Mujukian A, Ho NC, Day MJ, Ebramzadeh E, Sangiorgio SN. A Systematic Review of Unsystematic Total Ankle Replacement Wear Evaluations.
JBJS Rev 2020;
8:e0091. [PMID:
32149932 DOI:
10.2106/jbjs.rvw.19.00091]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND
Numerous studies have reported the use of laboratory multistation joint simulators to successfully predict wear performance and functionality of hip and knee replacements. In contrast, few studies in the peer-reviewed literature have used joint simulation to quantify the wear performance and functionality of ankle replacements. We performed a systematic review of the literature on joint simulator studies that quantified polyethylene wear in total ankle arthroplasty. In addition to the quantified wear results, the load and motion parameters were identified and compared among the studies.
METHODS
A search was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to identify articles reporting total ankle replacement polyethylene wear using joint simulators.
RESULTS
Nine studies that used joint simulators and 1 study that used a computer simulation were found. Although all studies used physiological multidirectional motions (i.e., internal/external rotation, plantar flexion/dorsiflexion, anterior/posterior translation), there was large variability among the studies in the magnitudes of these motions. Among these studies, mean non-cross-linked polyethylene wear ranged from 3.3 ± 0.4 to 25.8 ± 3.1 mm per million cycles. In contrast, mean highly cross-linked polyethylene wear ranged from 2.1 ± 0.3 to 3.3 ± 0.4 mm per million cycles. The wide distribution in wear rates was attributable to the highly inconsistent kinematic parameters and loads applied as well as differences in implant design and materials.
CONCLUSIONS
There is a severe lack of clinically applicable data on wear performance of total ankle replacements in the peer-reviewed literature. No universal set of kinematic load parameters has been established. Furthermore, only 2 of the published studies have validated their findings using independently derived data, such as retrieval analysis. These shortcomings make it difficult to compare findings as a function of design parameters and materials, or to draw clinically relevant conclusions from these simulations. More work is required to enhance the predictive capability of in vitro simulations of total ankle replacements.
CLINICAL RELEVANCE
The results of joint wear simulator studies may not accurately represent in vivo wear of total ankle replacements. Joint simulator studies should establish that they are accurately replicating in vivo wear, thus enabling use of their predictive capabilities for new materials and designs.
Collapse