1
|
Tresbach RH, Sperb-Ludwig F, Ligabue-Braun R, Bitencourt FHD, Tonon T, Souza CFMD, Poswar FDO, Leite MEDQ, Amorim T, Porta G, Seda Neto J, Miura IK, Steiner CE, Martins AM, Pessoa ALS, Ribeiro EM, Schwartz IVD. Maple syrup urine disease diagnosis in Brazilian patients by massive parallel sequencing. Mol Genet Metab 2024; 143:108569. [PMID: 39270351 DOI: 10.1016/j.ymgme.2024.108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Biallelic pathogenic variants cause maple syrup urine disease (MSUD) in one of the branched-chain α-keto acid dehydrogenase (BCKDH) complex genes (BCKDHA, BCKDHB, DBT, DLD, and PPM1K) leading to the accumulation of leucine, isoleucine, and valine. This study aimed to perform a molecular diagnosis of Brazilian patients with MSUD using gene panels and massive parallel sequencing. Eighteen Brazilian patients with a biochemical diagnosis of MSUD were analyzed by massive parallel sequencing in the Ion PGM Torrent Server using a gene panel with the BCKDHA, BCKDHB, and DBT genes. The American College of Medical Genetics and Genomics guidelines were used to determine variant pathogenicity. Thirteen patients had both variants found by massive parallel sequencing, whereas 3 patients had only one variant found. In 2 patients, the variants were not found by this analysis. These 5 patients required additional Sanger sequencing to confirm their genotype. Twenty-five pathogenic variants were identified in the 3 MSUD-related genes (BCKDHA, BCKDHB, and DBT). Most variants were present in the BCKDHB gene, and no common variants were found. Nine novel variants were observed: c.922 A > G, c.964C > A, and c.1237 T > C in the BCKDHA gene; and c.80_90dup, c.384delA, c.478 A > T, c.528C > G, c.977 T > C, and c.1039-2 A > G in the BCKDHB gene. All novel variants were classified as pathogenic. Molecular modeling of the novel variants indicated that the binding of monomers was affected in the BCKDH complex tetramer, which could lead to a change in the stability and activity of the enzyme. Massive parallel sequencing with targeted gene panels seems to be a cost-effective method that can provide a molecular diagnosis of MSUD.
Collapse
Affiliation(s)
- Rafael Hencke Tresbach
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Sperb-Ludwig
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rodrigo Ligabue-Braun
- Graduate Program in Biological Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Department of Pharmacosciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Fernanda Hendges de Bitencourt
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Tássia Tonon
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Carolina Fischinger Moura de Souza
- Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fabiano de Oliveira Poswar
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Maria Efigênia de Queiroz Leite
- Newborn Screening Reference Center - Association of Parents and Friends of People with Disabilities (APAE), Salvador, BA, Brazil
| | - Tatiana Amorim
- Newborn Screening Reference Center - Association of Parents and Friends of People with Disabilities (APAE), Salvador, BA, Brazil
| | - Gilda Porta
- Pedro de Alcântara Children's Institute - Hospital das Clínicas, Medical School, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - João Seda Neto
- Department of Hepatology and Liver Transplantation, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Irene Kazumi Miura
- Department of Hepatology and Liver Transplantation, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Carlos Eduardo Steiner
- Department of Translational Medicine, School of Medical Sciences, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | - Ana Maria Martins
- Reference Center for Inborn Errors of Metabolism, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil
| | - André Luiz Santos Pessoa
- Hospital Infantil Albert Sabin, Fortaleza, CE, Brazil; Department of Pediatrics, Universidade Estadual do Ceará (UECE), Fortaleza, CE, Brazil
| | | | - Ida Vanessa Doederlein Schwartz
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; InRaras, National Institute of Rare Diseases, Brazil
| |
Collapse
|
2
|
Cepress M, Grund E, Leng T, Patterson M, Saify M, Mohandesi NA, Homme J. Progressive encephalopathy after routine 4-month immunizations in a patient with NAXD genetic variant. Am J Med Genet A 2024; 194:e63519. [PMID: 38214124 DOI: 10.1002/ajmg.a.63519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Metabolic pathways are known to generate byproducts-some of which have no clear metabolic function and some of which are toxic. Nicotinamide adenine dinucleotide phosphate hydrate (NAD(P)HX) is a toxic metabolite that is produced by stressors such as a fever, infection, or physical stress. Nicotinamide adenine dinucleotide phosphate hydrate dehydratase (NAXD) and nicotinamide adenine dinucleotide phosphate hydrate epimerase (NAXE) are part of the nicotinamide repair system that function to break down this toxic metabolite. Deficiency of NAXD and NAXE interrupts the critical intracellular repair of NAD(P)HX and allows for its accumulation. Clinically, deficiency of NAXE manifests as progressive, early onset encephalopathy with brain edema and/or leukoencephalopathy (PEBEL) 1, while deficiency of NAXD manifests as PEBEL2. In this report, we describe a case of probable PEBEL2 in a patient with a variant of unknown significance (c.362C>T, p.121L) in the NAXD gene who presented after routine immunizations with significant skin findings and in the absence of fevers.
Collapse
Affiliation(s)
- Marissa Cepress
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, USA
| | - Ethan Grund
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, USA
| | - Tomas Leng
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, USA
| | - Marc Patterson
- Department of Pediatric Neurology, Mayo Clinic, Rochester, USA
| | - Mariya Saify
- Department of Pediatric Neurology, Mayo Clinic, Rochester, USA
| | | | - Jason Homme
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, USA
| |
Collapse
|
3
|
Zhang R, Xie J, Yuan X, Yu Y, Zhuang Y, Zhang F, Hou J, Liu Y, Huang W, Zhang M, Li J, Gong Q, Peng X. Newly discovered variants in unexplained neonatal encephalopathy. Mol Genet Genomic Med 2024; 12:e2354. [PMID: 38284441 PMCID: PMC10795097 DOI: 10.1002/mgg3.2354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND The genetic background of neonatal encephalopathy (NE) is complicated and early diagnosis is beneficial to optimizing therapeutic strategy for patients. METHODS NE Patients with unclear etiology received regular clinical tests including ammonia test, metabolic screening test, amplitude-integrated electroencephalographic (aEEG) monitoring, brain Magnetic Resonance Imaging (MRI) scanning, and genetic test. The protein structure change was predicted using Dynamut2 and RoseTTAFold. RESULTS 15 out of a total of 113 NE Patients were detected with newly reported pathogenic variants. In this sub-cohort, (1) seizure was the primary initial symptoms; (2) four patients had abnormal metabolic screening results, and two of them were also diagnosed with excessive blood ammonia concentration; (3) the brain MRI results were irregular in three infants and the brain waves were of moderate-severe abnormality in about a half of the patients. The novel pathogenic variants discovered in this study belonged to 12 genes, and seven of them were predicted to introduce a premature translation termination. In-silicon predictions showed that four variants were destructive to the protein structure of KCNQ2. CONCLUSION Our study expands the mutation spectrum of genes associated with NE and introduces new evidence for molecular diagnosis in this newborn illness.
Collapse
Affiliation(s)
- Rong Zhang
- Department of NeonatologyHunan Children's HospitalChangshaHunanChina
| | - Jingjing Xie
- Department of NeonatologyHunan Children's HospitalChangshaHunanChina
| | - Xiao Yuan
- Department of Laboratory DiagnosisChangsha Kingmed Center for Clinical LaboratoryChangshaHunanChina
| | - Yan Yu
- Department of Laboratory DiagnosisChangsha Kingmed Center for Clinical LaboratoryChangshaHunanChina
| | - Yan Zhuang
- Department of NeonatologyHunan Children's HospitalChangshaHunanChina
| | - Fan Zhang
- Department of NeonatologyHunan Children's HospitalChangshaHunanChina
| | - Jianfei Hou
- Department of Laboratory DiagnosisChangsha Kingmed Center for Clinical LaboratoryChangshaHunanChina
| | - Yanqin Liu
- Department of Laboratory DiagnosisChangsha Kingmed Center for Clinical LaboratoryChangshaHunanChina
| | - Weiqing Huang
- Department of NeonatologyHunan Children's HospitalChangshaHunanChina
| | - Min Zhang
- Department of NeonatologyHunan Children's HospitalChangshaHunanChina
| | - Junshuai Li
- Department of NeonatologyHunan Children's HospitalChangshaHunanChina
| | - Qiang Gong
- Department of Laboratory DiagnosisChangsha Kingmed Center for Clinical LaboratoryChangshaHunanChina
| | - Xiaoming Peng
- Department of NeonatologyHunan Children's HospitalChangshaHunanChina
| |
Collapse
|
4
|
Almohammal MN. Epileptic Channelopathies and Neuromuscular Disorders in Newborns: A Narrative Review. Cureus 2023; 15:e43728. [PMID: 37727158 PMCID: PMC10505738 DOI: 10.7759/cureus.43728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
Neonates can have ion channel abnormalities known as channelopathies, which can impact any organ system. These abnormalities cause seizures, which can result in developmental delays and lead to early death. For a child's long-term neurodevelopment, early identification as a channelopathy is essential to avoid any brain damage. Therefore, this review aims to focus on early diagnostic criteria. Since it might be difficult for doctors to interpret the presenting symptoms of channelopathies, a thorough diagnostic examination that follows a methodical step-by-step procedure is essential. Skeletal muscle fiber and neuron excitability depend on voltage-gated sodium channels. It is now known that mutations in voltage-gated sodium channel genes can cause a growing variety of fatal or debilitating pediatric neurological diseases. Episodic paralysis, myotonia, newborn hypotonia, respiratory impairment, laryngospasm/stridor, congenital myasthenia, and myopathy are examples of muscle phenotypes. There may be a connection between sodium channel malfunction and abrupt infant death, according to recent findings. Numerous epilepsy syndromes and complex encephalopathies are among the manifestations of different channelopathies that are becoming more widely recognized.
Collapse
|
5
|
Hwee TANGP, Koh Cheng THOON. Imaging of Congenital/Childhood Central Nervous System Infections. Neuroimaging Clin N Am 2023; 33:207-224. [DOI: 10.1016/j.nic.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Trofimova AV, Reddy KM. Imaging of Inherited Metabolic and Endocrine Disorders. Clin Perinatol 2022; 49:657-673. [PMID: 36113928 DOI: 10.1016/j.clp.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
"Inherited metabolic disorders represent a large group of disorders of which approximately 25% present in neonatal period with acute metabolic decompensation, rapid clinical deterioration, and often nonspecific imaging findings. Neonatal onset signifies the profound severity of the metabolic abnormality compared with cases with later presentation and necessitates rapid diagnosis and urgent therapeutic measures in an attempt to decrease the extent of brain injury and prevent grave neurologic sequela or death. Here, the authors discuss classification and clinical and imaging findings in a spectrum of metabolic and endocrine disorders with neonatal presentation."
Collapse
Affiliation(s)
- Anna V Trofimova
- Children's Healthcare of Atlanta, Radiology Department, 1405 Clifton Road NE, Atlanta, GA 30322, USA; Emory University, Department of Radiology and Imaging Sciences, 1364 Clifton Road NE, Atlanta, GA, 30322, USA.
| | - Kartik M Reddy
- Children's Healthcare of Atlanta, Radiology Department, 1405 Clifton Road NE, Atlanta, GA 30322, USA; Emory University, Department of Radiology and Imaging Sciences, 1364 Clifton Road NE, Atlanta, GA, 30322, USA
| |
Collapse
|
7
|
Ventura N. Inherited neurometabolic diseases and the importance of imaging-based classification systems. Radiol Bras 2022; 55:VII-VIII. [PMID: 35795600 PMCID: PMC9254713 DOI: 10.1590/0100-3984.2022.55.3e2-en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Nina Ventura
- Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Hospital Samaritano, Grupo Fleury, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Ventura N. Doenças neurometabólicas hereditárias e a importância das classificações baseadas em achados de imagem. Radiol Bras 2022. [DOI: 10.1590/0100-3984.2022.55.3e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Nina Ventura
- Instituto Estadual do Cérebro Paulo Niemeyer, Brazil; Universidade Federal do Rio de Janeiro, Brazil; Hospital Samaritano, Brazil
| |
Collapse
|
9
|
Sadek AA, Aladawy MA, Mansour TMM, Ibrahim MF, Mohamed MM, Gad EF, Othman AA, Ahmed HA, Kasim AK, Wagdy WM, Hasan MHT, Abdelkreem E. Clinicoradiologic Correlation in 22 Egyptian Children With Megalencephalic Leukoencephalopathy With Subcortical Cysts. J Child Neurol 2022; 37:380-389. [PMID: 35322718 DOI: 10.1177/08830738221078683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare genetic form of cerebral white matter disease whose clinicoradiologic correlation has not been completely understood. In this study, we investigated the association between clinical and brain magnetic resonance imaging (MRI) features in 22 Egyptian children (median age 7 years) with MLC. Gross motor function was assessed using the Gross Motor Function Classification System, and evaluation of brain MRI followed a consistent scoring system. Each parameter of extensive cerebral white matter T2 hyperintensity, moderate-to-severe wide ventricle/enlarged subarachnoid space, and greater than 2 temporal subcortical cysts was significantly associated (P < .05) with worse Gross Motor Function Classification System score, language abnormality, and ataxia. Having >2 parietal subcortical cysts was significantly related to a worse Gross Motor Function Classification System score (P = .04). The current study indicates that patients with MLC manifest signification association between certain brain MRI abnormalities and neurologic features, but this should be confirmed in larger studies.
Collapse
Affiliation(s)
- Abdelrahim A Sadek
- Neuropsychiatry Unit, Department of Pediatrics, 68890Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Mohammed A Aladawy
- Neurology Unit, Department of Pediatrics, Faculty of Medicine, 195495Al-Azhar University, Assiut, Egypt
| | - Tarek M M Mansour
- Department of Radio-diagnosis, Faculty of Medicine, 68820Al-Azhar University, Assiut, Egypt
| | - Mohamed F Ibrahim
- Neurology Unit, Department of Pediatrics, Faculty of Medicine, 195495Al-Azhar University, Assiut, Egypt
| | - Montaser M Mohamed
- Department of Pediatrics, 68890Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Eman F Gad
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amr A Othman
- Neuropsychiatry Unit, Department of Pediatrics, 68890Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Hosny A Ahmed
- Neurology Unit, Department of Pediatrics, Faculty of Medicine, 195495Al-Azhar University, Assiut, Egypt
| | - Abdin K Kasim
- Department of Neurosurgery, 68890Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Wael M Wagdy
- Department of Radio-diagnosis, 113328Faculty of Medicine, South Valley University, Qena, Egypt
| | - Mohamed H T Hasan
- Department of Radio-diagnosis, Faculty of Medicine, 68820Al-Azhar University, Cairo, Egypt
| | - Elsayed Abdelkreem
- Department of Pediatrics, 68890Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
10
|
Lai LM, Gropman AL, Whitehead MT. MR Neuroimaging in Pediatric Inborn Errors of Metabolism. Diagnostics (Basel) 2022; 12:diagnostics12040861. [PMID: 35453911 PMCID: PMC9027484 DOI: 10.3390/diagnostics12040861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Inborn errors of metabolism (IEM) are a group of disorders due to functional defects in one or more metabolic pathways that can cause considerable morbidity and death if not diagnosed early. While individually rare, the estimated global prevalence of IEMs comprises a substantial number of neonatal and infantile disorders affecting the central nervous system. Clinical manifestations of IEMs may be nonspecific. Newborn metabolic screens do not capture all IEMs, and likewise, genetic testing may not always detect pathogenic variants. Neuroimaging is a critical component of the work-up, given that imaging sometimes occurs before prenatal screen results are available, which may allow for recognition of imaging patterns that lead to early diagnosis and treatment of IEMs. This review will demonstrate the role of magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (1H MRS) in the evaluation of IEMs. The focus will be on scenarios where MRI and 1H MRS are suggestive of or diagnostic for IEMs, or alternatively, refute the diagnosis.
Collapse
Affiliation(s)
- Lillian M. Lai
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Andrea L. Gropman
- Department of Neurology, Children’s National, Washington, DC 20010, USA;
| | - Matthew T. Whitehead
- Department of Radiology, Children’s National, Washington, DC 20010, USA
- Correspondence: ; Tel.: +1-202-476-5000
| |
Collapse
|
11
|
Huisman TAGM, Kralik SF, Desai NK, Serrallach BL, Orman G. Neuroimaging of primary mitochondrial disorders in children: A review. J Neuroimaging 2022; 32:191-200. [PMID: 35107193 DOI: 10.1111/jon.12976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial disorders represent a diverse and complex group of entities typified by defective energy metabolism. The mitochondrial oxidative phosphorylation system is typically impaired, which is the predominant source of energy production. Because mitochondria are present in nearly all organs, multiple systems may be affected including the central nervous system, skeletal muscles, kidneys, and liver. In particular, those organs that are metabolically active with high energy demands are explicitly vulnerable. Initial diagnostic work up relies on a detailed evaluation of clinical symptoms including physical examination as well as a comprehensive review of the evolution of symptoms over time, relation to possible "triggering" events (eg, fever, infection), blood workup, and family history. High-end neuroimaging plays a pivotal role in establishing diagnosis, narrowing differential diagnosis, monitoring disease progression, and predicting prognosis. The pattern and characteristics of the neuroimaging findings are often highly suggestive of a mitochondrial disorder; unfortunately, in many cases the wide variability of involved metabolic processes prevents a more specific subclassification. Consequently, additional diagnostic steps including muscle biopsy, metabolic workup, and genetic tests are necessary. In the current manuscript, basic concepts of energy production, genetics, and inheritance patterns are reviewed. In addition, the imaging findings of several illustrative mitochondrial disorders are presented to familiarize the involved physicians with pediatric mitochondrial disorders. In addition, the significance of spinal cord imaging and the value of "reversed image-based discovery" for the recognition and correct (re-)classification of mitochondrial disorders is discussed.
Collapse
Affiliation(s)
- Thierry A G M Huisman
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Stephen F Kralik
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Nilesh K Desai
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Bettina L Serrallach
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Gunes Orman
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
12
|
Mukherjee S, Kotnis A, Ray SK, Vaidyanathan K, Singh S, Mittal R. Current Scenario of Clinical Diagnosis to Identify Inborn Errors of Metabolism with Precision Profiling for Expanded Screening in Infancy in a Resource-limited Setting. Curr Pediatr Rev 2022; 19:34-47. [PMID: 35379152 DOI: 10.2174/1573396318666220404113732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 01/28/2023]
Abstract
Inborn errors of metabolism (IEM) are a diverse collection of abnormalities that cause a variety of morbidities and mortality in children and are classified as uncommon genetic diseases. Early and accurate detection of the condition can save a patient's life. By aiding families as they navigate the experience of having a child with an IEM, healthcare practitioners have the chance to reduce the burden of negative emotional consequences. New therapeutic techniques, such as enzyme replacement and small chemical therapies, organ transplantation, and cellular and gene-based therapies using whole-genome sequencing, have become available in addition to traditional medical intake and cofactor treatments. In the realm of metabolic medicine and metabolomics, the twentyfirst century is an exciting time to be alive. The availability of metabolomics and genomic analysis has led to the identification of a slew of novel diseases. Due to the rarity of individual illnesses, obtaining high-quality data for these treatments in clinical trials and real-world settings has proven difficult. Guidelines produced using standardized techniques have helped enhance treatment delivery and clinical outcomes over time. This article gives a comprehensive description of IEM and how to diagnose it in patients who have developed clinical signs early or late. The appropriate use of standard laboratory outcomes in the preliminary patient assessment is also emphasized that can aid in the ordering of specific laboratory tests to confirm a suspected diagnosis, in addition, to begin treatment as soon as possible in a resource limiting setting where genomic analysis or newborn screening facility is not available.
Collapse
Affiliation(s)
- Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Ashwin Kotnis
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | | | - Kannan Vaidyanathan
- Department of Biochemistry, Amrita Institute of Medical Science & Research Center, Kochi, Kerala-682041, India
| | - Snighdha Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Rishabh Mittal
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
13
|
Lee IC. Approach to Neurological Channelopathies and Neurometabolic Disorders in Newborns. Life (Basel) 2021; 11:1244. [PMID: 34833120 PMCID: PMC8619185 DOI: 10.3390/life11111244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Ion channel disorders (channelopathies) can affect any organ system in newborns before 2 months of life, including the skeletal muscle and central nervous system. Channelopathies in newborns can manifest as seizure disorders, which is a critical issue as early onset seizures can mimic the presentation of neurometabolic disorders. Seizures in channelopathies can either be focal or generalized, and range in severity from benign to epileptic encephalopathies that may lead to developmental regression and eventually premature death. The presenting symptoms of channelopathies are challenging for clinicians to decipher, such that an extensive diagnostic survey through a precise step-by-step process is vital. Early diagnosis of a newborn's disease, either as a channelopathy or neurometabolic disorder, is important for the long-term neurodevelopment of the child.
Collapse
Affiliation(s)
- Inn-Chi Lee
- Division of Pediatric Neurology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|