | - Ben J Swanson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-1850, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
- Fred & Pamela Buffett Cancer Center University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Fred & Pamela Buffett Cancer Center University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| | - Apar Kishor Ganti
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Fred & Pamela Buffett Cancer Center University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-1850, USA.
- Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, Omaha, NE, 68105-1850, USA.
| |
Collapse
|
10
|
Poei D, Ali S, Ye S, Hsu R. ALK inhibitors in cancer: mechanisms of resistance and therapeutic management strategies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:20. [PMID: 38835344 PMCID: PMC11149099 DOI: 10.20517/cdr.2024.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
Anaplastic lymphoma kinase (ALK) gene rearrangements have been identified as potent oncogenic drivers in several malignancies, including non-small cell lung cancer (NSCLC). The discovery of ALK inhibition using a tyrosine kinase inhibitor (TKI) has dramatically improved the outcomes of patients with ALK-mutated NSCLC. However, the emergence of intrinsic and acquired resistance inevitably occurs with ALK TKI use. This review describes the molecular mechanisms of ALK TKI resistance and discusses management strategies to overcome therapeutic resistance.
Collapse
Affiliation(s)
- Darin Poei
- Department of Internal Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sana Ali
- Division of Medical Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Shirley Ye
- Department of Internal Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Robert Hsu
- Division of Medical Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| |
Collapse
|
11
|
Ma B, Xiu L, Ding L. The m6 RNA methylation regulator KIAA1429 is associated with autophagy-mediated drug resistance in lung cancer. FASEB Bioadv 2024; 6:105-117. [PMID: 38585432 PMCID: PMC10995705 DOI: 10.1096/fba.2023-00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 04/09/2024] Open
Abstract
N6-methyladenosine (m6A) modification plays a crucial role in cancer progression. However, the role of m6A modification-mediated autophagy underlying non-small cell lung cancer (NSCLC) gefitinib resistance remains unknown. Here, we discovered that m6A methyltransferase KIAA1429 was highly expressed in NSCLC gefitinib-resistant cells (PC9-GR) as well as tissues, and KIAA1429 high expression was associated with poor survival. In addition, silent KIAA1429 repressed gefitinib resistance in NSCLC and reduced tumor growth in vivo. Mechanistically, KIAA1429 stabilized WTAP, a significant player in autophagy, by binding to the 3' untranslated regions (3'-UTR) of WTAP. In a word, our findings indicated that KIAA1429 could elevate NSCLC gefitinib resistance, which may provide a promising targeted therapy for NSCLC patients.
Collapse
Affiliation(s)
- Bo Ma
- Department of General Thoracic SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Lei Xiu
- Department of Thoracic and Cardiac SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Lili Ding
- Department of Obstetrics and Gynecology ExaminationGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| |
Collapse
|
12
|
Gálffy G, Morócz É, Korompay R, Hécz R, Bujdosó R, Puskás R, Lovas T, Gáspár E, Yahya K, Király P, Lohinai Z. Targeted therapeutic options in early and metastatic NSCLC-overview. Pathol Oncol Res 2024; 30:1611715. [PMID: 38605928 PMCID: PMC11006988 DOI: 10.3389/pore.2024.1611715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 04/13/2024]
Abstract
The complex therapeutic strategy of non-small cell lung cancer (NSCLC) has changed significantly in recent years. Disease-free survival increased significantly with immunotherapy and chemotherapy registered in perioperative treatments, as well as adjuvant registered immunotherapy and targeted therapy (osimertinib) in case of EGFR mutation. In oncogenic-addictive metastatic NSCLC, primarily in adenocarcinoma, the range of targeted therapies is expanding, with which the expected overall survival increases significantly, measured in years. By 2021, the FDA and EMA have approved targeted agents to inhibit EGFR activating mutations, T790 M resistance mutation, BRAF V600E mutation, ALK, ROS1, NTRK and RET fusion. In 2022, the range of authorized target therapies was expanded. With therapies that inhibit KRASG12C, EGFR exon 20, HER2 and MET. Until now, there was no registered targeted therapy for the KRAS mutations, which affect 30% of adenocarcinomas. Thus, the greatest expectation surrounded the inhibition of the KRAS G12C mutation, which occurs in ∼15% of NSCLC, mainly in smokers and is characterized by a poor prognosis. Sotorasib and adagrasib are approved as second-line agents after at least one prior course of chemotherapy and/or immunotherapy. Adagrasib in first-line combination with pembrolizumab immunotherapy proved more beneficial, especially in patients with high expression of PD-L1. In EGFR exon 20 insertion mutation of lung adenocarcinoma, amivantanab was registered for progression after platinum-based chemotherapy. Lung adenocarcinoma carries an EGFR exon 20, HER2 insertion mutation in 2%, for which the first targeted therapy is trastuzumab deruxtecan, in patients already treated with platinum-based chemotherapy. Two orally administered selective c-MET inhibitors, capmatinib and tepotinib, were also approved after chemotherapy in adenocarcinoma carrying MET exon 14 skipping mutations of about 3%. Incorporating reflex testing with next-generation sequencing (NGS) expands personalized therapies by identifying guideline-recommended molecular alterations.
Collapse
|
13
|
Kahraman S, Karakaya S, Kaplan MA, Goksu SS, Ozturk A, Isleyen ZS, Hamdard J, Yildirim S, Dogan T, Isik S, Celebi A, Gulbagci BB, Paksoy N, Dogan M, Turk HM, Bilici A, Tatli AM, Akbas S, Turan N, Hacibekiroglu I, Dogu GG, Aydiner A, Sumbul AT, Akyurek S, Yalciner M, Demirkazik A, Gursoy P, Aykan MB, Sahin E, Karadag İ, Kostek O, Er MM, Artaç M, Duzkopru Y, Aydin D, Isik D, Karakas Y, Kilickap S, Erol C, Demir B, Civelek B, Ergun Y, Akinci MB, Dogan I, Karadurmus N, Yumuk PF, Sendur MAN. Treatment outcomes and prognostic factors in patients with driver mutant non-small cell lung cancer and de novo brain metastases. Sci Rep 2024; 14:5820. [PMID: 38461209 PMCID: PMC10925043 DOI: 10.1038/s41598-024-56046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/01/2024] [Indexed: 03/11/2024] Open
Abstract
Central nervous system (CNS) metastases can be seen at a rate of 30% in advanced stages for patients with non-small cell lung cancer (NSCLC). Growing evidence indicates the predictive roles of driver gene mutations in the development of brain metastases (BM) in recent years, meaning that oncogene-driven NSCLC have a high incidence of BM at diagnosis. Today, 3rd generation targeted drugs with high intracranial efficacy, which can cross the blood-brain barrier, have made a positive contribution to survival for these patients with an increased propensity to BM. It is important to update the clinical and pathological factors reflected in the survival with real-life data. A multi-center, retrospective database of 306 patients diagnosed with driver mutant NSCLC and initially presented with BM between between November 2008 and September 2022 were analyzed. The median progression-free survival (mPFS) was 12.25 months (95% CI, 10-14.5). While 254 of the patients received tyrosine kinase inhibitor (TKI), 51 patients received chemotherapy as first line treatment. The median intracranial PFS (iPFS) was 18.5 months (95% CI, 14.8-22.2). The median overall survival (OS) was 29 months (95% CI, 25.2-33.0). It was found that having 3 or less BM and absence of extracranial metastases were significantly associated with better mOS and iPFS. The relationship between the size of BM and survival was found to be non-significant. Among patients with advanced NSCLC with de novo BM carrying a driver mutation, long-term progression-free and overall survival can be achieved with the advent of targeted agents with high CNS efficacy with more conservative and localized radiotherapy modalities.
Collapse
Affiliation(s)
- Seda Kahraman
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara Yildirim Beyazit University, 06800, Ankara, Turkey.
| | - Serdar Karakaya
- Department of Medical Oncology, Ankara Ataturk Sanatoryum Training and Research Hospital, Ankara, Turkey
| | - Muhammed Ali Kaplan
- Department of Medical Oncology, Dicle University Medical Faculty Hospital, Diyarbakir, Turkey
| | - Sema Sezgin Goksu
- Department of Medical Oncology, Akdeniz University Hospital, Antalya, Turkey
| | - Akin Ozturk
- Department of Medical Oncology, Sureyyapasa Chest Diseases and Chest Surgery Training and Research Hospital, Istanbul, Turkey
| | - Zehra Sucuoglu Isleyen
- Department of Medical Oncology, Faculty of Medicine Hospital, Bezmialem Vakif University, Istanbul, Turkey
| | - Jamshid Hamdard
- Department of Medical Oncology, Medipol University Hospital, Istanbul, Turkey
| | - Sedat Yildirim
- Department of Medical Oncology, Kartal Dr. Lutfi Kirdar City Hospital, Istanbul, Turkey
| | - Tolga Dogan
- Department of Medical Oncology, Pamukkale University Medical Faculty Hospital, Denizli, Turkey
| | - Selver Isik
- Department of Medical Oncology, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Abdussamet Celebi
- Department of Medical Oncology, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Burcu Belen Gulbagci
- Department of Medical Oncology, Sakarya University School of Medicine, Sakarya, Turkey
| | - Nail Paksoy
- Department of Medical Oncology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mutlu Dogan
- Department of Medical Oncology, Ankara Dr Abdurrahman Yurtaslan Oncology Training and Research Hospital, Ankara, Turkey
| | - Haci Mehmet Turk
- Department of Medical Oncology, Faculty of Medicine Hospital, Bezmialem Vakif University, Istanbul, Turkey
| | - Ahmet Bilici
- Department of Medical Oncology, Medipol University Hospital, Istanbul, Turkey
| | - Ali Murat Tatli
- Department of Medical Oncology, Akdeniz University Hospital, Antalya, Turkey
| | - Sinem Akbas
- Department of Medical Oncology, Koç University Medical Faculty Hospital, Istanbul, Turkey
| | - Nedim Turan
- Department of Medical Oncology, Kartal Dr. Lutfi Kirdar City Hospital, Istanbul, Turkey
| | - Ilhan Hacibekiroglu
- Department of Medical Oncology, Sakarya University School of Medicine, Sakarya, Turkey
| | - Gamze Gokoz Dogu
- Department of Medical Oncology, Pamukkale University Medical Faculty Hospital, Denizli, Turkey
| | - Adnan Aydiner
- Department of Medical Oncology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ahmet Taner Sumbul
- Department of Medical Oncology, Baskent University Adana Dr. Turgut Noyan Application and Research Center, Adana, Turkey
| | - Serap Akyurek
- Department of Radiation Oncology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Merih Yalciner
- Department of Medical Oncology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ahmet Demirkazik
- Department of Medical Oncology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Pinar Gursoy
- Department of Medical Oncology, Ege University Medical Faculty Hospital, Izmir, Turkey
| | - Musa Baris Aykan
- Department of Medical Oncology, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Elif Sahin
- Department of Medical Oncology, Kocaeli University Medical Faculty Hospital, Kocaeli, Turkey
| | - İbrahim Karadag
- Department of Medical Oncology, Hittite University Corum Training and Research Hospital, Corum, Turkey
| | - Osman Kostek
- Department of Medical Oncology, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Muhammed Muhiddin Er
- Department Of Medical Oncology, Necmettin Erbakan University Meram Medical Faculty Hospital, Konya, Turkey
| | - Mehmet Artaç
- Department Of Medical Oncology, Necmettin Erbakan University Meram Medical Faculty Hospital, Konya, Turkey
| | - Yakup Duzkopru
- Department of Medical Oncology, Ankara Etlik City Hospital, Ankara, Turkey
| | - Dincer Aydin
- Department of Medical Oncology, Kocaeli Derince Training and Research Hospital, Kocaeli, Turkey
| | - Deniz Isik
- Department of Medical Oncology, Kocaeli Medical Park Hospital, Kocaeli, Turkey
| | - Yusuf Karakas
- Department of Medical Oncology, Acıbadem Bodrum Hospital, Mugla, Turkey
| | - Saadettin Kilickap
- Department of Medical Oncology, Liv Hospital, Istinye University, Ankara, Turkey
| | - Cihan Erol
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara Yildirim Beyazit University, 06800, Ankara, Turkey
| | - Bilgin Demir
- Department of Medical Oncology, Aydin Ataturk State Hospital, Aydin, Turkey
| | - Burak Civelek
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Yakup Ergun
- Department of Medical Oncology, Batman Training and Research Hospital, Batman, Turkey
| | - Muhammed Bulent Akinci
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara Yildirim Beyazit University, 06800, Ankara, Turkey
| | - Izzet Dogan
- Department of Medical Oncology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Nuri Karadurmus
- Department of Medical Oncology, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Perran Fulden Yumuk
- Department of Medical Oncology, Koç University Medical Faculty Hospital, Istanbul, Turkey
| | - Mehmet Ali Nahit Sendur
- Department of Medical Oncology, Ankara Bilkent City Hospital, Ankara Yildirim Beyazit University, 06800, Ankara, Turkey
| |
Collapse
|
14
|
Murakami Y, Kawashima Y, Chiba S, Hara S, Yamazaki Y, Doman T, Saito S, Odaka T, Ogasawara T, Shimizu H, Sugisaka J, Aiba T, Toi Y, Yamanda S, Kimura Y, Sugawara S. Successful application of lorlatinib in a 23-year-old patient with anaplastic lymphoma kinase (ALK)-positive lung cancer and multiple brain metastases. Cancer Rep (Hoboken) 2024; 7:e1981. [PMID: 38212894 PMCID: PMC10864716 DOI: 10.1002/cnr2.1981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/28/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Anaplastic lymphoma kinase (ALK)-positive lung cancer has a better long-term prognosis with ALK-inhibitor than other lung cancers. However, resistance to ALK-inhibitors and the control of metastases in the central nervous system (CNS) remain to be a challenge in the management of ALK-positive lung cancer. CASE We present the case of a 23-year-old man who developed multiple brain metastases while receiving alectinib treatment for ALK-positive lung cancer. After 3 months of lorlatinib initiation, brain metastases disappeared, and complete response (CR) was maintained. CONCLUSION While lorlatinib can be used as first line therapy, this drug may be considered as second line or later option for patients with multiple brain metastases if the patient has already been treated with other ALK-inhibitors since lorlatinib is thought to have good CNS penetration. This treatment option should be verified by further research.
Collapse
Affiliation(s)
- Yosuke Murakami
- Department of Pulmonary MedicineSendai Kousei HospitalMiyagiJapan
| | - Yosuke Kawashima
- Department of Pulmonary MedicineSendai Kousei HospitalMiyagiJapan
| | - Shinji Chiba
- Department of Pulmonary MedicineIwate Prefectural Central HospitalIwateJapan
| | - Shuichiro Hara
- Department of Pulmonary MedicineSendai Kousei HospitalMiyagiJapan
| | - Yusuke Yamazaki
- Department of Pulmonary MedicineSendai Kousei HospitalMiyagiJapan
| | - Tsuyoshi Doman
- Department of Pulmonary MedicineSendai Kousei HospitalMiyagiJapan
| | - Shin Saito
- Department of Pulmonary MedicineSendai Kousei HospitalMiyagiJapan
| | - Tetsuo Odaka
- Department of Pulmonary MedicineSendai Kousei HospitalMiyagiJapan
| | | | - Hisashi Shimizu
- Department of Pulmonary MedicineSendai Kousei HospitalMiyagiJapan
| | - Jun Sugisaka
- Department of Pulmonary MedicineSendai Kousei HospitalMiyagiJapan
| | - Tomoiki Aiba
- Department of Pulmonary MedicineSendai Kousei HospitalMiyagiJapan
| | - Yukihiro Toi
- Department of Pulmonary MedicineSendai Kousei HospitalMiyagiJapan
| | - Shinsuke Yamanda
- Department of Pulmonary MedicineSendai Kousei HospitalMiyagiJapan
| | - Yuichiro Kimura
- Department of Pulmonary MedicineSendai Kousei HospitalMiyagiJapan
| | | |
Collapse
|
15
|
Gillespie CS, Mustafa MA, Richardson GE, Alam AM, Lee KS, Hughes DM, Escriu C, Zakaria R. Genomic Alterations and the Incidence of Brain Metastases in Advanced and Metastatic NSCLC: A Systematic Review and Meta-Analysis. J Thorac Oncol 2023; 18:1703-1713. [PMID: 37392903 DOI: 10.1016/j.jtho.2023.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
INTRODUCTION Brain metastases (BMs) in patients with advanced and metastatic NSCLC are linked to poor prognosis. Identifying genomic alterations associated with BM development could influence screening and determine targeted treatment. We aimed to establish prevalence and incidence in these groups, stratified by genomic alterations. METHODS A systematic review and meta-analysis compliant with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses were conducted (PROSPERO identification CRD42022315915). Articles published in MEDLINE, EMBASE, and Cochrane Library between January 2000 and May 2022 were included. Prevalence at diagnosis and incidence of new BM per year were obtained, including patients with EGFR, ALK, KRAS, and other alterations. Pooled incidence rates were calculated using random effects models. RESULTS A total of 64 unique articles were included (24,784 patients with NSCLC with prevalence data from 45 studies and 9058 patients with NSCLC having incidence data from 40 studies). Pooled BM prevalence at diagnosis was 28.6% (45 studies, 95% confidence interval [CI]: 26.1-31.0), and highest in patients that are ALK-positive (34.9%) or with RET-translocations (32.2%). With a median follow-up of 24 months, the per-year incidence of new BM was 0.13 in the wild-type group (14 studies, 95% CI: 0.11-0.16). Incidence was 0.16 in the EGFR group (16 studies, 95% CI: 0.11-0.21), 0.17 in the ALK group (five studies, 95% CI: 0.10-0.27), 0.10 in the KRAS group (four studies, 95% CI: 0.06-0.17), 0.13 in the ROS1 group (three studies, 95% CI: 0.06-0.28), and 0.12 in the RET group (two studies, 95% CI: 0.08-0.17). CONCLUSIONS Comprehensive meta-analysis indicates a higher prevalence and incidence of BM in patients with certain targetable genomic alterations. This supports brain imaging at staging and follow-up, and the need for targeted therapies with brain penetrance.
Collapse
Affiliation(s)
- Conor S Gillespie
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom; Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Mohammad A Mustafa
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - George E Richardson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Ali M Alam
- Institute of Infection, Veterinary, and Ecological Science, University of Liverpool, Liverpool, United Kingdom
| | - Keng Siang Lee
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - David M Hughes
- Department of Health Data Science, University of Liverpool, Liverpool, United Kingdom
| | - Carles Escriu
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom; Department of Medical Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Rasheed Zakaria
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom; Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
16
|
Zhu Y, Liu C, Xu Z, Zou Z, Xie T, Xing P, Wang L, Li J. Front-line therapy for brain metastases and non-brain metastases in advanced epidermal growth factor receptor-mutated non-small cell lung cancer: a network meta-analysis. Chin Med J (Engl) 2023; 136:2551-2561. [PMID: 37160733 PMCID: PMC10617931 DOI: 10.1097/cm9.0000000000002468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND The brain is a common metastatic site in patients with non-small cell lung cancer (NSCLC), resulting in a relatively poor prognosis. Systemic therapy with epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) is recommended as the first-line treatment for EGFR -mutated, advanced NSCLC patients. However, intracranial activity varies in different drugs. Thus, brain metastasis (BM) should be considered when choosing the treatment regimens. We conducted this network meta-analysis to explore the optimal first-line therapeutic schedule for advanced EGFR -mutated NSCLC patients with different BM statuses. METHODS Randomized controlled trials focusing on EGFR-TKIs (alone or in combination) in advanced and EGFR -mutant NSCLC patients, who have not received systematic treatment, were systematically searched up to December 2021. We extracted and analyzed progression-free survival (PFS) and overall survival (OS). A network meta-analysis was performed with the Bayesian statistical model to determine the survival outcomes of all included therapy regimens using the R software. Hazard ratios (HRs) and 95% confidence intervals (CIs) were used to compare intervention measures, and overall rankings of therapies were estimated under the Bayesian framework. RESULTS This analysis included 17 RCTs with 5077 patients and 12 therapies, including osimertinib + bevacizumab, aumolertinib, osimertinib, afatinib, dacomitinib, standards of care (SoC, including gefitinib, erlotinib, or icotinib), SoC + apatinib, SoC + bevacizumab, SoC + ramucirumab, SoC + pemetrexed based chemotherapy (PbCT), PbCT, and pemetrexed free chemotherapy (PfCT). For patients with BM, SoC + PbCT improved PFS compared with SoC (HR = 0.40, 95% CI: 0.17-0.95), and osimertinib + bevacizumab was most likely to rank first in PFS, with a cumulative probability of 34.5%, followed by aumolertinib, with a cumulative probability of 28.3%. For patients without BM, osimertinib + bevacizumab, osimertinib, aumolertinib, SoC + PbCT, dacomitinib, SoC + ramucirumab, SoC + bevacizumab, and afatinib showed superior efficacy compared with SoC (HR = 0.43, 95% CI: 0.20-0.90; HR = 0.46, 95% CI: 0.31-0.68; HR = 0.51, 95% CI: 0.34-0.77; HR = 0.50, 95% CI: 0.38-0.66; HR = 0.62, 95% CI: 0.43-0.89; HR = 0.64, 95% CI: 0.44-0.94; HR = 0.61, 95% CI: 0.48-0.76; HR = 0.71, 95% CI: 0.50-1.00), PbCT (HR = 0.29, 95% CI: 0.11-0.74; HR = 0.31, 95% CI: 0.15-0.62; HR = 0.34, 95% CI: 0.17-0.69; HR = 0.34, 95% CI: 0.18-0.64; HR = 0.42, 95% CI: 0.21-0.82; HR = 0.43, 95% CI: 0.22-0.87; HR = 0.41, 95% CI: 0.22-0.74; HR = 0.48, 95% CI: 0.31-0.75), and PfCT (HR = 0.14, 95% CI: 0.06-0.32; HR = 0.15, 95% CI: 0.09-0.26; HR = 0.17, 95% CI: 0.09-0.29; HR = 0.16, 95% CI: 0.10-0.26; HR = 0.20, 95% CI: 0.12-0.35; HR = 0.21, 95% CI: 0.12-0.39; HR = 0.20, 95% CI: 0.12-0.31; HR = 0.23, 95% CI: 0.16-0.34) in terms of PFS. And, SoC + apatinib showed relatively superior PFS when compared with PbCT (HR = 0.44, 95% CI: 0.22-0.92) and PfCT (HR = 0.21, 95% CI: 0.12-0.39), but similar PFS to SoC (HR = 0.65, 95% CI: 0.42-1.03). No statistical differences were observed for PFS in patients without BM between PbCT and SoC (HR = 1.49, 95% CI: 0.84-2.64), but both showed favorable PFS when compared with PfCT (PfCT vs. SoC, HR = 3.09, 95% CI: 2.06-4.55; PbCT vs. PfCT, HR = 0.14, 95% CI: 0.06-0.32). For patients without BM, osimertinib + bevacizumab was most likely to rank the first, with cumulative probabilities of 47.1%. For OS, SoC + PbCT was most likely to rank first in patients with and without BM, with cumulative probabilities of 46.8%, and 37.3%, respectively. CONCLUSION Osimertinib + bevacizumab is most likely to rank first in PFS in advanced EGFR -mutated NSCLC patients with or without BM, and SoC + PbCT is most likely to rank first in OS.
Collapse
Affiliation(s)
- Yixiang Zhu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chengcheng Liu
- Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Ziyi Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zihua Zou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Le Wang
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
17
|
Fischer M, Luck M, Werle M, Vogel A, Bashawat M, Ludwig K, Scheidt HA, Müller P. The small-molecule kinase inhibitor ceritinib, unlike imatinib, causes a significant disturbance of lipid membrane integrity: A combined experimental and MD study. Chem Phys Lipids 2023; 257:105351. [PMID: 37863350 DOI: 10.1016/j.chemphyslip.2023.105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Ceritinib and imatinib are small-molecule protein kinase inhibitors which are applied as therapeutic agents against various diseases. The fundamentals of their clinical use, i.e. their pharmacokinetics as well as the mechanisms of the inhibition of the respective kinases, are relatively well studied. However, the interaction of the drugs with membranes, which can be a possible cause of side effects, has hardly been investigated so far. Therefore, we have characterized the interaction of both drugs with lipid membranes consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in the absence and in the presence of cholesterol. For determining the membrane impact of both drugs on a molecular level, different experimental (NMR, ESR, fluorescence) and theoretical (MD simulations) approaches were applied. The data show that ceritinib, in contrast to imatinib, interacts more effectively with membranes significantly affecting various physico-chemical membrane parameters like membrane order and transmembrane permeation of polar solutes. The pronounced membrane impact of ceritinib can be explained by a strong affinity of the drug towards POPC which competes with the POPC-cholesterol interaction by that attenuating the ordering effect of cholesterol. The data are relevant for understanding putative toxic and cytotoxic side effects of these drugs such as the triggering of cell lysis or apoptosis.
Collapse
Affiliation(s)
- Markus Fischer
- Leipzig University, Institute for Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Meike Luck
- Humboldt University Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany
| | - Max Werle
- Humboldt University Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany
| | - Alexander Vogel
- Leipzig University, Institute for Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Mohammad Bashawat
- Humboldt University Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany
| | - Kai Ludwig
- Freie Universität Berlin, Research Center for Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Fabeckstr. 36a, D-14195 Berlin, Germany
| | - Holger A Scheidt
- Leipzig University, Institute for Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Peter Müller
- Humboldt University Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany.
| |
Collapse
|
18
|
Attili I, Corvaja C, Spitaleri G, Del Signore E, Trillo Aliaga P, Passaro A, de Marinis F. New Generations of Tyrosine Kinase Inhibitors in Treating NSCLC with Oncogene Addiction: Strengths and Limitations. Cancers (Basel) 2023; 15:5079. [PMID: 37894445 PMCID: PMC10605462 DOI: 10.3390/cancers15205079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) revolutionized the treatment of patients with advanced or metastatic non-small cell lung cancer (NSCLC) harboring most driver gene alterations. Starting from the first generation, research rapidly moved to the development of newer, more selective generations of TKIs, obtaining improved results in terms of disease control and survival. However, the use of novel generations of TKIs is not without limitations. We reviewed the main results obtained, as well as the ongoing clinical trials with TKIs in oncogene-addicted NSCLC, together with the biology underlying their potential strengths and limitations. Across driver gene alterations, novel generations of TKIs allowed delayed resistance, prolonged survival, and improved brain penetration compared to previous generations, although with different toxicity profiles, that generally moved their use from further lines to the front-line treatment. However, the anticipated positioning of novel generation TKIs leads to abolishing the possibility of TKI treatment sequencing and any role of previous generations. In addition, under the selective pressure of such more potent drugs, resistant clones emerge harboring more complex and hard-to-target resistance mechanisms. Deeper knowledge of tumor biology and drug properties will help identify new strategies, including combinatorial treatments, to continue improving results in patients with oncogene-addicted NSCLC.
Collapse
Affiliation(s)
- Ilaria Attili
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti 435, 20141 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Liu YN, Chen J, Wang J, Li Q, Hu GX, Cai JP, Lin G, Xu RA. Effects of drug-drug interactions and CYP3A4 variants on alectinib metabolism. Arch Toxicol 2023; 97:2133-2142. [PMID: 37209178 DOI: 10.1007/s00204-023-03524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
In this study, the effects of 17 CYP3A4 variants and drug-drug interactions (DDI) with its mechanism on alectinib metabolism were investigated. In vitro incubation systems of rat liver microsomes (RLM), human liver microsomes (HLM) and recombinant human CYP3A4 variants were established. The formers were used to screen potential drugs that inhibited alectinib metabolism and study the underlying mechanism, and the latter was used to determine the dynamic characteristics of CYP3A4 variants. Alectinib and its main metabolite M4 were quantitatively determined by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The results showed that compared with CYP3A4.1, only CYP3A4.29 showed higher catalytic activity, while the catalytic activity of CYP3A4.4, .7, .8, .12, .14, .16, .17, .18, .19, .20, .23, and .24 decreased significantly. Among them, the catalytic activity of CYP3A4.20 is the lowest, only 2.63% of that of CYP3A4.1. Based on the RLM incubation system in vitro, 81 drugs that may be combined with alectinib were screened, among which 18 drugs had an inhibition rate higher than 80%. In addition, nicardipine had an inhibition rate of 95.09% with a half-maximum inhibitory concentration (IC50) value of 3.54 ± 0.96 μM in RLM and 1.52 ± 0.038 μM in HLM, respectively. There was a mixture of non-competitive and anti-competitive inhibition of alectinib metabolism in both RLM and HLM. In vivo experiments of Sprague-Dawley (SD) rats, compared with the control group (30 mg/kg alectinib alone), the AUC(0-t), AUC(0-∞), Tmax and Cmax of alectinib administered in combination with 6 mg/kg nicardipine were significantly increased in the experimental group. In conclusion, the metabolism of alectinib was affected by polymorphisms of the CYP3A4 gene and nicardipine. This study provides reference data for clinical individualized administration of alectinib in the future.
Collapse
Affiliation(s)
- Ya-Nan Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guo-Xin Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China.
| | - Guanyang Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
20
|
Carpenter DJ, Leng J, Arshad M, Giles W, Kirkpatrick JP, Floyd SR, Chmura SJ, Salama JK, Hong JC. Intracranial and Extracranial Progression and Their Correlation With Overall Survival After Stereotactic Radiosurgery in a Multi-institutional Cohort With Brain Metastases. JAMA Netw Open 2023; 6:e2310117. [PMID: 37099292 PMCID: PMC10134007 DOI: 10.1001/jamanetworkopen.2023.10117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/13/2023] [Indexed: 04/27/2023] Open
Abstract
Importance Clinical trials for metastatic malignant neoplasms are increasingly being extended to patients with brain metastases. Despite the preeminence of progression-free survival (PFS) as a primary oncologic end point, the correlation of intracranial progression (ICP) and extracranial progression (ECP) events with overall survival (OS) is poorly understood for patients with brain metastases following stereotactic radiosurgery (SRS). Objective To determine the correlation of ICP and ECP with OS among patients with brain metastases completing an initial SRS course. Design, Setting, and Participants This multi-institutional retrospective cohort study was conducted from January 1, 2015, to December 31, 2020. We included patients who completed an initial course of SRS for brain metastases during the study period, including receipt of single and/or multifraction SRS, prior whole-brain radiotherapy, and brain metastasis resection. Data analysis was performed on November 15, 2022. Exposures Non-OS end points included intracranial PFS, extracranial PFS, PFS, time to ICP, time to ECP, and any time to progression. Progression events were radiologically defined, incorporating multidisciplinary clinical consensus. Main Outcomes and Measures The primary outcome was correlation of surrogate end points to OS. Clinical end points were estimated from time of SRS completion via the Kaplan-Meier method, while end-point correlation to OS was measured using normal scores rank correlation with the iterative multiple imputation approach. Results This study included 1383 patients, with a mean age of 63.1 years (range, 20.9-92.8 years) and a median follow-up of 8.72 months (IQR, 3.25-19.68 months). The majority of participants were White (1032 [75%]), and more than half (758 [55%]) were women. Common primary tumor sites included the lung (757 [55%]), breast (203 [15%]), and skin (melanoma; 100 [7%]). Intracranial progression was observed in 698 patients (50%), preceding 492 of 1000 observed deaths (49%). Extracranial progression was observed in 800 patients (58%), preceding 627 of 1000 observed deaths (63%). Irrespective of deaths, 482 patients (35%) experienced both ICP and ECP, 534 (39%) experienced ICP (216 [16%]) or ECP (318 [23%]), and 367 (27%) experienced neither. The median OS was 9.93 months (95% CI, 9.08-11.05 months). Intracranial PFS had the highest correlation with OS (ρ = 0.84 [95% CI, 0.82-0.85]; median, 4.39 months [95% CI, 4.02-4.92 months]). Time to ICP had the lowest correlation with OS (ρ = 0.42 [95% CI, 0.34-0.50]) and the longest median time to event (median, 8.76 months [95% CI, 7.70-9.48 months]). Across specific primary tumor types, correlations of intracranial PFS and extracranial PFS with OS were consistently high despite corresponding differences in median outcome durations. Conclusions and Relevance The results of this cohort study of patients with brain metastases completing SRS suggest that intracranial PFS, extracranial PFS, and PFS had the highest correlations with OS and time to ICP had the lowest correlation with OS. These data may inform future patient inclusion and end-point selection for clinical trials.
Collapse
Affiliation(s)
- David J. Carpenter
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Jim Leng
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Muzamil Arshad
- Department of Radiation Oncology, University of Chicago Medical Center, Chicago, Illinois
| | - Will Giles
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - John P. Kirkpatrick
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Scott R. Floyd
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Steven J. Chmura
- Department of Radiation Oncology, University of Chicago Medical Center, Chicago, Illinois
| | - Joseph K. Salama
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
- Radiation Oncology Clinical Service, Durham Veterans Affairs Health Care System, Durham, North Carolina
| | - Julian C. Hong
- Department of Radiation Oncology, University of California, San Francisco
- Bakar Computational Health Sciences Institute, University of California, San Francisco
- Joint Program in Computational Precision Health, University of California, San Francisco, and University of California, Berkeley
| |
Collapse
|
21
|
Xu S, Zhu J, Zhong D, Wang W, Wen Y, Zhang L, Jiang T. Heterogeneity and Clinical Effect of Epidermal Growth Factor Receptor in Primary Lung and Brain Metastases of Nonsmall Cell Lung Cancer. J Surg Res 2023; 283:674-682. [PMID: 36459860 DOI: 10.1016/j.jss.2022.10.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION This study aimed to analyze the heterogeneity in epidermal growth factor receptor (EGFR) gene mutation and its impact on clinical outcomes in primary tumor and corresponding brain metastasis (BM) in nonsmall cell lung cancer (NSCLC). MATERIALS AND METHODS Primary pulmonary tumors and paired BMs of 27 NSCLC patients were surgically removed. All brain lesions were histologically confirmed as metastatic NSCLC. EGFR gene mutation status was detected by using amplification refraction mutation system. McNemar test was performed to compare EGFR mutation status between lung primary tumors and metastatic brain tumors and Kappa test was performed to quantify the agreement between the two. RESULTS Of the 27 patients, nine cases were found to have EGFR mutations in BMs and 10 had a positive EGFR mutation status in primary lung tumor tissue. The rate of consistency of the matched tumor was 24/27 (88.9%). Among the three cases presenting EGFR mutational heterogeneity, two patients harbored an EGFR mutation in the primary tumor but not in the BMs; meanwhile, the last patient demonstrated the opposite pattern. Compared to patients with consistent EGFR mutations, patients with inconsistent mutations showed better outcomes. Further analysis revealed that the two patients whose EGFR mutant-type primary tumor progressed to wild-type cerebral metastatic tumor had longer overall survival than the patient whose EGFR wild-type primary tumor progressed to mutant-type brain metastatic tumor. CONCLUSIONS Heterogeneity of EGFR mutation status was observed between primary NSCLC and paired BM. Patients possessing a wild-type EGFR mutation in BM might have better outcomes, especially those with transition from mutant to wild-type.
Collapse
Affiliation(s)
- Shuonan Xu
- Department of Thoracic Surgery, the Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Jianfei Zhu
- Department of Thoracic Surgery, the Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China; Department of Thoracic Surgery, Shaanxi Provincial People' Hospital, Xi'an, Shaanxi, China
| | - Daixing Zhong
- Department of Thoracic Surgery, the Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Wenchen Wang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Yinsheng Wen
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Lanjun Zhang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Tao Jiang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
22
|
Perng PS, Hsu HP, Lee PH, Huang CC, Lin CC, Lee JS. Correlation of EGFR mutation subtypes and survival in surgically treated brain metastasis from non-small-cell lung cancer. Asian J Surg 2023; 46:269-276. [PMID: 35393224 DOI: 10.1016/j.asjsur.2022.03.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Epidermal growth factor receptor (EGFR) mutation is a positive prognostic factor for survival in patients with non-small-cell lung cancer (NSCLC). In such patients, brain metastasis signifies negative outcomes. Patients with NSCLC brain metastasis that may benefit from neurosurgery is under investigation. We aim to investigate the impact of different mutation loci in surgically treated NSCLC brain metastasis patients. METHODS This retrospective cohort study included patients with NSCLC brain metastasis who underwent brain lesionectomy, followed by radiotherapy and chemotherapy or targeted therapy. Demographics and tumor characteristics were compared between the EGFR mutant type and wild type groups. Postoperative survival and risk factors were analyzed using log rank and Cox regression methods. RESULTS Overall, 101 patients were included, with 57 belonging to the EGFR mutant type group and 44 to the EGFR wild type group. The median postoperative survival was 17 months for the entire cohort, with the duration being 19 and 14 months for EGFR mutant type and wild type patients (p = 0.013), respectively. Multivariate analysis revealed that exon 19 del (p = 0.02) and a high Karnofsky Performance Scale score (p < 0.01) were independent positive prognostic factors to predict survival. The timing of development of the brain metastasis or the location of the intracranial metastasis was not associated with EGFR mutations. CONCLUSION EGFR mutations are associated with better survival outcomes in patients with NSCLC brain metastasis suitable for surgical treatment. This advantage was attributed to patients having a specific mutation of exon 19 deletion.
Collapse
Affiliation(s)
- Pang-Shuo Perng
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ping Hsu
- Section of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Hsuan Lee
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chen Huang
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jung-Shun Lee
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
23
|
Genomic Profiling Identifies Putative Pathogenic Alterations in NSCLC Brain Metastases. JTO Clin Res Rep 2022; 3:100435. [PMID: 36561283 PMCID: PMC9763853 DOI: 10.1016/j.jtocrr.2022.100435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Brain metastases (BM) severely affect the prognosis and quality of life of patients with NSCLC. Recently, molecularly targeted agents were found to have promising activity against BM in patients with NSCLC whose primary tumors carry "druggable" mutations. Nevertheless, it remains critical to identify specific pathogenic alterations that drive NSCLC-BM and that can provide novel and more effective therapeutic targets. Methods To identify potentially targetable pathogenic alterations in NSCLC-BM, we profiled somatic copy number alterations (SCNAs) in 51 matched pairs of primary NSCLC and BM samples from 33 patients with lung adenocarcinoma and 18 patients with lung squamous cell carcinoma. In addition, we performed multiregion copy number profiling on 15 BM samples and whole-exome sequencing on 40 of 51 NSCLC-BM pairs. Results BM consistently had a higher burden of SCNAs compared with the matched primary tumors, and SCNAs were typically homogeneously distributed within BM, suggesting BM do not undergo extensive evolution once formed. By comparing focal SCNAs in matched NSCLC-BM pairs, we identified putative BM-driving alterations affecting multiple cancer genes, including several potentially targetable alterations in genes such as CDK12, DDR2, ERBB2, and NTRK1, which we validated in an independent cohort of 84 BM samples. Finally, we identified putative pathogenic alterations in multiple cancer genes, including genes involved in epigenome editing and 3D genome organization, such as EP300, CTCF, and STAG2, which we validated by targeted sequencing of an independent cohort of 115 BM samples. Conclusions Our study represents the most comprehensive genomic characterization of NSCLC-BM available to date, paving the way to functional studies aimed at assessing the potential of the identified pathogenic alterations as clinical biomarkers and targets.
Collapse
|
24
|
Xing P, Hao X, Zhang X, Li J. Efficacy and safety of brigatinib in ALK-positive non-small cell lung cancer treatment: A systematic review and meta-analysis. Front Oncol 2022; 12:920709. [PMID: 36408160 PMCID: PMC9669367 DOI: 10.3389/fonc.2022.920709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Background Brigatinib is a central nervous system-active second-generation anaplastic lymphoma kinase (ALK) inhibitor that targets a broad range of ALK rearrangements in patients with non-small cell lung cancer (NSCLC). The current study aimed to analyze the pooled effects and adverse events of brigatinib in patients with ALK-positive NSCLC. Methods The pooled estimates and 95% confidence intervals (CI) were calculated with DerSimonian-Laird method and the random effect model. Results The pooled objective response rate (ORR) and disease control rate (DCR) of brigatinib were 64% (95% CI 45%-83%) and 88% (95% CI 80%-96%), respectively. The pooled mPFS was 10.52 months (95% CI 7.66-13.37). In the subgroup analyses by treatment line, the highest mPFS was reached in first-line treatment (24.00 months, 95% CI 18.40-43.20), followed by post-crizotinib second-line treatment (mPFS=16.26 months, 95% CI 12.87-19.65), and second-line with any prior ALK tyrosine kinase inhibitors (mPFS=12.96 months, 95% CI 11.14-14.78). Among patients with any baseline brain metastases, the pooled intracranial ORR (iORR) was estimated as 54% (95% CI 35%-73%) for any treatment line, and 60% (95% CI 39%-81%) for first-line treatment. Intracranial PFS (iPFS) reached 19.26 months (95% CI 14.82-23.70) in patients with any baseline brain metastases. Creatine phosphokinase (CPK) increased (44%, 95% CI 26%-63%), diarrhea (37%, 95% CI 27%-48%), and nausea (28%, 95% CI 17%-39%) of any grade were the most common adverse events. Conclusion Brigatinib is effective in the treatment of patients with ALK-positive NSCLC, particularly showing robust intracranial PFS. Brigatinib used as first-line treatment yielded superior PFS compared with brigatinib used as other treatment lines. These results suggested a benefit of using brigatinib earlier in the patient’s management. All adverse events are manageable, with CPK increased and gastrointestinal reactions found to be the most common types. Systematic Review Registration https://inplasy.com/inplasy-2022-3-0142/, identifier (INPLASY202230141).
Collapse
|
25
|
Prognostic Model for Intracranial Progression after Stereotactic Radiosurgery: A Multicenter Validation Study. Cancers (Basel) 2022; 14:cancers14215186. [PMID: 36358606 PMCID: PMC9657742 DOI: 10.3390/cancers14215186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Stereotactic radiosurgery (SRS) is a standard of care for many patients with brain metastases. To optimize post-SRS surveillance, this study aimed to validate a previously published nomogram predicting post-SRS intracranial progression (IP). We identified consecutive patients completing an initial course of SRS across two institutions between July 2017 and December 2020. Patients were classified as low- or high-risk for post-SRS IP per a previously published nomogram. Overall survival (OS) and freedom from IP (FFIP) were assessed via the Kaplan−Meier method. Assessment of parameters impacting FFIP was performed with univariable and multivariable Cox proportional hazard models. Among 890 patients, median follow-up was 9.8 months (95% CI 9.1−11.2 months). In total, 47% had NSCLC primary tumors, and 47% had oligometastatic disease (defined as ≤5 metastastic foci) at the time of SRS. Per the IP nomogram, 53% of patients were deemed high-risk. For low- and high-risk patients, median FFIP was 13.9 months (95% CI 11.1−17.1 months) and 7.6 months (95% CI 6.4−9.3 months), respectively, and FFIP was superior in low-risk patients (p < 0.0001). This large multisite BM cohort supports the use of an IP nomogram as a quick and simple means of stratifying patients into low- and high-risk groups for post-SRS IP.
Collapse
|
26
|
Dy G. Novel Biomarkers and Drug Targets in Non-Small Cell Lung Cancer. EUROPEAN MEDICAL JOURNAL 2022. [DOI: 10.33590/emj/10113934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite therapeutic advances, the prognosis of non-small cell lung cancers (NSCLC) is still very poor, especially when first diagnosed at later stages involving metastases. NSCLC classification can be aided by identifying genetic, molecular, and histological subtypes that are important biomarkers in treatment selection. The majority of targeted therapies are now first-line treatment options for eligible patients with advanced stages of NSCLC. Here they have been shown to improve overall survival (OS) and progression free survival (PFS). Such treatments include those aimed at driver mutations in NSCLC, such as the genes for EGFR and ALK, and immune checkpoint inhibitors such as those targeting programmed death protein 1 or its ligand (programmed death ligand 1 [PD-L1]). In antibody-drug conjugates (ADC), cytotoxic payloads are conjugated to monoclonal antibodies (mAb) that deliver the drug to tumour cells expressing the corresponding target antigen. While there are still no ADCs specifically approved for NSCLC by the U.S. Food and Drugs Administration (FDA), several agents have shown promise and are being investigated as therapy in NSCLC. Emerging biomarkers as targets for ADCs with potential relevance in the treatment of NSCLC include products of the genes CEACAM5, TROP2, HER2, and c-MET. Herein, this interview provides an overview of biomarkers and targeted therapies, with a discussion with Grace Dy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA, on their potential clinical utility.
Collapse
|
27
|
Zhu Y, Zhang Y, Hu X, Wang M, Wang H, Liu Y. PD-1 inhibitors plus chemotherapy in EGFR/ALK-positive NSCLC patients with brain metastases and disease progression after EGFR/ALK-TKIs therapy. J Cancer Res Clin Oncol 2022; 148:3557-3566. [PMID: 35857126 DOI: 10.1007/s00432-022-04177-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Resistance to epidermal growth factor receptor (EGFR)/anaplastic lymphoma kinase (ALK)-tyrosine kinase inhibitors (TKIs) is a pervasive barrier in TKIs therapy for EGFR/ALK-positive non-small cell lung cancer (NSCLC) patients. Immune checkpoint inhibitor (ICI) monotherapy has exhibited an encouraging anti-tumor activity in high-selected EGFR/ALK-positive NSCLC patients with acquired resistance to TKI therapy. However, the effect of ICI plus chemotherapy therapy on those with brain metastases in this subset of patients is still unknown. METHODS From April 2019 to August 2021, EGFR-mutated or ALK-rearranged NSCLC patients who progressed after previous EGFR/ALK-TKIs with brain metastases and received ICI plus chemotherapy ± bevacizumab at Cancer Hospital of the Chinese Academy of Medical Sciences (CAMS) were included. We retrospectively analyzed the efficacy, toxicity and progression site after ICI treatment. RESULTS A total of 19 patients were included in the study, including 16 (84.4%) patients with EGFR mutations, 2 (10.5%) with ALK translocations and 1 (5.3%) with RET rearrangement. All of the patients progressed after previous TKI therapy and had brain metastatic lesions when received ICI combination therapy. The overall response rate (ORR) and disease control rate (DCR) were 15.8 and 57.9%, respectively. The median progression-free survival (PFS) and overall survival (OS) were 4.7 months (95% confidence interval CI 0.43-8.96) and 19.2 months (95% CI 15.08-23.29), respectively. The intracranial ORR was 10.5% and extracranial ORR was 15.8%, and the intracranial and extracranial DCR were 68.4 and 63.2%, respectively. The most common progression pattern was extracranial failure, and primary lesions enlargement rather than new sites metastases accounted for the vast majority of progressions. The most common grade 3-4 adverse event (AE) was leukopenia (31.6%), followed by neutropenia (26.3%), thrombocytopenia (10.5%) and rash (5.3%) successively. No grade 5 AE and discontinuation of ICI therapy for severe AEs were observed. CONCLUSIONS ICI combined with chemotherapy ± bevacizumab might be effective and safe for EGFR/ALK-positive NSCLC patients who progressed after previous TKI therapy, and synergistic anti-tumor activity for brain metastases was also observed.
Collapse
Affiliation(s)
- Yixiang Zhu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ye Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xingsheng Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Mingzhao Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongyu Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yutao Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
28
|
Hizal M, Bilgin B, Paksoy N, Kılıçkap S, Atcı MM, Kahraman S, Keskinkılıç M, Bilgetekin İ, Ayhan M, Tural D, Eren Ö, Akkoç Mustafayev FN, Yaman Ş, Tatlı AM, Bayram E, Kutlu Y, Ertürk İ, Özcan E, Gülmez A, Korkmaz M, Akagündüz B, Erdem D, Telli TA, Aksoy A, Üskent N, İriağaç Y, Baytemür NK, Aydın D, Şakalar T, Arak H, Selçukbiricik F, Ergün Y, Korkmaz T, Ak N, Ünal Ç, Akdeniz N, Özgün MA, Öksüzoğlu B, Yalçın B, Öztop İ, Algın E, Sakin A, Aydıner A, Yumuk PF, Nahit Şendur MA. Real-world data on efficacy and safety of first-line alectinib treatment in advanced-stage, ALK-positive non-small-cell lung cancer patients: a Turkish Oncology Group study. Future Oncol 2022; 18:2573-2582. [PMID: 35734870 DOI: 10.2217/fon-2022-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: In this multicenter study, the authors aimed to determine the real-life efficacy and safety of first-line alectinib. Materials & methods: This retrospective trial included advanced-stage, ALK-positive non-small-cell lung cancer patients who were treated with first-line alectinib in terms of ALK-tyrosine kinase inhibitors, regardless of previous chemotherapy. The co-primary end points were progression-free survival both for all patients and for the treatment-naive population. The secondary end points were overall response rate, overall survival, rate of CNS progression and safety. Results & conclusion: A total of 274 patients (n = 177 for treatment-naive patients) were enrolled in the study. The median progression-free survival was 26 and 28.8 months for all patients and the treatment-naive group, respectively. The overall response rate, CNS progression rate and 1-year overall survival ratio were 77.9, 12.4 and 77%. Alectinib is a highly effective therapy with a favorable safety profile.
Collapse
Affiliation(s)
- Mutlu Hizal
- Department of Medical Oncology, Ankara City Hospital, Ankara, Turkey
| | - Burak Bilgin
- Atatürk Chest Disease & Chest Surgery Education & Research Hospital, Department of Medical Oncology, Ankara, Turkey
| | - Nail Paksoy
- Department of Medical Oncology, İstanbul Faculty of Medicine, İstanbul University, Istanbul, Turkey
| | - Saadettin Kılıçkap
- Department of Medical Oncology, İstinye University Faculty of Medicine, Ankara Liv Hospital, Ankara, Turkey
| | - Muhammed Mustafa Atcı
- Department of Medical Oncology, İstanbul Prof. Cemil Taşçıoglu City Hospital, Istanbul, Turkey
| | - Seda Kahraman
- Department of Medical Oncology, Yıldırım Beyazıt University Faculty of Medicine, Ankara, Turkey
| | - Merve Keskinkılıç
- Department of Medical Oncology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - İrem Bilgetekin
- Department of Medical Oncology, Abdurrahman Yurtaslan Ankara Onkoloji Education & Research Hospital, Ankara, Turkey
| | - Murat Ayhan
- Department of Medical Oncology, Kartal Dr. Lütfi Kırdar City Hospital, Istanbul, Turkey
| | - Deniz Tural
- Department of Medical Oncology, Bakırköy Dr. Sadi Konuk Education & Research Hospital, Istanbul, Turkey
| | - Önder Eren
- Department of Medical Oncology, Selçuk University Faculty of Medicine, Konya, Turkey
| | - Fatma Nihan Akkoç Mustafayev
- Department of Medical Oncology, University of Health Sciences, Sultan 2. Abdülhamid Han Education & Research Hospital, Istanbul, Turkey
| | - Şebnem Yaman
- Atatürk Chest Disease & Chest Surgery Education & Research Hospital, Department of Medical Oncology, Ankara, Turkey
| | - Ali Murat Tatlı
- Department of Medical Oncology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Ertuğrul Bayram
- Department of Medical Oncology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Yasin Kutlu
- Department of Medical Oncology, İstanbul Medipol University Faculty of Medicine, Istanbul, Turkey
| | - İsmail Ertürk
- Department of Medical Oncology, Ankara Gülhane Education & Research Hospital, Ankara, Turkey
| | - Erkan Özcan
- Department of Medical Oncology, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Ahmet Gülmez
- Department of Medical Oncology, İnönü University Faculty of Medicine, Malatya, Turkey
| | - Mustafa Korkmaz
- Department of Medical Oncology, Necmettin Erbakan University, Meram Faculty of Medicine, Konya, Turkey
| | - Baran Akagündüz
- Department of Medical Oncology, Erzincan Mengücek Gazi Education & Research Hospital, Erzincan, Turkey
| | - Dilek Erdem
- Department of Medical Oncology, Samsun Medical Park Hospital, Samsun, Turkey
| | - Tuğba Akın Telli
- Department of Medical Oncology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Asude Aksoy
- Department of Medical Oncology, Fırat University Faculty of Medicine, Elazıg, Turkey
| | - Necdet Üskent
- Department of Medical Oncology, Anadolu Medical Center, Kocaeli, Turkey
| | - Yakup İriağaç
- Department of Medical Oncology, Tekirdağ Namık Kemal University Faculty of Medicine, Tekirdag, Turkey
| | | | - Dinçer Aydın
- Department of Medical Oncology, Kocaeli Derince Education & Research Hospital, Kocaeli, Turkey
| | - Teoman Şakalar
- Department of Medical Oncology, Necip Fazıl City Hospital, Kahramanmaras, Turkey
| | - Hacı Arak
- Gaziantep University Faculty of Medicine, Department of Medical Oncology, Gaziantep, Turkey
| | - Fatih Selçukbiricik
- Department of Medical Oncology, Koç University Faculty of Medicine, Istanbul, Turkey
| | - Yakup Ergün
- Department of Medical Oncology, Batman Education & Research Hospital, Batman, Turkey
| | - Taner Korkmaz
- Department of Medical Oncology, Acıbadem Maslak Hospital, Istanbul, Turkey
| | - Naziye Ak
- Department of Medical Oncology, Yozgat City Hospital, Yozgat, Turkey
| | - Çağlar Ünal
- Department of Medical Oncology, Gayrettepe Florence Nightingale Hospital, Istanbul, Turkey
| | - Nadiye Akdeniz
- Department of Medical Oncology, Adıyaman University, Education & Research Hospital, Adıyaman, Turkey
| | - Mehmet Alpaslan Özgün
- Department of Medical Oncology, University of Health Sciences, Sultan 2. Abdülhamid Han Education & Research Hospital, Istanbul, Turkey
| | - Berna Öksüzoğlu
- Department of Medical Oncology, Abdurrahman Yurtaslan Ankara Onkoloji Education & Research Hospital, Ankara, Turkey
| | - Bülent Yalçın
- Department of Medical Oncology, Yıldırım Beyazıt University Faculty of Medicine, Ankara, Turkey
| | - İlhan Öztop
- Department of Medical Oncology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Efnan Algın
- Department of Medical Oncology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Abdullah Sakin
- Department of Medical Oncology, İstanbul Prof. Cemil Taşçıoglu City Hospital, Istanbul, Turkey
| | - Adnan Aydıner
- Department of Medical Oncology, İstanbul Faculty of Medicine, İstanbul University, Istanbul, Turkey
| | - Perran Fulden Yumuk
- Department of Medical Oncology, Koç University Faculty of Medicine, Istanbul, Turkey.,Department of Medical Oncology, American Hospital, Istanbul, Turkey
| | - Mehmet Ali Nahit Şendur
- Department of Medical Oncology, Yıldırım Beyazıt University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
29
|
Brain Metastases Management in Oncogene-Addicted Non-Small Cell Lung Cancer in the Targeted Therapies Era. Int J Mol Sci 2022; 23:ijms23126477. [PMID: 35742920 PMCID: PMC9223862 DOI: 10.3390/ijms23126477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
The therapeutic landscape in patients with advanced non-small-cell lung cancer harboring oncogenic biomarkers has radically changed with the development of targeted therapies. Although lung cancers are known to frequently metastasize to the brain, oncogene-driven non-small-cell lung cancer patients show a higher incidence of both brain metastases at baseline and a further risk of central nervous system progression/relapse. Recently, a new generation of targeted agents, highly active in the central nervous system, has improved the control of intracranial disease. The intracranial activity of these drugs poses a crucial issue in determining the optimal management sequence in oncogene-addicted non-small-cell lung cancer patients with brain metastases, with a potential change of paradigm from primary brain irradiation to central nervous system penetrating targeted inhibitors.
Collapse
|
30
|
Rubino S, Oliver DE, Tran ND, Vogelbaum MA, Forsyth PA, Yu HHM, Ahmed K, Etame AB. Improving Brain Metastases Outcomes Through Therapeutic Synergy Between Stereotactic Radiosurgery and Targeted Cancer Therapies. Front Oncol 2022; 12:854402. [PMID: 35311078 PMCID: PMC8924127 DOI: 10.3389/fonc.2022.854402] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Brain metastases are the most common form of brain cancer. Increasing knowledge of primary tumor biology, actionable molecular targets and continued improvements in systemic and radiotherapy regimens have helped improve survival but necessitate multidisciplinary collaboration between neurosurgical, medical and radiation oncologists. In this review, we will discuss the advances of targeted therapies to date and discuss findings of studies investigating the synergy between these therapies and stereotactic radiosurgery for non-small cell lung cancer, breast cancer, melanoma, and renal cell carcinoma brain metastases.
Collapse
Affiliation(s)
- Sebastian Rubino
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Daniel E. Oliver
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Nam D. Tran
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | | | - Peter A. Forsyth
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | | | - Kamran Ahmed
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Arnold B. Etame
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|
31
|
Gao P, Tang K, Hao Y, Li W, Lv X, Li D, Jia Y. Case Report: Patient With Lung Adenocarcinoma With ALK-HLA-DRB1 Rearrangement Shows Impressive Progression-Free Survival After Sequential Crizotinib and Ceritinib Treatment. Front Oncol 2022; 12:762338. [PMID: 35280798 PMCID: PMC8914946 DOI: 10.3389/fonc.2022.762338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
The anaplastic lymphoma kinase (ALK) gene rearrangement is a driving mutation that underlies about 5-6% of non-small cell lung cancer (NSCLC) cases. Lung cancers that are ALK gene rearrangement-positive can be effectively treated with ALK inhibitors. However, the response of patients with rarer ALK gene rearrangements to ALK inhibitors remains unknown. Herein, we described a case of lung adenocarcinoma carrying ALK-HLA-DRB1 fusion in a 48-year-old nonsmoking woman. A similar case of ALK-HLA-DRB1 rearrangement in NSCLC has not been described previously neither in NSCLC nor in other disease. The patient achieved a progression-free survival of 18 months after sequential therapy consisting of crizotinib and then ceritinib during the follow-up. These findings provide basis for the application of ALK inhibitors in patients carrying the rare ALK-HLA-DRB1 fusion.
Collapse
Affiliation(s)
- Peng Gao
- Department of Respiratory and Critical Care Medicine, Second Hospital of Jilin University, Changchun, China
- *Correspondence: Peng Gao,
| | - Kangning Tang
- Department of Respiratory and Critical Care Medicine, Second Hospital of Jilin University, Changchun, China
| | - Yuqiu Hao
- Department of Respiratory and Critical Care Medicine, Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, Second Hospital of Jilin University, Changchun, China
| | - Xuejiao Lv
- Department of Respiratory and Critical Care Medicine, Second Hospital of Jilin University, Changchun, China
| | - Dapeng Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Jilin Medical College, Jilin, China
| | - Yuxi Jia
- Department of Orthopedics Application Demonstration Center of Precision Medicine Molecular Diagnosis, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Zou Z, Xing P, Hao X, Wang Y, Song X, Shan L, Zhang C, Liu Z, Ma K, Dong G, Li J. Intracranial efficacy of alectinib in ALK-positive NSCLC patients with CNS metastases-a multicenter retrospective study. BMC Med 2022; 20:12. [PMID: 35039026 PMCID: PMC8764827 DOI: 10.1186/s12916-021-02207-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/06/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Central nervous system (CNS) metastases in patients with ALK-positive non-small cell lung cancer (NSCLC) are a cause of substantial morbidity and mortality. Although alectinib had demonstrated promising intracranial efficacy in several clinical trials, data were limited on its CNS activity in real-world settings. METHODS In this retrospective study, ALK-positive NSCLC patients with brain metastases (BM) or leptomeningeal metastases (LM) from six hospitals in China were divided into three cohorts based on the treatment history before the administration of alectinib. ALK-TKI-naive patients were enrolled in cohort 1, cohort 2 included patients who experienced intracranial progression with or without extracranial progression after treatment with crizotinib, and cohort 3 included patients who developed progression only in CNS following treatment with other second-generation ALK-TKIs. The definition and evaluation of intracranial and extracranial lesions were based on Response Evaluation Criteria in Solid Tumors version 1.1. RESULTS Sixty-five patients were eligible and included in our study (cohort 1: 20, cohort 2: 32, cohort 3: 13). For the overall population and patients with uncontrolled CNS metastases, similar intracranial response in CNS target lesions was observed: cohort 1: 81.8% and 80%; cohort 2: 76.5% and 86.7%; cohort 3: 42.8% and 33.3%. For patients in these three cohorts, 75% (6/8), 78.6% (11/14), and 83.3% (5/6) were reported to have significant improvement in CNS-related symptoms respectively. The number of patients who were in need of mannitol or corticosteroids decreased remarkably after the treatment of alectinib (p < 0.001), and there was also a steep fall-over in the number of patients with ECOG ≥2 points before and after the administration of alectinib (p = 0.003). All patients (8/8) diagnosed with LM ± BM experienced substantial alleviation in CNS-related symptoms. In cohort 1 and cohort 2, no significant difference in CNS-time to progression was found between patients with symptomatic or asymptomatic BM when treated with alectinib alone. CONCLUSIONS Our study substantiated the potent CNS activity of alectinib in real-world settings. Patients with symptomatic and asymptomatic BM could benefit from alectinib comparatively, which indicated that alectinib alone might defer the timing of local treatment. However, our results should be treated cautiously owing to limited sample size.
Collapse
Affiliation(s)
- Zihua Zou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xuezhi Hao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xia Song
- Department of Respiratory Medicine, Shanxi Provincial Cancer Hospital, Taiyuan, People's Republic of China
| | - Li Shan
- Department of Thoracic oncology, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, People's Republic of China
| | - Cuiying Zhang
- Cancer center, Inner Mongolia Autonomous Region People's Hospita, Huhhot, People's Republic of China
| | - Ziling Liu
- Cancer center, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Kewei Ma
- Cancer center, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Guilan Dong
- Department of Medical Oncology, Tangshan People's Hospital, Tangshan, People's Republic of China
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
33
|
Li J. Risk factor of brain metastases and its influence on patient prognosis after complete resection of non-small cell lung cancer. Am J Transl Res 2022; 14:406-413. [PMID: 35173859 PMCID: PMC8829628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate the risk factors of brain metastases and its influence on the prognosis of patients with complete resected non-small cell lung cancer (NSCLC). METHODS The clinical data of 190 patients with completely resected NSCLC were retrospectively analyzed. The effect of brain metastasis on prognosis in patients with NSCLC after complete resection was investigated. The identification of risk factors for brain metastases was conducted by single-factor and Cox multivariate regression analysis. RESULTS Among 190 patients, 9 patients were lost to follow up. Finally, 181 patients were included in this study. The median survival time of brain metastases patients (64 cases) was 700 days. At 1 year, 3 years, and 5 years after surgery, the survival rates of patients with brain metastases were 62.5%, 28.13% and 7.81% respectively. Compared with those in patients without brain metastases, significant differences were found for median survival time and survival rates (P < 0.05). The Single-factor and multivariate Cox regression analysis indicated that the level of preoperative carcinoembryonic antigen (CEA), the lymph node ratio (≥ 30%) and non-squamous carcinoma type were risk factors for brain metastasis (P < 0.05). CONCLUSIONS Brain metastasis is a risk factor for mortality in NSCLC patients after complete resection. Preoperative CEA levels, lymph node ratio (≥ 30%), and type of non-squamous cell carcinoma were risk factors for brain metastases.
Collapse
Affiliation(s)
- Jinlei Li
- Department of Oncology, Jincheng People's Hospital Jincheng, Shanxi Province, China
| |
Collapse
|
34
|
Yin Q, Li P, Wang P, Zhang Z, Liu Q, Sun Z, Li W, Ma L, Wang X. Alectinib Together with Intracranial Therapies Improved Survival Outcomes in Untreated ALK-Positive Patients with Non-Small-Cell Lung Cancer and Symptomatic and Synchronic Brain Metastases: A Retrospective Study. Onco Targets Ther 2022; 14:5533-5542. [PMID: 35002258 PMCID: PMC8722687 DOI: 10.2147/ott.s345439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
Purpose The performance of alectinib and crizotinib in untreated anaplastic lymphoma kinase (ALK)-positive patients with non-small-cell lung cancer (NSCLC) and symptomatic and synchronic brain metastases is largely unknown. This retrospective study assessed the effectiveness of alectinib and crizotinib, together with intracranial therapies in a cohort of these patients. Patients and Methods This study included 34 previously untreated ALK-positive NSCLC patients with three or fewer intracranial metastases. Of these patients, 13 received oral alectinib 600 mg twice daily, and 21 received oral crizotinib 250 mg twice daily, until progressive disease, unacceptable toxicity, or death. All intracranial metastases were treated with craniotomy, CyberKnife, or both. Results Median overall progression-free survival (PFS) was 32.8 months (95% CI 24.4–41.2 months) in patients treated with alectinib and 8.0 months (95% CI 7.3–8.7 months) in patients treated with crizotinib. Median PFS of brain lesions was not yet reached with alectinib (95% CI 30.1 months–not estimated) and was 8.5 months (95% CI 7.2–12.3 months) with crizotinib. Median PFS of lung lesions was 38.5 months (95% CI 27.5–49.5 months) with alectinib and 9.2 months (95% CI 7.4–11.0 months) with crizotinib. Median overall survival was not yet reached with alectinib (95% CI 31.0 months–not estimated) and 30.3 months (95% CI 27.3–37.1 months) with crizotinib. Conclusion Compared with crizotinib, alectinib showed superior efficacy and lower toxicity in the treatment of ALK-positive patients with NSCLC and symptomatic and synchronic brain metastases. The inclusion of intracranial therapies such as craniotomy or CyberKnife further improved the brain PFS and overall survival of these patients.
Collapse
Affiliation(s)
- Qiang Yin
- Department of Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Peng Li
- Department of Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Peng Wang
- Department of Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Zhen Zhang
- Department of Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Qun Liu
- Department of Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Zengfeng Sun
- Department of Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Wenliang Li
- Department of Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Li Ma
- Department of Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Xiaoguang Wang
- Department of Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| |
Collapse
|
35
|
McKay MJ. Brain metastases: increasingly precision medicine-a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1629. [PMID: 34926673 PMCID: PMC8640905 DOI: 10.21037/atm-21-3665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022]
Abstract
Objective To broadly review the modern management of brain metastases. Background Brain metastases are the commonest neurological manifestation of cancer and a major cause of morbidity in cancer patients. Brain metastases are increasing in frequency, as a result of longer life expectancy of cancer patients, more sensitive methods for brain metastasis detection and an ageing population. The proportional incidence of brain metastases according to cancer of origin, from greatest to least, is lung cancer, melanoma, renal, breast and colorectal cancers. Patients with lung cancer and melanoma are most likely to have brain metastases at diagnosis. Brain metastases cause a variety of symptoms, depending on their size and location, whether they cause mass effect and oedema, compression of the brain parenchyma, or focal neurological deficits. The major differential diagnoses of brain metastases include primary tumours and vascular/inflammatory lesions. Prognosis is dependent on the site, number and volume of lesions, the patients’ performance status, age and the activity and extent of extracranial disease. Methods English literature articles in PubMed from 1950 to June 2021 were reviewed. Article bibliographies provided further references. Conclusions Treatment of brain metastasis patients has moved from considering them as a homogenous population of patients, to individualised treatment. In those brain metastases patients of satisfactory performance status with a solitary lesion, especially one in a non-eloquent/accessible area causing significant mass effect and/or raised intracranial pressure or for whom the diagnosis is in doubt (histology needed), surgical resection is usually the treatment of choice. For multiple brain metastases, radiotherapy with or without systemic therapies are usually employed. For relatively fit patients with limited numbers of brain metastases (e.g., 4 or less), stereotactic radiosurgery is standard of care. Current clinical trials are testing the efficacy of stereotactic treatment alone for >4 brain metastases (although it is increasingly used for such patients in many centres) as well as integration of local therapies with targeted and immunological therapies in appropriately selected cases. In certain circumstances, cranial irradiation can be omitted.
Collapse
Affiliation(s)
- Michael Jerome McKay
- Northern Cancer Service, North West Cancer Centre, Burnie, Tasmania, Australia.,The University of Tasmania, Rural Clinical School, Northwest Regional Hospital, Burnie, Tasmania, Australia
| |
Collapse
|
36
|
Brain metastases in patients with oncogenic-driven non-small cell lung cancer: Pros and cons for early radiotherapy. Cancer Treat Rev 2021; 100:102291. [PMID: 34587557 DOI: 10.1016/j.ctrv.2021.102291] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/01/2023]
Abstract
Non-small cell lung cancer (NSCLC) with oncogenic driver mutations such as EGFR or ALK has a high predilection for brain metastases (BMs) compared to unselected patients. Historically, whole brain radiotherapy (WBRT) was adopted widely for patients with BM. More recently, stereotactic radiosurgery (SRS) has become a standard approach for patients with 1 - 4 metastatic brain lesions. However, data on overall survival benefit with WBRT/SRS compared to target agents are conflicting, with a significant compromise of loss of neurocognitive function. Newer target agents with improved CNS efficacy have challenged the use of early radiotherapy in NSCLC patients with oncogenic driver mutations. Optimal treatment approach and timing of radiotherapy remain unclear, especially under the various clinical contexts. The purpose of this review is to summarize the available data on the possible benefits and risks of early radiotherapy for oncogenic-driven NSCLC patients with brain metastases. Clinical decisions should consider both intracranial efficacy and patient quality of life, given that patients are surviving long enough to experience the long-term consequences of radiation therapy.
Collapse
|
37
|
Naresh G, Malik PS, Khurana S, Pushpam D, Sharma V, Yadav M, Jain D, Pathy S. Assessment of Brain Metastasis at Diagnosis in Non-Small-Cell Lung Cancer: A Prospective Observational Study From North India. JCO Glob Oncol 2021; 7:593-601. [PMID: 33891479 PMCID: PMC8162524 DOI: 10.1200/go.20.00629] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The incidence of symptomatic brain metastasis at diagnosis in non–small-cell lung cancer (NSCLC) is 5%-10%, and up to 40% develop during the disease course. There is a paucity of data supporting the role of brain imaging at diagnosis in asymptomatic cases particularly from resource-constraint settings. Here, we present our experience of mandatory baseline brain imaging with contrast-enhanced computed tomography (CECT) scans of all patients with NSCLC. MATERIALS AND METHODS This was a prospective observation study of patients with NSCLC with mandatory baseline brain CECT and a CNS examination. All histology proven patients with NSCLC diagnosed between January 2018 and October 2019 were included irrespective of stage. RESULTS A total of 496 patients were enrolled. The median age was 57 years (range, 23-84) with majority being males (75%) and smokers (66%). The prevalence of epidermal growth factor receptor mutations and anaplastic lymphoma kinase fusions was 33.4% and 12%, respectively. Brain imaging leads to upstaging in 7% cases. The prevalence of brain metastases was 21% (n = 104), with half being asymptomatic (51%). Factors associated with higher proportion of brain metastasis were young age (≤ 40 years), adenocarcinoma histology, poor Eastern Cooperative Oncology Group performance status (3 and 4), and high neutrophil-lymphocyte ratio (NLR) (> 2.5). After a median follow-up of 10.8 months (95% CI, 7.33 to 12.73), the median overall survival was 7.46 versus 12.76 months (hazard ratio 0.67; 95% CI, 0.46 to 0.96; P = .03) in patients with and without brain metastases, respectively. On multivariate analyses, high NLR and molecular graded prognostic assessment affected the overall survival significantly. CONCLUSION In our study, 21% of patients had brain metastasis at diagnosis detected with a mandatory baseline brain imaging with CECT. NLR and molecular graded prognostic assessment are significant predictors of survival in patients with brain metastasis.
Collapse
Affiliation(s)
- Gundu Naresh
- Department of Medical Oncology, Dr B.R.A.I.R.C.H., All India Institute of Medical Sciences, New Delhi, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, Dr B.R.A.I.R.C.H., All India Institute of Medical Sciences, New Delhi, India
| | - Sachin Khurana
- Department of Medical Oncology, Dr B.R.A.I.R.C.H., All India Institute of Medical Sciences, New Delhi, India
| | - Deepam Pushpam
- Department of Medical Oncology, Dr B.R.A.I.R.C.H., All India Institute of Medical Sciences, New Delhi, India
| | - Vinod Sharma
- Department of Medical Oncology, Dr B.R.A.I.R.C.H., All India Institute of Medical Sciences, New Delhi, India
| | - Mukesh Yadav
- Department of Radiodiagnosis, Dr B.R.A.I.R.C.H., All India Institute of Medical Sciences, New Delhi, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sushmita Pathy
- Department of Radiation Oncology, Dr B.R.A.I.R.C.H., All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
38
|
Sudmeier L, Tian S, Higgins KA. Multidisciplinary Management of Brain Metastases from Non-Small Cell Lung Cancer in the Era of Immunotherapy. Curr Treat Options Oncol 2021; 22:77. [PMID: 34213649 DOI: 10.1007/s11864-021-00871-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
OPINION STATEMENT Brain metastases from non-small cell lung cancer often cause neurologic symptoms which lead to initial diagnosis or identification of recurrence. In other patients, they are identified on surveillance imaging or when a patient undergoing treatment develops neurological symptoms. Patients with symptomatic lesions should be started on dexamethasone and evaluated by a neurosurgeon as soon as possible. If feasible, surgery should be offered to decrease intracranial pressure, alleviate symptoms, and prevent irreversible neurological damage. Postoperative stereotactic radiosurgery (SRS) to the resection cavity and any additional brain metastases should follow within 4 weeks of surgery, as early as 2 weeks post-op. Tissue from surgery is used to confirm the diagnosis and test for targetable oncogenic driver mutations. Treatment response and surveillance for development of additional lesions is assessed with MRI of the brain 1 month after SRS and every 3 months thereafter. Patients who are not surgical candidates or who have small, asymptomatic brain metastases should proceed with SRS, the preferred treatment, or sometimes whole-brain radiation therapy (WBRT) if multifocal disease requires more extensive treatment, such as for leptomeningeal spread of disease. The number of brain metastases that warrants use of WBRT over SRS is controversial and a topic of ongoing investigation, and is discussed in this review. When possible, SRS is preferred over WBRT due to reduce morbidity and cognitive side effects. When patients are already on systemic therapy at time of brain metastases diagnosis, systemic therapy should continue, with radiation therapy occurring between cycles. Regarding systemic therapy for new diagnosis at time of brain metastases presentation, molecular testing will guide treatment choice, when available. If there is no neurosurgical intervention, biopsy of another site of disease may provide tissue for molecular testing. If there are no targetable oncogenic driver mutations, concurrent immune checkpoint blockade (ICB) and chemotherapy is preferable for patients who can tolerate it. Single-agent ICB is an alternative option for patients who cannot tolerate chemotherapy. Systemic therapy should start as soon as possible. In some patients with poor performance status, best supportive care may be the most appropriate choice. Treatment decisions should always incorporate patients' goals of care and in many cases should be discussed in a multidisciplinary setting.
Collapse
Affiliation(s)
- Lisa Sudmeier
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA
| | - Sibo Tian
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA
| | - Kristin A Higgins
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA.
| |
Collapse
|
39
|
Lee K, Choi YJ, Kim JS, Kim DS, Lee SY, Shin BK, Kang EJ. Association between PD-L1 expression and initial brain metastasis in patients with non-small cell lung cancer and its clinical implications. Thorac Cancer 2021; 12:2143-2150. [PMID: 34121347 PMCID: PMC8327696 DOI: 10.1111/1759-7714.14006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/27/2022] Open
Abstract
Background Brain metastases frequently occur in patients with non‐small cell lung cancer (NSCLC) resulting in a poor prognosis. Here, we investigated the association between PD‐L1 expression and brain metastasis in patients with NSCLC and its clinical significance. Methods A total of 270 patients diagnosed with metastatic NSCLC who underwent PD‐L1 testing on their tumor tissue between January 2017 and March 2019 were retrospectively reviewed. The VENTANA PD‐L1 (SP263) assay was used, and positive PD‐L1 expression was defined as staining in ≥1% of tumor cells. Results Positive PD‐L1 expression was observed in 181 (67.0%) patients, and 74 (27.4%) patients had brain metastasis at diagnosis. Synchronous brain metastases were more frequently observed in PD‐L1‐positive compared with PD‐L1‐negative patients (31.5% vs. 19.1%, p = 0.045). Multiple logistic regression analysis identified positive PD‐L1 expression (odds ratio [OR]: 2.24, p = 0.012) as an independent factor associated with synchronous brain metastasis, along with the histological subtype of nonsquamous cell carcinoma (OR: 2.84, p = 0.003). However, the incidence of central nervous system (CNS) progression was not associated with PD‐L1 positivity, with a two‐year cumulative CNS progression rate of 26.3% and 28.4% in PD‐L1‐positive and PD‐L1‐negative patients, respectively (log rank p = 0.944). Furthermore, positive PD‐L1 expression did not affect CNS progression or overall survival in patients with synchronous brain metastasis (long rank p = 0.513 and 0.592, respectively). Conclusions Initial brain metastases are common in NSCLC patients with positive PD‐L1 expression. Further studies are necessary to understand the relationship between early brain metastasis and cancer immunity.
Collapse
Affiliation(s)
- Kyoungmin Lee
- Division of Hemato-oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Yoon J Choi
- Division of Hemato-oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Jung S Kim
- Division of Hemato-oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, South Korea
| | - Dae S Kim
- Division of Hemato-oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Sung Y Lee
- Division of Pulmonology, Department of Internal Medicine, Korea University College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Bong K Shin
- Department of Pathology, Korea University College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Eun J Kang
- Division of Hemato-oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| |
Collapse
|
40
|
Tang J, Han T, Tong W, Zhao J, Wang W. N 6-methyladenosine (m 6A) methyltransferase KIAA1429 accelerates the gefitinib resistance of non-small-cell lung cancer. Cell Death Discov 2021; 7:108. [PMID: 34001850 PMCID: PMC8128911 DOI: 10.1038/s41420-021-00488-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/19/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine (m6A) modification has been convincingly identified to be a critical regulator in human cancer. However, the contribution of m6A to NSCLC gefitinib resistance is still largely unknown. Here, we screened and identified that m6A methyltransferase KIAA1429 was highly expressed in gefitinib-resistant NSCLC cells (PC9-GR), tissues, and closely related to unfavorable survival. Functionally, KIAA1429 accelerated the gefitinib resistance of NSCLC in vitro. Depletion of KIAA1429 repressed the tumor growth of PC9-GR cells in vivo. Mechanistically, KIAA1429 enhanced the mRNA stability of HOXA1 through targeting its 3'-untranslated regions (3'-UTR). Overall, our findings indicate that KIAA1429 plays essential oncogenic roles in NSCLC gefitinib resistance, which may provide a feasible therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Jun Tang
- No. 1 Department of Tuberculosis, Chest Hospital, Shenyang, Liaoning Province, 110044, China
| | - Tianci Han
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Shenyang, Liaoning Province, 110042, China
- Department of Thoracic Surgery, Liaoning Cancer Hospital, Shenyang, Liaoning Province, 110042, China
| | - Wei Tong
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Shenyang, Liaoning Province, 110042, China
- Department of Thoracic Surgery, Liaoning Cancer Hospital, Shenyang, Liaoning Province, 110042, China
| | - Jian Zhao
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Shenyang, Liaoning Province, 110042, China
- Department of Thoracic Surgery, Liaoning Cancer Hospital, Shenyang, Liaoning Province, 110042, China
| | - Wei Wang
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Shenyang, Liaoning Province, 110042, China.
- Department of Thoracic Surgery, Liaoning Cancer Hospital, Shenyang, Liaoning Province, 110042, China.
| |
Collapse
|
41
|
Sakamoto H, Yanagitani N, Manabe R, Tsugitomi R, Ogusu S, Tozuka T, Yoshida H, Amino Y, Ariyasu R, Uchibori K, Kitazono S, Tasaka S, Nishio M. Characteristics of central nervous system progression in non-small cell lung cancer treated with crizotinib or alectinib. Cancer Rep (Hoboken) 2021; 4:e1414. [PMID: 33960745 PMCID: PMC8714545 DOI: 10.1002/cnr2.1414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
Background Most patients treated with anaplastic lymphoma kinase (ALK)‐tyrosine kinase inhibitors for ALK‐positive non‐small cell lung cancer (NSCLC) develop resistance, leading to metastasis, with progression to the central nervous system (CNS) being a primary concern. Although alectinib has better CNS penetration than crizotinib, patients treated with alectinib also develop CNS progression. CNS metastases more likely occurs during crizotinib treatment due to less blood‐brain barrier (BBB) penetration capability than alectinib. CNS progression pattern may be different during crizotinib and alecitinib treatment. Understanding the characteristics of CNS progression is important for developing treatment strategies. Aims We compared the clinical‐radiographic characteristics of CNS metastases among patients undergoing crizotinib and alectinib treatment for ALK‐positive NSCLCs. Methods and results We retrospectively analyzed the radiographic and clinical characteristics of CNS progression in ALK‐positive NSCLC patients treated with crizotinib or alectinib at our hospital between July 2011 and May 2020. CNS and systemic tumor progression were evaluated using computed tomography or magnetic resonance imaging. Fifty‐three and 65 patients were treated with crizotinib and alectinib, respectively. Baseline CNS metastasis was observed in 18 and 27 patients in the crizotinib and alectinib groups, respectively. Among the patients in the crizotinib and alectinib groups who developed disease progression, 15/49 (30.6%) and 9/44 (20.5%) had CNS progression, respectively (P = .344). Intra‐CNS progression‐free survival was significantly longer in the alectinib group than in the crizotinib group (median: 14.0 vs 5.6 months, P = .042). The number of CNS metastases sized ≥3 cm, rate of peritumoral brain edema, and the second progression pattern after treatment continuation was not significantly different between the groups. Conclusion We observed no significant difference in the clinical‐radiographic characteristics of CNS progression between patients undergoing crizotinib and alectinib treatments. Local therapy, including stereotactic radiosurgery, for CNS progression may be suitable and important following alectinib and crizotinib treatment.
Collapse
Affiliation(s)
- Hiroaki Sakamoto
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Noriko Yanagitani
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryo Manabe
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryosuke Tsugitomi
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shinsuke Ogusu
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takehiro Tozuka
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroshi Yoshida
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshiaki Amino
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryo Ariyasu
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ken Uchibori
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoru Kitazono
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Sadatomo Tasaka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
42
|
Yamamoto K, Toyokawa G, Kozuma Y, Shoji F, Yamazaki K, Takeo S. ALK-positive lung cancer in a patient with recurrent brain metastases and meningeal dissemination who achieved long-term survival of more than seven years with sequential treatment of five ALK-inhibitors: A case report. Thorac Cancer 2021; 12:1761-1764. [PMID: 33939293 PMCID: PMC8169298 DOI: 10.1111/1759-7714.13962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/29/2022] Open
Abstract
The incidence of central nervous system (CNS) metastases in patients with anaplastic lymphoma kinase (ALK) fusion gene‐positive (ALK+) non‐small cell lung cancer (NSCLC) is high, ranging from approximately 20%–70%. Although ALK inhibitors (ALKis) are generally effective for CNS metastases in patients with ALK+ NSCLC, relapse with CNS metastases is frequently observed. A 37‐year‐old woman with a high level of carcinoembryonic antigen was diagnosed with right lung adenocarcinoma (pathological stage IIIA) and underwent right lower lobectomy. Despite the administration of postoperative chemotherapy, her carcinoembryonic antigen (CEA) level remained elevated. Although crizotinib was administered due to the positivity for ALK fusion, brain metastases appeared at 19.0 months after the start of treatment. Treatment with alectinib following crizotinib resulted in the complete disappearance of brain metastases. However, brain metastases relapsed, and meningeal dissemination appeared at 38.3 months after the start of treatment with alectinib. Although ceritinib, brigatinib, and alectinib rechallenge were attempted, the CNS lesions worsened. Lorlatinib was then administered, resulting in the normalization of the CEA level (4.5 ng/ml) 4.1 months after the start of lorlatinib. The brain metastases and meningeal dissemination almost disappeared. The overall time from the start of crizotinib to lorlatinib is 89.5 months at present, and the patient continues to be treated with lorlatinib without relapse. Lorlatinib was effective in this case with brain metastases and meningeal dissemination after resistance to first‐ and second‐generation ALKis. Appropriate sequential treatment with first‐, second‐ and third‐generation ALKis can lead to a long‐term survival in ALK+ patients with brain metastases and meningeal dissemination.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Gouji Toyokawa
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Yuka Kozuma
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Fumihiro Shoji
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Koji Yamazaki
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Sadanori Takeo
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| |
Collapse
|
43
|
Jablonska PA, Bosch-Barrera J, Serrano D, Valiente M, Calvo A, Aristu J. Challenges and Novel Opportunities of Radiation Therapy for Brain Metastases in Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13092141. [PMID: 33946751 PMCID: PMC8124815 DOI: 10.3390/cancers13092141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Lung cancer is the most common primary malignancy that tends to metastasize to the brain. Owing to improved survival of lung cancer patients, the prevalence of brain metastases is a matter of growing concern. Brain radiotherapy remains the mainstay in the management of metastatic CNS disease. However, new targeted therapies such as the tyrosine kinase or immune checkpoint inhibitors have demonstrated intracranial activity and promising tumor response rates. Here, we review the current and emerging therapeutical strategies for brain metastases from non-small cell lung cancer, both brain-directed and systemic, as well as the uncertainties that may arise from their combination. Abstract Approximately 20% patients with non-small cell lung cancer (NSCLC) present with CNS spread at the time of diagnosis and 25–50% are found to have brain metastases (BMs) during the course of the disease. The improvement in the diagnostic tools and screening, as well as the use of new systemic therapies have contributed to a more precise diagnosis and prolonged survival of lung cancer patients with more time for BMs development. In the past, most of the systemic therapies failed intracranially because of the inability to effectively cross the blood brain barrier. Some of the new targeted therapies, especially the group of tyrosine kinase inhibitors (TKIs) have shown durable CNS response. However, the use of ionizing radiation remains vital in the management of metastatic brain disease. Although a decrease in CNS-related deaths has been achieved over the past decade, many challenges arise from the need of multiple and repeated brain radiation treatments, which carry along not insignificant risks and toxicity. The combination of stereotactic radiotherapy and systemic treatments in terms of effectiveness and adverse effects, such as radionecrosis, remains a subject of ongoing investigation. This review discusses the challenges of the use of radiation therapy in NSCLC BMs in view of different systemic treatments such as chemotherapy, TKIs and immunotherapy. It also outlines the future perspectives and strategies for personalized BMs management.
Collapse
Affiliation(s)
- Paola Anna Jablonska
- Brain Metastases and CNS Oncology Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, ON M5G 2M9, Canada
- Department of Radiation Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
- Correspondence: ; Tel.: +1-416-946-2000
| | - Joaquim Bosch-Barrera
- Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, 17007 Girona, Spain;
- Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
- Department of Medical Sciences, Medical School, University of Girona, 17071 Girona, Spain
| | - Diego Serrano
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (D.S.); (A.C.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | | | - Alfonso Calvo
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (D.S.); (A.C.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- CIBERONC, ISCIII, 28029 Madrid, Spain
| | - Javier Aristu
- Department of Radiation Oncology and Protontherapy Unit, Clinica Universidad de Navarra, 28027 Madrid, Spain;
| |
Collapse
|
44
|
盛 佳, 俞 晓, 李 晖, 范 云. [Progress of Immunotherapy Mechanisms and Current Evidence of PD-1/PD-L1
Checkpoint Inhibitors for Non-small Cell Lung Cancer with Brain Metastasis]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:976-982. [PMID: 32773010 PMCID: PMC7679223 DOI: 10.3779/j.issn.1009-3419.2020.102.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 01/03/2023]
Abstract
Brain metastasis (BM) is a common complication in non-small cell lung cancer (NSCLC), which associates with poor prognosis. Recently, immune checkpoint inhibitors (ICIs) has revolutionized the treatment of tumors. Programmed death-1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors could produce antitumor effect by activating the autoimmune system. The immunotherapy has already show to have a promising outcome for NSCLC patients with BM, while its specific curative effect and the most ideal mode of the treatment remain to be explored. Here we reviewed the tumor microenvironment (TME) in BM lesions and summarized the role of PD-1/PD-L1 inhibitors in cerebral and its current status in clinical studies.
.
Collapse
Affiliation(s)
- 佳敏 盛
- 325035 温州,温州医科大学Wenzhou Medical University, Wenzhou 325035, China
| | - 晓晴 俞
- 310022 杭州,中国科学院肿瘤与基础医学研究所Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou 310022, China
- 310022 杭州,中国科学院大学附属肿瘤医院肿瘤内科Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
- 310022 杭州,浙江省肿瘤医院肿瘤内科Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - 晖 李
- 310022 杭州,中国科学院肿瘤与基础医学研究所Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou 310022, China
- 310022 杭州,中国科学院大学附属肿瘤医院肿瘤内科Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
- 310022 杭州,浙江省肿瘤医院肿瘤内科Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - 云 范
- 310022 杭州,中国科学院肿瘤与基础医学研究所Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou 310022, China
- 310022 杭州,中国科学院大学附属肿瘤医院肿瘤内科Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
- 310022 杭州,浙江省肿瘤医院肿瘤内科Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
45
|
Rades D, Nguyen T, Janssen S, Schild SE. Development of a multivariable prediction model to estimate the remaining lifespan of elderly patients with cerebral metastases from small-cell lung cancer. Transl Lung Cancer Res 2020; 9:1433-1440. [PMID: 32953515 PMCID: PMC7481607 DOI: 10.21037/tlcr-20-327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Prognostic tools estimating survival of elderly patients with cerebral metastases from small-cell lung cancer (SCLC) improve treatment personalization. A specific tool for these patients was developed and compared to existing instruments. Methods One-hundred-and-forty elderly patients (≥65 years) receiving whole-brain irradiation (WBI) for cerebral metastases from SCLC were retrospectively evaluated. WBI-program, age, gender, Karnofsky performance score, number of cerebral lesions, extracerebral metastases, and interval between SCLC-diagnosis and WBI were investigated. Characteristics significantly associated with survival in the multivariate analysis were used for the tool. Scoring points were calculated by dividing 6-month survival rates (%) by 10 and added for patient scores. The tool was compared to existing diagnosis-specific instruments including updated diagnosis-specific graded prognostic assessment (DS-GPA), Rades-SCLC and WBRT-30-SCLC. Results In the multivariate analysis, KPS (P<0.001), number of cerebral lesions (P=0.013) and extracerebral metastases (P=0.049) were significantly associated with survival. Patient scores of 2 (n=37), 5 (n=69), 8 (n=20) and 11 (n=14) points were obtained; 6-month survival rates were 0%, 9%, 50% and 79% (P<0.001). The positive predictive value (PPV) of the worst group (2 points) to identify patients dying ≤6 months was 100%; PPVs of updated DS-GPA, Rades-SCLC and WBRT-30-SCLC were 94%, 100% and 94%. PPV of the best group (11 points) to identify patients surviving ≥6 months was 79%; PPVs of updated DS-GPA, Rades-SCLC and WBRT-30-SCLC were 86%, 79% and 100%. Conclusions The most precise instruments were the new tool and Rades-SCLC for identification of patients dying ≤6 months, and the WBRT-30-SCLC to identify patients surviving ≥6 months.
Collapse
Affiliation(s)
- Dirk Rades
- Department of Radiation Oncology, University of Lübeck, Lübeck, Germany
| | - Trang Nguyen
- Department of Radiation Oncology, University of Lübeck, Lübeck, Germany
| | - Stefan Janssen
- Department of Radiation Oncology, University of Lübeck, Lübeck, Germany
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
46
|
Tanriverdi O, Tarimer ML, Pak CD, Uylas S, Alkan A, Celik OI, Kilic RM, Zeybek A. 68-months progression-free survival with crizotinib treatment in a patient with metastatic ALK positive lung adenocarcinoma and sarcoidosis: A case report. J Oncol Pharm Pract 2020; 27:984-989. [PMID: 32830600 DOI: 10.1177/1078155220951242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Lung cancer still ranks first among the most common and most lethal cancers today. The most common subtype is non-small cell lung cancer, and in this group, adenocarcinoma has the worst prognosis. EGFR, ROS1 and ALK-EML4 gene fusion mutations are common in non-small cell lung cancer. CASE REPORT A 62-year-old non-smoker patient applied in February 2014 for purulent sputum and pain in the chest. Computed tomography revealed a 39x33 mm mass in the right hilum, multiple parenchymal nodules in the bilateral lung and mediastinal multiple enlarged lymph nodes. The patient was admitted to the lung adenocarcinoma as a result of a biopsy from the mass in the hilum, and sarcoidosis was diagnosed by mediastinal lymph node biopsy. MANAGEMENT & OUTCOME After 4 cycles of carboplatin-pemetrexed for the first line treatment, progression was detected. The patient did not have EGFR and ROS1 mutations. The patient with positive ALK fusion mutation started crizotinib treatment in July 2014. The patient's last response assessment was in March 2020, with 68-progression-free disease with crizotinib. No toxicity was observed except for Grade 1 weakness. No dose changes were made. The patient is still being followed up without brain metastasis under the treatment of crizotinib. DISCUSSION In this article, we wanted to share our experience of crizotinib in a 68-months progression-free survival in a 62-years old non-smoking female patient with metastatic lung adenocarcinoma who is also diagnosed with sarcoidosis.
Collapse
Affiliation(s)
- Ozgur Tanriverdi
- Department of Medical Oncology, Faculty of Medicine, Mugla Sitki Koçman University, Mugla, Turkey
| | - Mehmet L Tarimer
- Faculty of Medicine, Mugla Sitki Koçman University, Mugla, Turkey
| | - Ceren D Pak
- Department of Family Medicine, Faculty of Medicine, Mugla Sitki Koçman University, Mugla, Turkey
| | - Selcuk Uylas
- Faculty of Medicine, Mugla Sitki Koçman University, Mugla, Turkey
| | - Ali Alkan
- Department of Medical Oncology, Faculty of Medicine, Mugla Sitki Koçman University, Mugla, Turkey
| | - Ozgur Ilhan Celik
- Department of Pathology, Faculty of Medicine, Mugla Sitki Koçman University, Mugla, Turkey
| | - Rabia M Kilic
- Department of Radiodiagnostics, Faculty of Medicine, Mugla Sitki, Koçman University, Mugla, Turkey
| | - Arife Zeybek
- Department of Thoracic Surgery, Faculty of Medicine, Mugla Sitki Koçman University, Mugla, Turkey
| |
Collapse
|
47
|
Peng L, Wang Y, Fei S, Wei C, Tong F, Wu G, Ma H, Dong X. The effect of combining Endostar with radiotherapy on blood vessels, tumor-associated macrophages, and T cells in brain metastases of Lewis lung cancer. Transl Lung Cancer Res 2020; 9:745-760. [PMID: 32676336 PMCID: PMC7354151 DOI: 10.21037/tlcr-20-500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Combining Endostar (ES) with radiotherapy (RT) has shown a promising therapeutic effect on non-small cell lung carcinoma with brain metastases (BMs) in clinical practice. However, the specific mechanism is not yet fully understood. The present study aimed to investigate the effects of ES on blood vessels, tumor-associated macrophages (TAMs), and T cells in a tumor microenvironment treated with RT. Methods BM models were established by stereotactic and intracarotid injection of luciferase-Lewis lung cancer (LLC) cells into female C57BL mice. The animals were randomly divided into 4 groups: normal saline (NS), ES, RT, and ES plus radiotherapy (ES + RT) groups. Tumor size was determined with the IVIS imaging system. Tumor specimens were stained with CD34 and α-SMA to investigate tumor vascular changes. The proportions of TAMs, CD4+ T cells, and CD8+ T cells in tumor tissues were determined by flow cytometry and immunofluorescence. The expressions of hypoxia-inducible factor 1α (HIF-1α) and CXCR4 were deduced using western blotting and immunohistochemistry (IHC). Results ES + RT significantly suppressed tumor growth compared to the other 3 groups. RT decreased M1 and increased M2 in microglial cells and bone marrow-derived macrophages (BMDMs) relative to NS, while ES had the opposite effect. The ratio of CD8+T/CD4+T was increased in the ES + RT group compared to the other 3 groups. Tumor vascular maturity (α-SMA+/CD34+) was increased while HIF-1α was significantly suppressed in the ES + RT group. CXCR4 expression, which is involved in TAM recruitment, increased following RT, whereas, ES attenuated its expression. Conclusions Our findings suggest that ES can promote the normalization of tumor blood vessels and increase the anti-tumor immune-related immune cells infiltrating the tumor following RT treatment.
Collapse
Affiliation(s)
- Ling Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ying Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shihong Fei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chunhua Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|