1
|
Voigt E, Wallenburg M, Wollenzien H, Thompson E, Kumar K, Feiner J, McNally M, Friesen H, Mukherjee M, Afeworki Y, Kareta MS. Sox2 Is an Oncogenic Driver of Small-Cell Lung Cancer and Promotes the Classic Neuroendocrine Subtype. Mol Cancer Res 2021; 19:2015-2025. [PMID: 34593608 PMCID: PMC8642303 DOI: 10.1158/1541-7786.mcr-20-1006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/02/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022]
Abstract
Although many cancer prognoses have improved in the past 50 years due to advancements in treatments, there has been little improvement in therapies for small-cell lung cancer (SCLC). One promising avenue to improve treatment for SCLC is to understand its underlying genetic alterations that drive its formation, growth, and cellular heterogeneity. RB1 loss is one key driver of SCLC, and RB1 loss has been associated with an increase in pluripotency factors such as SOX2. SOX2 is highly expressed and amplified in SCLC and has been associated with SCLC growth. Using a genetically engineered mouse model, we have shown that Sox2 is required for efficient SCLC formation. Furthermore, genome-scale binding assays have indicated that SOX2 can regulate key SCLC pathways such as NEUROD1 and MYC. These data suggest that SOX2 can be associated with the switch of SCLC from an ASCL1 subtype to a NEUROD1 subtype. Understanding this genetic switch is key to understanding such processes as SCLC progression, cellular heterogeneity, and treatment resistance. IMPLICATIONS: Understanding the molecular mechanisms of SCLC initiation and development are key to opening new potential therapeutic options for this devastating disease.
Collapse
Affiliation(s)
- Ellen Voigt
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | - Madeline Wallenburg
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | - Hannah Wollenzien
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota
| | - Ethan Thompson
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | - Kirtana Kumar
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | | | - Moira McNally
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | - Hunter Friesen
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | - Malini Mukherjee
- Functional Genomics & Bioinformatics Core, Sanford Research, Sioux Falls, South Dakota
| | - Yohannes Afeworki
- Functional Genomics & Bioinformatics Core, Sanford Research, Sioux Falls, South Dakota
| | - Michael S Kareta
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota.
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota
- Functional Genomics & Bioinformatics Core, Sanford Research, Sioux Falls, South Dakota
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota
- Department of Chemistry Biochemistry, South Dakota State University, Brookings, South Dakota
| |
Collapse
|
2
|
Clinicopathological and Prognostic Significance of CD47 Expression in Lung Neuroendocrine Tumors. J Immunol Res 2021; 2021:6632249. [PMID: 34195295 PMCID: PMC8214491 DOI: 10.1155/2021/6632249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/09/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
Background Lung neuroendocrine tumors account for approximately 15% of all lung cancer cases. LNET are subdivided into typical carcinoid (TC), atypical carcinoid (AC), large cell neuroendocrine carcinoma (LCNEC), and small-cell lung cancer (SCLC). The Ki-67 index has been used for decades to evaluate mitotic counts however, the role of Ki-67 as a biomarker for assessing prognosis and guiding therapy in metastatic LNET still lacks feasible clinical validation. Recent clinical trials have indicated that inhibition of CD47 with anti-CD47 antibodies exerts a promising antitumor effect against several human malignancies, including NSCLC, melanoma, and hematologic malignancies. However, the clinical relevance of CD47 expression in LNET has remained unclear. Methods We performed a retrospective study in which we analyzed tumor biopsies from 51 patients with a confirmed diagnosis of LNET that received treatment at our hospital. Then, we analyzed if there was any correlation between CD47 expression with any clinical or pathological characteristic. We also analyzed the prognostic significance of CD47, assessed as progression-free survival and overall survival. Results A total of 51 patients with LNET were enrolled in our study. The mean age at diagnosis was 57.6 (±11.6) years; 30 patients were women (59%). 27.5% of patients were positive for CD47 expression, and 72.5% of patients showed a CD47 expression of less than 1% and were considered as negatives. In patients with high-grade tumors (this time defined as Ki-67 > 40%), the positive expression of CD47 was strongly associated with an increased PFS. Albeit, these differences did not reach statistical significance when analyzing OS. Conclusion Contrary to what happens in a wide range of hematologic and solid tumors, a higher expression of CD47 in patients with LNET is associated with a better progression-free survival, especially in patients with a Ki-67 ≥ 40%. This "paradox" remains to be confirmed and explained by larger studies.
Collapse
|