1
|
Gençel D, Erbil NN, Demiryürek Ş, Demiryürek AT. Current and emerging treatment modalities for fibrodysplasia ossificans progressiva. Expert Opin Pharmacother 2024:1-10. [PMID: 39451784 DOI: 10.1080/14656566.2024.2422548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024]
Abstract
INTRODUCTION Heterotopic ossification (HO), acquired or hereditary, is a diverse pathological condition defined by the production of extraskeletal bone in muscles, soft tissues, and connective tissues. Acquired HO is relatively prevalent and develops mostly in response to trauma, although its etiology is unknown. Genetic forms provide insight into the pathobiological mechanisms of this disorder. Fibrodysplasia ossificans progressiva (FOP) is a rare hereditary form of HO that can have a significant impact on affected individuals. FOP steadily weakens affected subjects and increases their risk of death. AREAS COVERED The U.S. Food and Drug Administration has recently approved the retinoid palovarotene as the first compound to treat heterotopic ossification in patients with FOP. This review provides a comprehensive overview of current and potential future pharmacotherapeutic options and their modes of action. The online databases PubMed, Cochrane Library, Web of Science, and ClinicalTrials.gov were searched using the terms 'heterotopic ossification' and 'fibrodysplasia ossificans progressiva' or synonyms, with a special focus over the last 5 years of publications. EXPERT OPINION Approval of palovarotene, as the first retinoid indicated for reduction in the volume of new HO, may revolutionize the therapeutic landscape. However, long-term safety and efficacy data for palovarotene are currently lacking.
Collapse
Affiliation(s)
- Dilan Gençel
- Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Nejla Nur Erbil
- Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Şeniz Demiryürek
- Department of Physiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | | |
Collapse
|
2
|
Yang S, Cui R, Li J, Dai R. Challenges in the diagnosis of fibrodysplasia ossificans progressiva with the ACVR1 mutation (c.774G > C, p.R258S): a case report and review of literature. Orphanet J Rare Dis 2024; 19:360. [PMID: 39350127 PMCID: PMC11443894 DOI: 10.1186/s13023-024-03363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
The diagnosis of fibrodysplasia ossificans progressiva is missed or delayed because of its insidious precursors, especially in uncharacteristic cases. Fibrodysplasia ossificans progressiva, which mostly displayed the mutation c.617G > A, p.R206H, is characterized by congenital malformation of the great toe and progressive extra-skeletal ossification of ligaments, tendons and muscles. The mutation c.774G > C, p.R258S (HGVS: NC_000002.11:g.158626896 C > G) in activin A receptor type I is an infrequent etiology of fibrodysplasia ossificans progressiva and can present different clinical features. Awareness of these multiple clinical features will help endocrinologists in the early diagnosis of fibrodysplasia ossificans progressiva. We report a case of fibrodysplasia ossificans progressiva with the activin A receptor type I mutation c.774G > C, p.R258S, which was diagnosed before its ossifying period.
Collapse
Affiliation(s)
- Siqi Yang
- National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, Central South University, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Rongrong Cui
- National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, Central South University, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Jialin Li
- National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, Central South University, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Ruchun Dai
- National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, Central South University, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
3
|
Haviv R, Zeitlin L, Moshe V, Ziv A, Rabinowicz N, De Benedetti F, Prencipe G, Matteo V, De Cunto CL, Hsiao EC, Uziel Y. Long-term use of interleukin-1 inhibitors reduce flare activity in patients with fibrodysplasia ossificans progressiva. Rheumatology (Oxford) 2024; 63:2597-2604. [PMID: 38733591 PMCID: PMC11371373 DOI: 10.1093/rheumatology/keae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/25/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
OBJECTIVES Fibrodysplasia ossificans progressiva (FOP) is one of the most catastrophic forms of genetic heterotopic ossification (HO). FOP is characterized by severe, progressive inflammatory flare-ups, that often lead to HO. The flare-ups are associated with increased inflammatory cytokine production, suggesting auto-inflammatory features driven by IL-1β. This study describes the short- and long-term responses of FOP patients to anti-IL-1 therapy. METHODS Previously, we reported that a patient with FOP treated with anti-IL-1 agents showed dramatically lower rates of flare-ups, improved flare-up symptoms, decreased use of glucocorticoids and apparently decreased size of residual lesions. Plasma analyses also showed marked elevation in IL-1β levels during a FOP flare, further supporting a role of IL-1β in the pathogenesis of FOP flares. Here, we report results from long-term therapy with IL-1 inhibitors in that patient and describe 3 additional patients, from two medical centres. RESULTS All 4 patients showed persistent improvement in flare activity during treatment with IL-1 inhibitors, with minimal formation of new HO sites. Two patients who stopped therapy experienced a resurgence of flare activity that was re-suppressed upon re-initiation. These patients had IL-1β levels comparable to those in IL-1β-driven diseases. Child Health Assessment Questionnaires confirmed extensive subjective improvements in the pain and general health visual analogue scales. CONCLUSION This case series demonstrates significant benefits from IL-1 inhibitors for reducing flare activity and improving the general health of patients with FOP. These data provide strong support for additional studies to better understand the function of IL-1 inhibition, primarily in reducing the formation of new HO. FUNDING RH received support from the International FOP Association ACT grant; ECH received support from NIH/NIAMS R01AR073015 and the UCSF Robert Kroc Chair in Connective Tissue and Rheumatic Diseases III.
Collapse
Affiliation(s)
- Ruby Haviv
- Pediatric Rheumatology Unit, Department of Pediatrics, Meir Medical Center, Kfar Saba, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Leonid Zeitlin
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Pediatric Orthopedic Department, Dana-Dwek Children's Hospital, Sourasky Medical Center, Tel Aviv, Israel
| | - Veronica Moshe
- Pediatric Rheumatology Unit, Department of Pediatrics, Meir Medical Center, Kfar Saba, Israel
| | - Amit Ziv
- Pediatric Rheumatology Unit, Department of Pediatrics, Meir Medical Center, Kfar Saba, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Noa Rabinowicz
- Pediatric Rheumatology Unit, Department of Pediatrics, Meir Medical Center, Kfar Saba, Israel
| | | | - Giusi Prencipe
- Division of Rheumatology, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Valentina Matteo
- Division of Rheumatology, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Carmen Laura De Cunto
- Rheumatology Section, Department of Pediatrics, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Edward C Hsiao
- Division of Endocrinology and Metabolism, Institute for Human Genetics, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, University of California, San Francisco, USA
| | - Yosef Uziel
- Pediatric Rheumatology Unit, Department of Pediatrics, Meir Medical Center, Kfar Saba, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Towler OW, Shore EM, Kaplan FS. Molecular Developmental Biology of Fibrodysplasia Ossificans Progressiva: Measuring the Giant by Its Toe. Biomolecules 2024; 14:1009. [PMID: 39199396 PMCID: PMC11353020 DOI: 10.3390/biom14081009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
When a genetic disease is characterized by the abnormal activation of normal molecular pathways and cellular events, it is illuminating to critically examine the places and times of these activities both in health and disease. Therefore, because heterotopic ossification (HO) in fibrodysplasia ossificans progressiva (FOP) is by far the disease's most prominent symptom, attention is also directed toward the pathways and processes of bone formation during skeletal development. FOP is recognizable by effects of the causative mutation on skeletal development even before HO manifests, specifically in the malformation of the great toes. This signature skeletal phenotype is the most highly penetrant, but is only one among several skeletal abnormalities associated with FOP. Patients may present clinically with joint malformation and ankylosis, particularly in the cervical spine and costovertebral joints, as well as characteristic facial features and a litany of less common, non-skeletal symptoms, all stemming from missense mutations in the ACVR1 gene. In the same way that studying the genetic cause of HO advanced our understanding of HO initiation and progression, insight into the roles of ACVR1 signaling during tissue development, particularly in the musculoskeletal system, can be gained from examining altered skeletal development in individuals with FOP. This review will detail what is known about the molecular mechanisms of developmental phenotypes in FOP and the early role of ACVR1 in skeletal patterning and growth, as well as highlight how better understanding these processes may serve to advance patient care, assessments of patient outcomes, and the fields of bone and joint biology.
Collapse
Affiliation(s)
- O. Will Towler
- Division of Plastic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Eileen M. Shore
- Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederick S. Kaplan
- Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Kurtanović N, Gogić E, Džubur A, Begić E, Bijedić A. Fibrodysplasia Ossificans Progressiva: A Man Turned to Stone. Cureus 2024; 16:e61661. [PMID: 38966484 PMCID: PMC11223740 DOI: 10.7759/cureus.61661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an exceptionally rare genetic disorder, representing humans' most debilitating form of extraskeletal ossification. It is characterized by progressive postnatal heterotopic ossification of connective tissue and malformations of the big toes. In FOP, ectopic ossification usually begins in the upper paraspinal muscles and then spreads from axial to appendicular regions, cranial to caudal directions, and proximal to distal sites. The mean life expectancy for these patients is typically 40-50 years. Most patients need partial or complete assistance with walking by age 30, and common causes of death include thoracic insufficiency syndrome and pneumonia. We present the case of a patient with an advanced stage of FOP, highlighting its complex and progressive nature. The patient exhibits severe impairment of jaw mobility, swallowing difficulties, speech impediments, and hearing impairment. Additionally, severe kyphoscoliosis, heterotopic ossification of intercostal and paravertebral muscles, and ankylosis of the spine and all major joints of the upper and lower extremities, except the metacarpophalangeal and proximal interphalangeal joints, are evident. We discuss disease presentation, current management options, and rehabilitation challenges. To our knowledge, this is the first reported case of this rare disease from our country.
Collapse
Affiliation(s)
- Nadina Kurtanović
- Physical Medicine and Rehabilitation, Health Institution Spa Gata Bihać, Bihać, BIH
| | - Ena Gogić
- Physical Medicine and Rehabilitation, Clinical Center University of Sarajevo, Sarajevo, BIH
| | - Alen Džubur
- Cardiology, Clinical Center University of Sarajevo, Sarajevo, BIH
| | - Edin Begić
- Cardiology, Sarajevo School of Science and Technology, Sarajevo, BIH
| | - Asja Bijedić
- Physical Medicine and Rehabilitation, University Clinical Center Tuzla, Tuzla, BIH
| |
Collapse
|
6
|
Davis AJ, Brooijmans N, Brubaker JD, Stevison F, LaBranche TP, Albayya F, Fleming P, Hodous BL, Kim JL, Kim S, Lobbardi R, Palmer M, Sheets MP, Vassiliadis J, Wang R, Williams BD, Wilson D, Xu L, Zhu XJ, Bouchard K, Hunter JW, Graul C, Greenblatt E, Hussein A, Lyon M, Russo J, Stewart R, Dorsch M, Guzi TJ, Kadambi V, Lengauer C, Garner AP. An ALK2 inhibitor, BLU-782, prevents heterotopic ossification in a mouse model of fibrodysplasia ossificans progressiva. Sci Transl Med 2024; 16:eabp8334. [PMID: 38809966 DOI: 10.1126/scitranslmed.abp8334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/07/2024] [Indexed: 05/31/2024]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease driven by gain-of-function variants in activin receptor-like kinase 2 (ALK2), the most common variant being ALK2R206H. In FOP, ALK2 variants display increased and dysregulated signaling through the bone morphogenetic protein (BMP) pathway resulting in progressive and permanent replacement of skeletal muscle and connective tissues with heterotopic bone, ultimately leading to severe debilitation and premature death. Here, we describe the discovery of BLU-782 (IPN60130), a small-molecule ALK2R206H inhibitor developed for the treatment of FOP. A small-molecule library was screened in a biochemical ALK2 binding assay to identify potent ALK2 binding compounds. Iterative rounds of structure-guided drug design were used to optimize compounds for ALK2R206H binding, ALK2 selectivity, and other desirable pharmacokinetic properties. BLU-782 preferentially bound to ALK2R206H with high affinity, inhibiting signaling from ALK2R206H and other rare FOP variants in cells in vitro without affecting signaling of closely related homologs ALK1, ALK3, and ALK6. In vivo efficacy of BLU-782 was demonstrated using a conditional knock-in ALK2R206H mouse model, where prophylactic oral dosing reduced edema and prevented cartilage and heterotopic ossification (HO) in both muscle and bone injury models. BLU-782 treatment preserved the normal muscle-healing response in ALK2R206H mice. Delayed dosing revealed a short 2-day window after injury when BLU-782 treatment prevented HO in ALK2R206H mice, but dosing delays of 4 days or longer abrogated HO prevention. Together, these data suggest that BLU-782 may be a candidate for prevention of HO in FOP.
Collapse
Affiliation(s)
- Alison J Davis
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | | | | | - Faith Stevison
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | | | - Faris Albayya
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | - Paul Fleming
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | - Brian L Hodous
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | - Joseph L Kim
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | - Sean Kim
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | - Riadh Lobbardi
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | - Michael Palmer
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | | | | | - Ruduan Wang
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | | | - Douglas Wilson
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | - Lan Xu
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | - Xing Julia Zhu
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | - Marion Dorsch
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | - Timothy J Guzi
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | - Vivek Kadambi
- Blueprint Medicines Corporation, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
7
|
Lounev V, Groppe JC, Brewer N, Wentworth KL, Smith V, Xu M, Schomburg L, Bhargava P, Al Mukaddam M, Hsiao EC, Shore EM, Pignolo RJ, Kaplan FS. Matrix metalloproteinase-9 deficiency confers resilience in fibrodysplasia ossificans progressiva in a man and mice. J Bone Miner Res 2024; 39:382-398. [PMID: 38477818 DOI: 10.1093/jbmr/zjae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Single case studies of extraordinary disease resilience may provide therapeutic insight into conditions for which no definitive treatments exist. An otherwise healthy 35-year-old man (patient-R) with the canonical pathogenic ACVR1R206H variant and the classic congenital great toe malformation of fibrodysplasia ossificans progressiva (FOP) had extreme paucity of post-natal heterotopic ossification (HO) and nearly normal mobility. We hypothesized that patient-R lacked a sufficient post-natal inflammatory trigger for HO. A plasma biomarker survey revealed a reduction in total matrix metalloproteinase-9 (MMP-9) compared to healthy controls and individuals with quiescent FOP. Whole exome sequencing identified compound heterozygous variants in MMP-9 (c.59C > T, p.A20V and c.493G > A, p.D165N). Structural analysis of the D165N variant predicted both decreased MMP-9 secretion and activity that were confirmed by enzyme-linked immunosorbent assay and gelatin zymography. Further, human proinflammatory M1-like macrophages expressing either MMP-9 variant produced significantly less Activin A, an obligate ligand for HO in FOP, compared to wildtype controls. Importantly, MMP-9 inhibition by genetic, biologic, or pharmacologic means in multiple FOP mouse models abrogated trauma-induced HO, sequestered Activin A in the extracellular matrix (ECM), and induced regeneration of injured skeletal muscle. Our data suggest that MMP-9 is a druggable node linking inflammation to HO, orchestrates an existential role in the pathogenesis of FOP, and illustrates that a single patient's clinical phenotype can reveal critical molecular mechanisms of disease that unveil novel treatment strategies.
Collapse
Affiliation(s)
- Vitali Lounev
- Department of Orthopaedic Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- The Center for Research in FOP and Related Disorders, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Jay C Groppe
- Department of Biomedical Sciences, Texas A & M University College of Dentistry, Dallas, TX 75246-2013, United States
| | - Niambi Brewer
- Department of Orthopaedic Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- The Center for Research in FOP and Related Disorders, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Kelly L Wentworth
- Department of Medicine, Division of Endocrinology and Metabolism, Zuckerberg San Francisco General Hospital, University of California, San Francisco, CA 94143-0794, United States
- Department of Medicine, University of California, San Francisco, CA 94143-0794, United States
| | | | - Meiqi Xu
- Department of Orthopaedic Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- The Center for Research in FOP and Related Disorders, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charite University Hospital, D-10115 Berlin, Germany
| | | | - Mona Al Mukaddam
- Department of Orthopaedic Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- The Center for Research in FOP and Related Disorders, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- Department of Medicine, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Edward C Hsiao
- Department of Medicine, University of California, San Francisco, CA 94143-0794, United States
- Division of Endocrinology and Metabolism, The Institute for Human Genetics, the Program in Craniofacial Biology, University of California, San Francisco, CA 94143-0794, United States
| | - Eileen M Shore
- Department of Orthopaedic Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- The Center for Research in FOP and Related Disorders, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- Department of Genetics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Robert J Pignolo
- Department of Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- The Center for Research in FOP and Related Disorders, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
- Department of Medicine, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| |
Collapse
|
8
|
Mejias Rivera L, Shore EM, Mourkioti F. Cellular and Molecular Mechanisms of Heterotopic Ossification in Fibrodysplasia Ossificans Progressiva. Biomedicines 2024; 12:779. [PMID: 38672135 PMCID: PMC11048698 DOI: 10.3390/biomedicines12040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a debilitating genetic disorder characterized by recurrent episodes of heterotopic ossification (HO) formation in muscles, tendons, and ligaments. FOP is caused by a missense mutation in the ACVR1 gene (activin A receptor type I), an important signaling receptor involved in endochondral ossification. The ACVR1R206H mutation induces increased downstream canonical SMAD-signaling and drives tissue-resident progenitor cells with osteogenic potential to participate in endochondral HO formation. In this article, we review aberrant ACVR1R206H signaling and the cells that give rise to HO in FOP. FOP mouse models and lineage tracing analyses have been used to provide strong evidence for tissue-resident mesenchymal cells as cellular contributors to HO. We assess how the underlying mutation in FOP disrupts muscle-specific dynamics during homeostasis and repair, with a focus on muscle-resident mesenchymal cells known as fibro-adipogenic progenitors (FAPs). Accumulating research points to FAPs as a prominent HO progenitor population, with ACVR1R206H FAPs not only aberrantly differentiating into chondro-osteogenic lineages but creating a permissive environment for bone formation at the expense of muscle regeneration. We will further discuss the emerging role of ACVR1R206H FAPs in muscle regeneration and therapeutic targeting of these cells to reduce HO formation in FOP.
Collapse
Affiliation(s)
- Loreilys Mejias Rivera
- Cell and Molecular Biology, Genetics and Epigenetics Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
- Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eileen M. Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
- Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Foteini Mourkioti
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Musculoskeletal Program, Penn Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Guyolla YH, Abebe FT, Ahmed AJ. Fibrodysplasia Ossificans Progressiva: A rare disease due to unawareness, case report and literature review. Int J Surg Case Rep 2024; 117:109548. [PMID: 38513414 PMCID: PMC10966195 DOI: 10.1016/j.ijscr.2024.109548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
INTRODUCTION AND IMPORTANCE Fibrodysplasia Ossificans Progressiva is an ultra-rare genetic disorder of progressive soft tissue ossification. Due to unawareness and poor clinical suspicion, the rate of misdiagnosis, delay in diagnosis, and unnecessary diagnostic procedures leading to permanent injury and lifelong disability is common. Here we report this rare genetic disorder in a six years old child who was initially misdiagnosed as multiple exostoses and operated on. CASE PRESENTATION A 6 year old child presented with swellings over the posterior neck and back for four years. The patient was misdiagnosed as a case of multiple exostoses and an excisional biopsy was done a year back. The swelling worsened after the excision; currently, she cannot move her neck from side to side, and flex and extend. Examination revealed multiple hard and slightly tender masses over the posterior neck, para scapular and thoracolumbar para spinal region. She also has hallux valgus deformity that had been present since birth. CT (computed tomography) scan confirmed extensive extra-skeletal soft tissue ossification. CLINICAL DISCUSSION The progression of heterotopic ossification is characteristically anatomic and orderly, typically initially involving the body's dorsal, axial, cranial, and proximal regions and later in the ventral, appendicular, caudal, and distal regions. Skeletal muscles of the tongue, diaphragm, extra-ocular muscles, cardiac muscles, and smooth muscles are inexplicably spared. CONCLUSION Early diagnosis prevents potentially harmful diagnostic and therapeutic procedures. The characteristic big toes malformation is the most important and best key for the early suspicion of the diagnosis.
Collapse
Affiliation(s)
- Yabello Hirbo Guyolla
- Jimma University Medical Centre, College of Health Sciences, Department of Surgery, Jimma, Ethiopia.
| | - Fasil Tesfaye Abebe
- Jimma University Medical Centre, College of Health Sciences, Department of Surgery, Jimma, Ethiopia
| | | |
Collapse
|
10
|
Kobayashi M, Hirai M, Suzuki M, Sasaki A. Tracheostomy for the pediatric patient with fibrodysplasia ossificans progressiva: a case report. Surg Case Rep 2024; 10:61. [PMID: 38485853 PMCID: PMC10940568 DOI: 10.1186/s40792-024-01864-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Fibrodysplasia ossificans progressiva (FOP) is an extremely rare connective tissue disease characterized by subsequent ossification of skeletal muscles, tendons, ligaments, and other fibrous tissues. The ossification of these tissues progresses during childhood and leads to limb and trunk deformities. Since any surgery may trigger subsequent ossification, it is relatively contraindicated for patients with FOP. In this report, we describe our experience in performing tracheostomy in a pediatric patient with FOP who developed a restrictive respiratory disorder due to progressive deformity of the trunk. CASE PRESENTATION A 12-year-old boy, diagnosed with FOP at the age of one, was referred for a tracheotomy after requiring 2 months of oral intubation and mechanical ventilation due to severe deformity-induced dyspnea. After changing from oral intubation to nasal intubation, we carefully considered the indications and benefits of tracheostomy in patients with FOP. Eventually, tracheostomy was successfully performed using our surgical design: creating a skin incision at the level of the cricoid cartilage that can always be identified, creating inverted U-shaped incision on the anterior tracheal wall to make a flap, and suturing the entire circumference of the tracheotomy and skin. One month after the surgery, he regained normal breathing and pronunciation and returned to school. The patient showed no unfavorable postoperative outcomes over a 4-year follow-up period. CONCLUSIONS Tracheostomy in our pediatric case of FOP required careful perioperative management. However, it could effectively improve the patient's quality of life.
Collapse
Affiliation(s)
- Megumi Kobayashi
- Department of Surgery, School of Medicine, Iwate Medical University, 2-1-1 Idaidouri, Yahaba, Shiwa, Iwate, 028-3695, Japan.
| | - Misako Hirai
- Ibaraki Welfare and Medical Center, 1872-1 Motoyoshida, Mito, Ibaraki, 310-0836, Japan
| | - Makoto Suzuki
- Department of Surgery, School of Medicine, Iwate Medical University, 2-1-1 Idaidouri, Yahaba, Shiwa, Iwate, 028-3695, Japan
| | - Akira Sasaki
- Department of Surgery, School of Medicine, Iwate Medical University, 2-1-1 Idaidouri, Yahaba, Shiwa, Iwate, 028-3695, Japan
| |
Collapse
|
11
|
Li L, Lu M, He X, Zou C, Zheng C, Wang Y, Tang F, Luo Y, Zhou Y, Min L, Tu C. Pay Attention to the Osteochondromas in Fibrodysplasia Ossificans Progressiva. Orthop Surg 2024; 16:781-787. [PMID: 38185793 PMCID: PMC10925518 DOI: 10.1111/os.13956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Fibrodysplasia ossificans progressiva (FOP) is an extremely rare disease characterized by malformation of the bilateral great toes and progressive heterotopic ossification. The clinical features of FOP occur due to dysfunction of the bone morphogenetic protein (BMP) signaling pathway induced by the mutant activin A type I receptor/activin-like kinase-2 (ACVR1/ALK2) which contributes to the clinical features in FOP. Dysregulation of the BMP signaling pathway causes the development of osteochondroma. Poor awareness of the association between FOP and osteochondromas always results in misdiagnosis and unnecessary invasive operation. CASE PRESENTATION In this study, we present a case of classical FOP involving osteochondroma. An 18-year-old male adolescent, born with deformity of bilateral big toes, complained multiple masses on his back for 1 year. The mass initially emerged with a tough texture and did not cause pain. It was misdiagnosed as an osteochondroma. After two surgeries, the masses became hard and spread around the entire back region. Meanwhile, extensive heterotopic ossification was observed around the back, neck, hip, knee, ribs, and mandible during follow-up. Osteochondromas were observed around the bilateral knees. No abnormalities were observed in the laboratory blood test results. Whole exome sequencing revealed missense mutation of ACVR1/ALK2 (c.617G > A; p.R206H) in the patient and confirmed the diagnosis of FOP. CONCLUSION In summary, classical FOP always behaves as a bilateral deformity of the big toes, as well as progressive ectopic ossification and osteochondromas in the distal femur and proximal tibia. An understanding of the association between osteochondromas and FOP aids in diagnosis and avoids unnecessary invasive management in patients.
Collapse
Affiliation(s)
- Longqing Li
- Department of Orthopedics, Orthopedics Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Minxun Lu
- Department of Orthopedics, Orthopedics Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Xuanhong He
- Department of Orthopedics, Orthopedics Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Chang Zou
- Department of Orthopedics, Orthopedics Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Chuanxi Zheng
- Department of Orthopedics, Orthopedics Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Yitian Wang
- Department of Orthopedics, Orthopedics Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Fan Tang
- Department of Orthopedics, Orthopedics Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Yi Luo
- Department of Orthopedics, Orthopedics Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Yong Zhou
- Department of Orthopedics, Orthopedics Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Li Min
- Department of Orthopedics, Orthopedics Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Chongqi Tu
- Department of Orthopedics, Orthopedics Research Institute, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
12
|
Ni H, Tang S, Zhang Y. A fibrodysplasia ossificans progressiva patient with a rare missense mutation in ACVR1 detected on 18F-FDG PET/CT. Joint Bone Spine 2024; 91:105682. [PMID: 38159793 DOI: 10.1016/j.jbspin.2023.105682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an exceedingly rare human genetic disorder characterized by the progressive and incapacitating formation of ectopic bone outside the skeleton. We report a case of FOP patient with mutations within the ACVR1 gene (c.982G>A; p.G328R). 18F-FDG positron emission tomography/computed tomography (PET/CT) was carried out for disease assessment. Previous studies have shown increased FDG uptake in regions of heterotopic ossification (HO) in FOP. However, in our study, the PET/CT features demonstrate that active ossificans exhibit increased 18F-FDG uptake, whereas end-stage ossifications do not. Collectively, 18F-FDG PET/CT emerges as a prospective approach to evaluate medication efficacy in the early stages, directing early intervention and pharmacological management of FOP before ossifications formation.
Collapse
Affiliation(s)
- Haopeng Ni
- Department of Nuclear Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang, China
| | - Songhan Tang
- Department of Nuclear Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang, China
| | - Ying Zhang
- Department of Nuclear Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Qi L, Guo Y. Fibrodysplasia Ossificans Progressiva: A Case Report. Cureus 2024; 16:e55528. [PMID: 38576636 PMCID: PMC10993004 DOI: 10.7759/cureus.55528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant genetic disorder characterized by congenital great toe malformations and progressive ectopic ossification. We report a typical case of FOP in a 22-year-old female patient presenting with limited movement of the left knee joint, which began following trauma in 2019. Clinical examination revealed a large mass behind the left knee, bilateral great toe deformities, and no palpable superficial lymph nodes, without systemic pain or other discomfort. Imaging and genetic testing further supported the diagnosis of FOP, demonstrating high-density ossification within soft tissues and a mutation in the ACVR1 gene. Treatment involved a combination of methylprednisolone and alendronate sodium vitamin D3 tablets, which yielded some therapeutic efficacy. The discussion emphasizes clinical diagnosis, pathogenesis, and treatment strategies for FOP, including injury prevention, rehabilitation exercises, and pharmacological interventions. Despite the lack of definitive treatment options, timely diagnosis and comprehensive management can effectively alleviate symptoms and improve the quality of life for affected individuals.
Collapse
Affiliation(s)
- Linzeng Qi
- Orthopedics, Qilu Hospital of Shandong University, Jinan, CHN
| | - Yongyuan Guo
- Orthopedics, Qilu Hospital of Shandong University, Jinan, CHN
| |
Collapse
|
14
|
Wang Y, Nguyen JH, de Ruiter RD, Mendell J, Srinivasan D, Davis JD, Eekhoff EMW. Garetosmab in Fibrodysplasia Ossificans Progressiva: Clinical Pharmacology Results from the Phase 2 LUMINA-1 Trial. J Clin Pharmacol 2024; 64:264-274. [PMID: 37694449 DOI: 10.1002/jcph.2344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Here, we report the clinical pharmacology data from LUMINA-1 (NCT03188666), a Phase 2 trial that evaluated garetosmab (a monoclonal antibody against activin A) in patients with fibrodysplasia ossificans progressiva. Forty-four patients were randomly assigned to intravenous 10 mg/kg of garetosmab or placebo every 4 weeks in a double-blind 28-week treatment period, followed by a 28-week open-label treatment period with garetosmab, and subsequent open-label extension. Serum samples were obtained to assess pharmacokinetics (PK), immunogenicity, and bone morphogenetic protein 9 (BMP9). Comparative exposure-response analyses for efficacy and safety were performed with trough concentrations (Ctrough ) of garetosmab prior to dosing. Steady-state PK was reached 12-16 weeks after the first dose of garetosmab, with mean (standard deviation) Ctrough of 105 ± 30.8 mg/L. Immunogenicity assessments showed anti-garetosmab antibody formation in 1 patient (1/43; 2.3%); titers were low, and did not affect PK or clinical efficacy. Median concentrations of BMP9 in serum were approximately 40 pg/mL at baseline. There were no meaningful differences in PK or BMP9 concentration-time profiles between patients who did and did not experience epistaxis or death. The comparative exposure-response analyses demonstrated no association between Ctrough and efficacy or safety. PK findings were consistent with prior data in healthy volunteers and were typical for a monoclonal antibody administered at doses sufficient to saturate target-mediated clearance. There were no trends that suggested patients with higher serum exposures to garetosmab were more likely to experience a reduction in heterotopic ossification or adverse events. Garetosmab is being further evaluated in the Phase 3 OPTIMA trial.
Collapse
Affiliation(s)
- Yuhuan Wang
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | - Ruben D de Ruiter
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (UMC), Vrije Universiteit, Amsterdam UMC Expert Center in Rare Bone Disease, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | | | | | | | - E Marelise W Eekhoff
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (UMC), Vrije Universiteit, Amsterdam UMC Expert Center in Rare Bone Disease, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Ahn TY, Han JB, Bae JY, Woo SH. Superior mesenteric artery syndrome in a patient with fibrodysplasia ossificans progressiva. Bone Rep 2023; 19:101702. [PMID: 37520933 PMCID: PMC10382279 DOI: 10.1016/j.bonr.2023.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
An 18-year-old boy with fibrodysplasia ossificans progressiva lost weight at an accelerated rate due to gastrointestinal symptoms, resulting in a weight loss of 36 kg in 1 year. His first outpatient abdominal computed tomography (CT) result was unremarkable. Since the patient had biliary vomiting during hospitalization, his CT was reexamined, and the superior mesenteric artery syndrome diagnosis was confirmed. Thus, clinicians must consider superior mesenteric artery syndrome when presented with weight loss.
Collapse
Affiliation(s)
- Tae Young Ahn
- Department of Orthopedic Surgery, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - Jung Bum Han
- Department of Orthopedic Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Jung Yun Bae
- Department of Orthopedic Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Seung Hun Woo
- Department of Orthopedic Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
16
|
Anwar S, Yokota T. Navigating the Complex Landscape of Fibrodysplasia Ossificans Progressiva: From Current Paradigms to Therapeutic Frontiers. Genes (Basel) 2023; 14:2162. [PMID: 38136984 PMCID: PMC10742611 DOI: 10.3390/genes14122162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an enigmatic, ultra-rare genetic disorder characterized by progressive heterotopic ossification, wherein soft connective tissues undergo pathological transformation into bone structures. This incapacitating process severely limits patient mobility and poses formidable challenges for therapeutic intervention. Predominantly caused by missense mutations in the ACVR1 gene, this disorder has hitherto defied comprehensive mechanistic understanding and effective treatment paradigms. This write-up offers a comprehensive overview of the contemporary understanding of FOP's complex pathobiology, underscored by advances in molecular genetics and proteomic studies. We delve into targeted therapy, spanning genetic therapeutics, enzymatic and transcriptional modulation, stem cell therapies, and innovative immunotherapies. We also highlight the intricate complexities surrounding clinical trial design for ultra-rare disorders like FOP, addressing fundamental statistical limitations, ethical conundrums, and methodological advancements essential for the success of interventional studies. We advocate for the adoption of a multi-disciplinary approach that converges bench-to-bedside research, clinical expertise, and ethical considerations to tackle the challenges of ultra-rare diseases like FOP and comparable ultra-rare diseases. In essence, this manuscript serves a dual purpose: as a definitive scientific resource for ongoing and future FOP research and a call to action for innovative solutions to address methodological and ethical challenges that impede progress in the broader field of medical research into ultra-rare conditions.
Collapse
Affiliation(s)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| |
Collapse
|
17
|
Pignolo RJ, Al Mukaddam M, Baujat G, Brown MA, De Cunto C, Hsiao EC, Keen R, Le Quan Sang KH, Grogan DR, Marino R, Strahs AR, Kaplan FS. Study methodology and insights from the palovarotene clinical development program in fibrodysplasia ossificans progressiva. BMC Med Res Methodol 2023; 23:269. [PMID: 37957586 PMCID: PMC10642058 DOI: 10.1186/s12874-023-02080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The design of clinical trials in rare diseases is often complicated by a lack of real-world translational knowledge. Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare genetic disorder characterized by skeletal malformations and progressive heterotopic ossification (HO). Palovarotene is a selective retinoic acid receptor gamma agonist. Here, we describe the methodology of three studies in the palovarotene clinical development program in FOP and discuss insights that could inform future research, including endpoint suitability and the impact of trial design. METHODS PVO-1A-001 (NCT02322255) was a prospective, protocol-specified, longitudinal FOP natural history study (NHS). PVO-1A-201 (NCT02190747) was a randomized, double-blind, placebo-controlled phase II trial; PVO-1A-202 (NCT02279095) was its open-label extension. Trial designs, including treatment regimens and imaging assessments, were refined between PVO-1A-201 and PVO-1A-202, and within PVO-1A-202, based on emerging data as the studies progressed. Palovarotene doses were administered using a flare-up treatment regimen (higher dose for 2/4 weeks, followed by lower dose for 4/≥8 weeks; from flare-up onset), with or without accompanying chronic (daily) treatment. Flare-up and disease progression outcomes were assessed, including incidence and volume of new HO during flare-ups and/or annually, as well as other clinical, patient-reported, and exploratory outcomes. Safety was monitored throughout all studies. RESULTS Overall, 114 and 58 individuals with FOP were enrolled in the NHS and phase II trials, respectively. Results of the NHS and PVO-1A-201 were published in 2022; complete results of PVO-1A-202 will be publicly available in due course. Together the studies yielded important information on endpoint suitability, including that low-dose whole-body computed tomography was the optimum imaging modality for assessing HO progression annually and that long study durations are needed to detect substantial changes in functional and patient-reported outcomes. CONCLUSIONS A flexible clinical development program is necessary for underexplored rare diseases to overcome the many challenges faced. Here, the NHS provided a longitudinal evaluation of FOP progression and interventional trials were based on emerging data. The studies described informed the design and endpoints implemented in the phase III MOVE trial (NCT03312634) and provide a foundation for future clinical trial development. TRIAL REGISTRATION NCT02322255 (registered 23/12/2014); NCT02190747 (registered 15/07/2014); NCT02279095 (registered 30/10/2014).
Collapse
Affiliation(s)
| | - Mona Al Mukaddam
- Departments of Orthopedic Surgery & Medicine, The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, US
| | - Geneviève Baujat
- Département de Génétique, Institut Imagine, Hôpital Universitaire Necker-Enfants Malades, Université Paris Cité, Paris, France
| | - Matthew A Brown
- Faculty of Life Sciences and Medicine, King's College London, and Genomics England Ltd, London, UK
| | - Carmen De Cunto
- Pediatric Rheumatology Section, Department of Pediatrics, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Edward C Hsiao
- Division of Endocrinology and Metabolism, the UCSF Metabolic Bone Clinic, the Eli and Edythe Broad Institute for Regeneration Medicine, and the Institute of Human Genetics, Department of Medicine, and the UCSF Program in Craniofacial Biology, University of California-San Francisco, San Francisco, CA, US
| | - Richard Keen
- Centre for Metabolic Bone Disease, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Kim-Hanh Le Quan Sang
- Département de Génétique, Institut Imagine, Hôpital Universitaire Necker-Enfants Malades, Université Paris Cité, Paris, France
| | | | | | | | - Frederick S Kaplan
- Departments of Orthopedic Surgery & Medicine, The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, US
| |
Collapse
|
18
|
Seefried L, Banholzer D, Fischer R, Grafe I, Hüning I, Morhart R, Oheim R, Semler O, Siggelkow H, Stockklausner C, Hoyer-Kuhn H. [Recommendations for the healthcare of patients with FOP]. ORTHOPADIE (HEIDELBERG, GERMANY) 2023; 52:924-930. [PMID: 37603129 PMCID: PMC10622346 DOI: 10.1007/s00132-023-04425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Fibrodysplasia ossificans progressiva (FOP) is a very rare, severe genetic disorder triggered by a gain-of-function mutation in the ACVR1 gene that codes for the type I bone morphogenetic protein (BMP) receptor ACVR1 (activin A receptor-type 1), also known as ALK2 (activin receptor-like kinase-2). It leads to the onset and progression of heterotopic ossification (HO) in soft and connective tissue. HO is often preceded by episodes of soft tissue swelling or flare-ups. Flare-ups, characteristic of FOP, may be induced by trauma, infection, vaccination, or other medications, as well as surgical procedures or may occur spontaneously. As patients age, they develop severe mobility limitations due to progressive HO formation, including immobility, causing a shortened life expectancy. FOP's first characteristic clinical sign is the congenital malformation of one or both big toes with valgus axis deviation, which is present in almost all patients. To confirm the diagnosis, molecular genetic analysis of the ACVR1 gene is possible. AIM OF THE RECOMMENDATIONS This white paper aims to provide an overview of the necessary prerequisites and conditions for the care of patients with FOP and positively contribute to patients with FOP by improving the overall availability of knowledge. To achieve this, relevant aspects of the care of the very rare disease FOP are presented, from the initial diagnosis to the care in regular care based on the authors' knowledge (German FOP network) and the international FOP Treatment Guidelines. The recommendations presented here are addressed to all actors and decision-makers in the health care system and are also intended to inform patients and the public.
Collapse
Affiliation(s)
- L Seefried
- Osteologie/Klinische Studieneinheit, Universität Würzburg, Brettreichstr. 11, 97074, Würzburg, Deutschland.
| | - D Banholzer
- Sozialpädiatrisches Zentrum, Standort Mitte - Olgahospital, Haus M - Pädiatrie 1, Klinikum Stuttgart, Kriegsbergstr. 60, 70174, Stuttgart, Deutschland
| | - R Fischer
- FOP e. V., c/o Ralf Fischer, Frankfurter Landstr. 11a, 61440, Oberursel, Deutschland
| | - I Grafe
- Medizinische Klinik und Poliklinik III, Bereich Endokrinologie und Stoffwechsel, Diabetes, Knochenerkrankungen, UniversitätsCentrum für Gesundes Altern, Universitätsklinikum Carl Gustav Carus der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
- Zentrum für Metabolisch-Immunologische Erkrankungen und Therapietechnologien Sachsen (MITS), Technische Universität Dresden, Dresden, Deutschland
| | - I Hüning
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160, 23538, Lübeck, Deutschland
| | - R Morhart
- , Triftstr. 12, 82467, Garmisch-Partenkirchen, Deutschland
| | - R Oheim
- Institut für Osteologie und Biomechanik, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland
| | - O Semler
- Medizinische Fakultät und Uniklinik Köln, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universität zu Köln, Köln, Deutschland
- Medizinische Fakultät und Uniklinik Köln, Zentrum für seltene Erkrankungen, Universität zu Köln, Köln, Deutschland
| | - H Siggelkow
- Zentrum für Endokrinologie, Osteologie, Rheumatologie, Nuklearmedizin und Humangenetik, MVZ ENDOKRINOLOGIKUM Göttingen, 37075, Göttingen, Deutschland
- Klinik für Gastroenterologie, gastrointestinale Onkologie und Endokrinologie, Universitätsmedizin Göttingen, Göttingen, Deutschland
| | - C Stockklausner
- Abteilung Kinder & Jugendmedizin, Klinikum Garmisch-Partenkirchen, Auenstr. 6, 82467, Garmisch-Partenkirchen, Deutschland
| | - H Hoyer-Kuhn
- Medizinische Fakultät und Uniklinik Köln, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universität zu Köln, Köln, Deutschland.
| |
Collapse
|
19
|
K S M, Gupta A. Challenges in Diagnosing Fibrodysplasia Ossificans Progressiva: A Case Report. JBJS Case Connect 2023; 13:01709767-202312000-00005. [PMID: 37797171 DOI: 10.2106/jbjs.cc.23.00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
CASE A 5-year-old boy presented with multiple bony swellings in the dorsal spine region, restricted left shoulder movement, and a previous misdiagnosis of hereditary multiple exostoses (HMEs) resulting in unnecessary excision of the right scapular lesion. Clinical examination revealed hallux valgus, brachydactyly, and limited neck movement. Radiography and computed tomography confirmed a diagnosis of fibrodysplasia ossificans progressiva (FOP). CONCLUSION This case report underscores the importance of accurate diagnosis and differentiation between FOP and HME. Hallux valgus, brachydactyly, and restricted neck movement suggested FOP. It is paramount for orthopaedic surgeons to exclude rare disorders before performing any interventions. Biopsies or resections of bone formation areas should be avoided for patients with FOP.
Collapse
Affiliation(s)
- Meghashyama K S
- Nanavati Max Superspeciality Hospital, Mumbai, Maharashtra, India
| | | |
Collapse
|
20
|
Di Rocco M, Forleo-Neto E, Pignolo RJ, Keen R, Orcel P, Funck-Brentano T, Roux C, Kolta S, Madeo A, Bubbear JS, Tabarkiewicz J, Szczepanek M, Bachiller-Corral J, Cheung AM, Dahir KM, Botman E, Raijmakers PG, Al Mukaddam M, Tile L, Portal-Celhay C, Sarkar N, Hou P, Musser BJ, Boyapati A, Mohammadi K, Mellis SJ, Rankin AJ, Economides AN, Trotter DG, Herman GA, O'Meara SJ, DelGizzi R, Weinreich DM, Yancopoulos GD, Eekhoff EMW, Kaplan FS. Garetosmab in fibrodysplasia ossificans progressiva: a randomized, double-blind, placebo-controlled phase 2 trial. Nat Med 2023; 29:2615-2624. [PMID: 37770652 PMCID: PMC10579054 DOI: 10.1038/s41591-023-02561-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare disease characterized by heterotopic ossification (HO) in connective tissues and painful flare-ups. In the phase 2 LUMINA-1 trial, adult patients with FOP were randomized to garetosmab, an activin A-blocking antibody (n = 20) or placebo (n = 24) in period 1 (28 weeks), followed by an open-label period 2 (28 weeks; n = 43). The primary end points were safety and for period 1, the activity and size of HO lesions. All patients experienced at least one treatment-emergent adverse event during period 1, notably epistaxis, madarosis and skin abscesses. Five deaths (5 of 44; 11.4%) occurred in the open-label period and, while considered unlikely to be related, causality cannot be ruled out. The primary efficacy end point in period 1 (total lesion activity by PET-CT) was not met (P = 0.0741). As the development of new HO lesions was suppressed in period 1, the primary efficacy end point in period 2 was prospectively changed to the number of new HO lesions versus period 1. No placebo patients crossing over to garetosmab developed new HO lesions (0% in period 2 versus 40.9% in period 1; P = 0.0027). Further investigation of garetosmab in FOP is ongoing. ClinicalTrials.gov identifier NCT03188666 .
Collapse
Affiliation(s)
- Maja Di Rocco
- Department of Pediatrics, Unit of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | | | - Richard Keen
- Centre for Metabolic Bone Disease Royal National Orthopaedic Hospital NHS Trust, London, UK
| | - Philippe Orcel
- Department of Rheumatology - DMU Locomotion, Assistance Publique - Hôpitaux de Paris, Paris, France
- INSERM Université Paris Cité, Paris, France
| | - Thomas Funck-Brentano
- Department of Rheumatology - DMU Locomotion, Assistance Publique - Hôpitaux de Paris, Paris, France
- INSERM Université Paris Cité, Paris, France
| | - Christian Roux
- Department of Rheumatology, Cochin Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Sami Kolta
- Department of Rheumatology, Cochin Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Annalisa Madeo
- Department of Pediatrics, Unit of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Judith S Bubbear
- Centre for Metabolic Bone Disease Royal National Orthopaedic Hospital NHS Trust, London, UK
| | - Jacek Tabarkiewicz
- Institute of Medical Sciences, Medical College of Rzeszów University, Rzeszów University, Rzeszów, Poland
| | - Małgorzata Szczepanek
- Institute of Medical Sciences, Medical College of Rzeszów University, Rzeszów University, Rzeszów, Poland
| | | | - Angela M Cheung
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kathryn M Dahir
- Vanderbilt University Medical Center, Program for Metabolic Bone Disorders, Nashville, TN, USA
| | - Esmée Botman
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (UMC), Vrije Universiteit, Amsterdam UMC Expert Center in Rare Bone Disease, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Pieter G Raijmakers
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Mona Al Mukaddam
- Departments of Orthopaedics, Medicine and the Center for Research in FOP & Related Disorders, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lianne Tile
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Peijie Hou
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - E Marelise W Eekhoff
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (UMC), Vrije Universiteit, Amsterdam UMC Expert Center in Rare Bone Disease, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Frederick S Kaplan
- Departments of Orthopaedics, Medicine and the Center for Research in FOP & Related Disorders, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
21
|
Carbone G, Andreasi V, De Nardi P. Intra-abdominal myositis ossificans - a clinically challenging disease: A case report. World J Orthop 2023; 14:362-368. [PMID: 37304193 PMCID: PMC10251263 DOI: 10.5312/wjo.v14.i5.362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/25/2023] [Accepted: 03/29/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Myositis ossificans (MO) is an uncommon disorder characterized by heterotopic ossification within soft tissues. Only a few cases of intra-abdominal MO (IMO) have been described in the literature. Histology could be difficult to understand and a wrong diagnosis could lead to an improper cure.
CASE SUMMARY We herein report the case of IMO in a healthy 69-year-old man. The patient presented with an abdominal mass in the left lower quadrant. A computed tomography scan showed an inhomogeneous mass with multiple calcifications. The patient underwent radical excision of the mass. Histopathological findings were compatible with MO. Five months later the patient showed a recurrence causing hemorrhagic shock due to intractable intralesional bleeding. The patients eventually died within three months since recurrence.
CONCLUSION The case described could be classified as post-traumatic MO that developed close to the previously fractured iliac bone. The subsequent surgical procedure was ineffective and the disease rapidly recurred. The misleading intraoperative diagnosis led to improper surgical treatment with a dramatic evolution.
Collapse
Affiliation(s)
- Gabriele Carbone
- Department of Gastrointestinal Surgery, IRCCS San Raffaele Hospital, Milan 20132, Italy
| | - Valentina Andreasi
- Department of Gastrointestinal Surgery, IRCCS San Raffaele Hospital, Milan 20132, Italy
| | - Paola De Nardi
- Department of Gastrointestinal Surgery, IRCCS San Raffaele Hospital, Milan 20132, Italy
| |
Collapse
|
22
|
Lalonde RL, Nicolas HA, Cutler RS, Pantekidis I, Zhang W, Yelick PC. Functional comparison of human ACVR1 and zebrafish Acvr1l FOP-associated variants in embryonic zebrafish. Dev Dyn 2023; 252:605-628. [PMID: 36606464 PMCID: PMC10311797 DOI: 10.1002/dvdy.566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Fibrodysplasia ossificans progressiva (FOP), a rare disease characterized by progressive heterotopic ossification of muscle and connective tissues, is caused by autosomal dominant activating mutations in the type I receptor, ACVR1/ALK2. The classic human FOP variant, ACVR1R206H , shows increased bone morphogenetic protein (BMP) signaling and activation by activins. RESULTS Here, we performed in vivo functional characterization of human ACVR1R206H and orthologous zebrafish Acvr1lR203H using early embryonic zebrafish dorsoventral patterning as a phenotypic readout for receptor activity. Our results showed that human ACVR1R206H and zebrafish Acvr1lR203H exhibit functional differences in early embryonic zebrafish, and that human ACVR1R206H retained its signaling activity in the absence of a ligand-binding domain (LBD). We also showed, for the first time, that zebrafish Acvr2ba/Acvr2bb receptors are required for human ACVR1R206H signaling in early embryonic zebrafish. CONCLUSIONS Together, these data provide new insight into ACVR1R206H signaling pathways that may facilitate the design of new and effective therapies for FOP patients.
Collapse
Affiliation(s)
- Robert L. Lalonde
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, 136 Harrison Avenue, Boston, MA, USA 02111
| | - Hannah A. Nicolas
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Rowan S. Cutler
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, 136 Harrison Avenue, Boston, MA, USA 02111
| | - Irene Pantekidis
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, 136 Harrison Avenue, Boston, MA, USA 02111
| | - Weibo Zhang
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, 136 Harrison Avenue, Boston, MA, USA 02111
| | - Pamela C. Yelick
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, 136 Harrison Avenue, Boston, MA, USA 02111
| |
Collapse
|
23
|
Iima M, Sakamoto R, Kakigi T, Yamamoto A, Otsuki B, Nakamoto Y, Toguchida J, Matsuda S. The Efficacy of CT Temporal Subtraction Images for Fibrodysplasia Ossificans Progressiva. Tomography 2023; 9:768-775. [PMID: 37104133 PMCID: PMC10142082 DOI: 10.3390/tomography9020062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Purpose: To evaluate the usefulness of CT temporal subtraction (TS) images for detecting emerging or growing ectopic bone lesions in fibrodysplasia ossificans progressiva (FOP). Materials and Methods: Four patients with FOP were retrospectively included in this study. TS images were produced by subtracting previously registered CT images from the current images. Two residents and two board-certified radiologists independently interpreted a pair of current and previous CT images for each subject with or without TS images. Changes in the visibility of the lesion, the usefulness of TS images for lesions with TS images, and the interpreter’s confidence level in their interpretation of each scan were assessed on a semiquantitative 5-point scale (0–4). The Wilcoxon signed-rank test was used to compare the evaluated scores between datasets with and without TS images. Results: The number of growing lesions tended to be larger than that of the emerging lesions in all cases. A higher sensitivity was found in residents and radiologists using TS compared to those not using TS. For all residents and radiologists, the dataset with TS tended to have more false-positive scans than the dataset without TS. All the interpreters recognized TS as useful, and confidence levels when using TS tended to be lower or the same as when not using TS for two residents and one radiologist. Conclusions: TS improved the sensitivity of all interpreters in detecting emerging or growing ectopic bone lesions in patients with FOP. TS could be applied further, including the areas of systematic bone disease.
Collapse
Affiliation(s)
- Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takahide Kakigi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akira Yamamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
- Medical Education Center, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Bungo Otsuki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Junya Toguchida
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
24
|
Wang Y, Wang D, Zhang G, Ma B, Ma Y, Yang Y, Xing S, Kang X, Gao B. Effects of spinal deformities on lung development in children: a review. J Orthop Surg Res 2023; 18:246. [PMID: 36967416 PMCID: PMC10041811 DOI: 10.1186/s13018-023-03665-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/01/2023] [Indexed: 03/28/2023] Open
Abstract
Scoliosis before the age of 5 years is referred to as early-onset scoliosis (EOS). While causes may vary, EOS can potentially affect respiratory function and lung development as children grow. Moreover, scoliosis can lead to thoracic insufficiency syndrome when aggravated or left untreated. Therefore, spinal thoracic deformities often require intervention in early childhood, and solving these problems requires new methods that include the means for both deformity correction and growth maintenance. Therapeutic strategies for preserving the growing spine and thorax include growth rods, vertically expandable titanium artificial ribs, MAGEC rods, braces and casts. The goals of any growth-promoting surgical strategy are to alter the natural history of cardiorespiratory development, limit the progression of underlying spondylarthrosis deformities and minimize negative changes in spondylothorax biomechanics due to the instrumental action of the implant. This review further elucidates EOS in terms of its aetiology, pathogenesis, pathology and treatment.
Collapse
Affiliation(s)
- Yonggang Wang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu Province, China
| | - Dongmin Wang
- Medical College of Northwest Minzu University, No. 1 Northwest Xincun, Lanzhou, 730030, Gansu Province, China
| | - Guangzhi Zhang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu Province, China
| | - Bing Ma
- Department of Cardiac Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu Province, China
| | - Yingping Ma
- Department of Cardiac Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu Province, China
| | - Yong Yang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu Province, China
| | - Shuai Xing
- Department of Cardiac Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu Province, China
| | - Xuewen Kang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu Province, China
| | - Bingren Gao
- Department of Cardiac Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu Province, China.
| |
Collapse
|
25
|
Pignolo RJ, Kimel M, Whalen J, Kawata AK, Artyomenko A, Kaplan FS. The Fibrodysplasia Ossificans Progressiva Physical Function Questionnaire (FOP-PFQ): A patient-reported, disease-specific measure. Bone 2023; 168:116642. [PMID: 36526263 DOI: 10.1016/j.bone.2022.116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To assess the reliability and validity of age-specific versions of the Fibrodysplasia Ossificans Progressiva Physical Function Questionnaire (FOP-PFQ), developed to measure the impact of FOP on physical function and activities of daily living. METHODS FOP-PFQ development included a literature review, two iterative phases of qualitative work involving individuals with FOP, and clinical expert review. The analysis used pooled FOP-PFQ data from an FOP natural history study (NCT02322255), a patient registry (NCT02745158), and phase II trials (NCT02190747; NCT02279095; NCT02979769). Item-level and factor analysis informed item retention and determined factor structure. Reliability was evaluated using Cronbach's alpha and intraclass correlation coefficients. Convergent validity was assessed by comparing scores with age, the Cumulative Analogue Joint Involvement Scale (CAJIS), the Patient-Reported Outcomes Measurement Information System Global Health Scale (PROMIS), and heterotopic ossification (HO) volume. Known-groups validity assessment used age, CAJIS, and HO volume. RESULTS Factor analysis confirmed a two-factor solution: Mobility and Upper Extremity. Results reflected high internal consistency and were supportive of test-retest reliability; correlation coefficients >0.90 demonstrated FOP-PFQ scores were stable over a one- to three-week period. The majority of scores were moderately (r = 0.30-0.50) to highly (r ≥ 0.50) correlated with CAJIS and HO volume, supporting convergent validity. With the exception of some age-based and functional groups, FOP-PFQ scores were significantly worse in groups with more severe disease, demonstrating known-groups validity. CONCLUSION The FOP-PFQ was demonstrated to be a reliable, valid measure that may be responsive to change in individuals with FOP, although some results were inconclusive for pediatric versions.
Collapse
Affiliation(s)
| | | | | | | | | | - Frederick S Kaplan
- Departments of Orthopaedic Surgery and Medicine, The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Pignolo RJ, Hsiao EC, Al Mukaddam M, Baujat G, Berglund SK, Brown MA, Cheung AM, De Cunto C, Delai P, Haga N, Kannu P, Keen R, Le Quan Sang KH, Mancilla EE, Marino R, Strahs A, Kaplan FS. Reduction of New Heterotopic Ossification (HO) in the Open-Label, Phase 3 MOVE Trial of Palovarotene for Fibrodysplasia Ossificans Progressiva (FOP). J Bone Miner Res 2023; 38:381-394. [PMID: 36583535 DOI: 10.1002/jbmr.4762] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare, severely disabling genetic disorder of progressive heterotopic ossification (HO). The single-arm, open-label, phase 3 MOVE trial (NCT03312634) assessed efficacy and safety of palovarotene, a selective retinoic acid receptor gamma agonist, in patients with FOP. Findings were compared with FOP natural history study (NHS; NCT02322255) participants untreated beyond standard of care. Patients aged ≥4 years received palovarotene once daily (chronic: 5 mg; flare-up: 20 mg for 4 weeks, then 10 mg for ≥8 weeks; weight-adjusted if skeletally immature). The primary endpoint was annualized change in new HO volume versus NHS participants (by low-dose whole-body computed tomography [WBCT]), analyzed using a Bayesian compound Poisson model (BcPM) with square-root transformation. Twelve-month interim analyses met futility criteria; dosing was paused. An independent Data Monitoring Committee recommended trial continuation. Post hoc 18-month interim analyses utilized BcPM with square-root transformation and HO data collapsed to equalize MOVE and NHS visit schedules, BcPM without transformation, and weighted linear mixed-effects (wLME) models, alongside prespecified analysis. Safety was assessed throughout. Eighteen-month interim analyses included 97 MOVE and 101 NHS individuals with post-baseline WBCT. BcPM analyses without transformation showed 99.4% probability of any reduction in new HO with palovarotene versus NHS participants (with transformation: 65.4%). Mean annualized new HO volume was 60% lower in MOVE versus the NHS. wLME results were similar (54% reduction fitted; nominal p = 0.039). All palovarotene-treated patients reported ≥1 adverse event (AE); 97.0% reported ≥1 retinoid-associated AE; 29.3% reported ≥1 serious AE, including premature physeal closure (PPC)/epiphyseal disorder in 21/57 (36.8%) patients aged <14 years. Post hoc computational analyses using WBCT showed decreased vertebral bone mineral density, content, and strength, and increased vertebral fracture risk in palovarotene-treated patients. Thus, post hoc analyses showed evidence for efficacy of palovarotene in reducing new HO in FOP, but high risk of PPC in skeletally immature patients. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | - Edward C Hsiao
- Division of Endocrinology and Metabolism, the UCSF Metabolic Bone Clinic, the Eli and Edythe Broad Institute for Regeneration Medicine, and the Institute of Human Genetics, Department of Medicine, and the UCSF Program in Craniofacial Biology, University of California-San Francisco, San Francisco, CA, USA
| | - Mona Al Mukaddam
- Departments of Orthopaedic Surgery & Medicine, The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Geneviève Baujat
- Département de Génétique, Institut IMAGINE and Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Staffan K Berglund
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Matthew A Brown
- Faculty of Life Sciences and Medicine, King's College London, London, UK
- Genomics England Ltd, London, UK
| | - Angela M Cheung
- Department of Medicine and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Carmen De Cunto
- Pediatric Rheumatology Section, Department of Pediatrics, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Patricia Delai
- Centro de Pesquisa Clinica, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Nobuhiko Haga
- Department of Rehabilitation Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Peter Kannu
- Hospital for Sick Children, Toronto, ON, Canada
| | - Richard Keen
- Centre for Metabolic Bone Disease, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Kim-Hanh Le Quan Sang
- Département de Génétique, Institut IMAGINE and Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Edna E Mancilla
- Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Frederick S Kaplan
- Departments of Orthopaedic Surgery & Medicine, The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Dube L, Haga N, Grogan D, Ogier J, Le Quan Sang KH. A Pharmacokinetic, Safety, and Tolerability Trial of Palovarotene in Healthy Japanese and Non-Japanese Participants. Eur J Drug Metab Pharmacokinet 2023; 48:141-150. [PMID: 36802022 PMCID: PMC10011291 DOI: 10.1007/s13318-023-00815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND AND OBJECTIVE: Palovarotene is an oral, selective retinoic acid receptor gamma agonist under investigation for fibrodysplasia ossificans progressiva (FOP). Palovarotene is primarily metabolized by cytochrome P450 (CYP) 3A4. Differences in CYP-mediated metabolism of CYP substrates have been observed between Japanese and non-Japanese individuals. This phase I trial (NCT04829786) compared the pharmacokinetic profile of palovarotene in healthy Japanese and non-Japanese participants and evaluated the safety of single doses. METHODS Healthy Japanese and non-Japanese participants were matched individually (1:1) and randomized to receive a single oral dose of palovarotene 5 or 10 mg, followed by the alternate dose after a 5-day washout period. Maximum plasma drug concentration (Cmax) and area under the plasma concentration-time curve (AUC) were assessed. Estimates of the geometric mean difference between dose and Japanese and non-Japanese groups were calculated for natural log-transformed Cmax and AUC parameters. Adverse events (AEs), serious AEs, and treatment-emergent AEs were recorded. RESULTS Eight pairs of matched non-Japanese and Japanese individuals and two unmatched Japanese individuals participated. Mean plasma concentration-time profiles were similar between the two cohorts at both dose levels, demonstrating that palovarotene absorption and elimination are similar irrespective of dose level. The pharmacokinetic parameters of palovarotene were similar between groups at both dose levels. Cmax and AUC values were dose-proportional between doses in each group. Palovarotene was well tolerated; there were no deaths or AEs leading to treatment discontinuation. CONCLUSIONS Japanese and non-Japanese groups had similar pharmacokinetic profiles, indicating that palovarotene dose adjustments are not necessary for Japanese patients with FOP.
Collapse
Affiliation(s)
- Louise Dube
- Pleiades Consultation Inc, Phoenix, Arizona, USA
| | - Nobuhiko Haga
- Department of Rehabilitation Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - Kim-Hanh Le Quan Sang
- Département de Génétique Clinique', Hôpital Universitaire Necker-Enfants Malades, Imagine, Université Paris Cité, Paris, France
| |
Collapse
|
28
|
Korableva NN, Berestnev EV, Kiselyov SM, Chipsanova NF. Fibrodysplasia Ossificans Progressiva: Literature Review and Case Report. CURRENT PEDIATRICS 2022. [DOI: 10.15690/vsp.v21i6s.2482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background. Fibrodysplasia ossificans progressiva (FOP) is a genetic disease of the heterotopic ossification group associated with the mutation in ACVR1/ALK2 gene. FOP is characterized by progressive heterotopic endochondral ossification of connective tissue that occurs in postnatal period. It leads to formation of qualitatively normal bone in extraskeletal areas. Congenital hallux deformity is typical for this disease. The clinical picture is characterized by aggravations that are usually caused by trauma or viral infections. Formation of Heterotopic ossificate formation can be observed during aggravations. There is no etiological treatment for FOP. Systemic glucocorticosteroids, non-steroidal anti-inflammatory drug (NSAIDs), mast cell stabilisers, antileukotriene drugs and bisphosphonates can be used in these patients. Clinical case description. The child was born with congenital hallux deformity typical for FOP. The disease onset was noted at the age of 2 years 8 months with a tumor-like painful mass on the neck. Oncological (lymphoproliferative) disease was suspected but biopsy from the lesion did not confirm its malignant nature. The child was consulted by pediatric rheumatologist who has diagnosed FOP. Etanercept and zoledronic acid were administrated, though etanercept was later discontinued. For now, the child receives zoledronic acid infusions 2 times per year and daily NSAIDs. Conclusion. The difficulties in FOP diagnosing are associated to its sporadic nature and clinical picture similarity to other diseases. Suspected malignancy leads to biopsy that is highly undesirable in FOP patients due to high risk of iatrogenic complications.
Collapse
|
29
|
Silveri C, Stoppiello P, Gaiero L, Bianchi G, Casales N, Belzarena AC. Aggressive atraumatic myositis ossificans in a toddler. Radiol Case Rep 2022; 17:4550-4555. [PMID: 36193266 PMCID: PMC9526017 DOI: 10.1016/j.radcr.2022.09.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022] Open
Abstract
Myositis ossificans (MO) is a benign disorder where bone forms within muscles or other soft tissues. This condition usually follows trauma and is rare in pediatric patients. Here we present the case of a 2-year-old male who developed MO of his right elbow without obvious trauma to the area. Imaging of MO in the initial phase is highly unspecific and obtaining tissue samples through a biopsy can render misleading reports. In most cases MO is a self-limited process with complete resolution, however, some cases may present a diagnostic and therapeutic challenge.
Collapse
|
30
|
Pignolo RJ, Baujat G, Brown MA, De Cunto C, Hsiao EC, Keen R, Al Mukaddam M, Le Quan Sang KH, Wilson A, Marino R, Strahs A, Kaplan FS. The natural history of fibrodysplasia ossificans progressiva: A prospective, global 36-month study. Genet Med 2022; 24:2422-2433. [PMID: 36152026 DOI: 10.1016/j.gim.2022.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE We report the first prospective, international, natural history study of the ultra-rare genetic disorder fibrodysplasia ossificans progressiva (FOP). FOP is characterized by painful, recurrent flare-ups, and disabling, cumulative heterotopic ossification (HO) in soft tissues. METHODS Individuals aged ≤65 years with classical FOP (ACVR1R206H variant) were assessed at baseline and over 36 months. RESULTS In total, 114 individuals participated; 33 completed the study (mean follow up: 26.8 months). Median age was 15.0 (range: 4-56) years; 54.4% were male. During the study, 82 (71.9%) individuals reported 229 flare-ups (upper back: 17.9%, hip: 14.8%, shoulder: 10.9%). After 84 days, 14 of 52 (26.9%) imaged flare-ups had new HO at the flare-up site (mean new HO volume: 28.8 × 103 mm3). Mean baseline low-dose whole-body computed tomography (excluding head) HO volume was 314.4 × 103 mm3; lowest at 2 to <8 years (68.8 × 103 mm3) and increasing by age (25-65 years: 575.2 × 103 mm3). The mean annualized volume of new HO was 23.6 × 103 mm3/year; highest at 8 to <15 and 15 to <25 years (21.9 × 103 and 41.5 × 103 mm3/year, respectively) and lowest at 25 to 65 years (4.6 × 103 mm3/year). CONCLUSION Results from individuals receiving standard care for up to 3 years in this natural history study show the debilitating effect and progressive nature of FOP cross-sectionally and longitudinally, with greatest progression during childhood and early adulthood.
Collapse
Affiliation(s)
| | - Geneviève Baujat
- Département de Génétique, Hôpital Universitaire Necker-Enfants Malades, Institut Imagine, Université Paris Cité, Paris, France
| | - Matthew A Brown
- Department of Medicine and Molecular Genetics, Faculty of Life Sciences and Medicine, School of Basic and Medical Biosciences, King's College London, London, United Kingdom; Genomics England, London, United Kingdom
| | - Carmen De Cunto
- Pediatric Rheumatology Section, Department of Pediatrics, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Edward C Hsiao
- Division of Endocrinology and Metabolism, the UCSF Metabolic Bone Clinic, the Eli and Edyth Broad Institute for Regeneration Medicine, and the Institute of Human Genetics, Department of Medicine, and the UCSF Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA
| | - Richard Keen
- Centre for Metabolic Bone Disease, Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Mona Al Mukaddam
- Departments of Orthopaedic Surgery and Medicine, Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kim-Hanh Le Quan Sang
- Département de Génétique, Hôpital Universitaire Necker-Enfants Malades, Institut Imagine, Université Paris Cité, Paris, France
| | | | | | | | - Frederick S Kaplan
- Departments of Orthopaedic Surgery and Medicine, Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
31
|
Smetanova J, Milota T, Rataj M, Hurnakova J, Zelena H, Horvath R. SARS-CoV-2-specific humoral and cellular immune responses to BNT162b2 vaccine in Fibrodysplasia ossificans progressiva patients. Front Immunol 2022; 13:1017232. [PMID: 36439163 PMCID: PMC9682080 DOI: 10.3389/fimmu.2022.1017232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction Fibrodysplasia ossificans progressiva (FOP) is characterized by progressive heterotopic ossification triggered by various conditions, such as trauma, infection, including COVID-19 infection, and vaccination. Although SARS-CoV-2 vaccinations prevent poor outcomes in the general population, there is limited evidence on safety, immunogenicity, and efficacy of SARS-CoV-2 vaccines for inpatients with FOP. Methods A case series of two patients with FOP focused on humoral, cellular post-vaccination response, and the incidence of adverse events after administration of the BNT162b2 vaccine (Comirnaty). Results Injection site reactions, fever, myalgia, and fatigue were the most common adverse events (AE). Neither severe AE (SAE), nor disease flare-ups were observed. No differences between patients with FOP and healthy controls were observed in humoral and cellular responses. Conclusions The BNT162b2 vaccine induced high humoral and cellular response levels in patients with FOP. Vaccination was not associated with SAE or disease relapse. The AEs spectrum was comparable to that of the general population.
Collapse
Affiliation(s)
- Jitka Smetanova
- Department of Immunology, Second Faculty of Medicine Charles University and Motol University Hospital, Prague, Czechia
| | - Tomas Milota
- Department of Immunology, Second Faculty of Medicine Charles University and Motol University Hospital, Prague, Czechia
- *Correspondence: Tomas Milota,
| | - Michal Rataj
- Department of Immunology, Second Faculty of Medicine Charles University and Motol University Hospital, Prague, Czechia
| | - Jana Hurnakova
- Department of Paediatric and Adult Rheumatology, Motol University Hospital, Prague, Czechia
| | - Hana Zelena
- Department of Virology, Public Health Institute, Ostrava, Czechia
| | - Rudolf Horvath
- Department of Immunology, Second Faculty of Medicine Charles University and Motol University Hospital, Prague, Czechia
- Department of Paediatric and Adult Rheumatology, Motol University Hospital, Prague, Czechia
| |
Collapse
|
32
|
Wentworth KL, Lalonde RL, Groppe JC, Brewer N, Moody T, Hansberry S, Taylor KE, Shore EM, Kaplan FS, Pignolo RJ, Yelick PC, Hsiao EC. Functional Testing of Bone Morphogenetic Protein (BMP) Pathway Variants Identified on Whole-Exome Sequencing in a Patient with Delayed-Onset Fibrodysplasia Ossificans Progressiva (FOP) Using ACVR1 R206H -Specific Human Cellular and Zebrafish Models. J Bone Miner Res 2022; 37:2058-2076. [PMID: 36153796 PMCID: PMC9950781 DOI: 10.1002/jbmr.4711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/28/2022] [Accepted: 08/07/2022] [Indexed: 11/06/2022]
Abstract
Bone morphogenetic protein (BMP) signaling is critical in skeletal development. Overactivation can trigger heterotopic ossification (HO) as in fibrodysplasia ossificans progressiva (FOP), a rare, progressive disease of massive HO formation. A small subset of FOP patients harboring the causative ACVR1R206H mutation show strikingly mild or delayed-onset HO, suggesting that genetic variants in the BMP pathway could act as disease modifiers. Whole-exome sequencing of one such patient identified BMPR1AR443C and ACVR2AV173I as candidate modifiers. Molecular modeling predicted significant structural perturbations. Neither variant decreased BMP signaling in ACVR1R206H HEK 293T cells at baseline or after stimulation with BMP4 or activin A (AA), ligands that activate ACVR1R206H signaling. Overexpression of BMPR1AR443C in a Tg(ACVR1-R206Ha) embryonic zebrafish model, in which overactive BMP signaling yields ventralized embryos, did not alter ventralization severity, while ACVR2AV173I exacerbated ventralization. Co-expression of both variants did not affect dorsoventral patterning. In contrast, BMPR1A knockdown in ACVR1R206H HEK cells decreased ligand-stimulated BMP signaling but did not affect dorsoventral patterning in Tg(ACVR1-R206Ha) zebrafish. ACVR2A knockdown decreased only AA-stimulated signaling in ACVR1R206H HEK cells and had no effect in Tg(ACVR1-R206Ha) zebrafish. Co-knockdown in ACVR1R206H HEK cells decreased basal and ligand-stimulated signaling, and co-knockdown/knockout (bmpr1aa/ab; acvr2aa/ab) decreased Tg(ACVR1-R206Ha) zebrafish ventralization phenotypes. Our functional studies showed that knockdown of wild-type BMPR1A and ACVR2A could attenuate ACVR1R206H signaling, particularly in response to AA, and that ACVR2AV173I unexpectedly increased ACVR1R206H -mediated signaling in zebrafish. These studies describe a useful strategy and platform for functionally interrogating potential genes and genetic variants that may impact the BMP signaling pathway. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kelly L Wentworth
- Department of Medicine, Division of Endocrinology and Metabolism, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Robert L Lalonde
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, Boston, MA, USA
| | - Jay C Groppe
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Niambi Brewer
- Department of Orthopedic Surgery and The Center of Research for FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tania Moody
- Institute for Human Genetics, the Program in Craniofacial Biology, the UCSF Eli and Edythe Broad Institute for Regeneration Medicine, and the Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, CA, USA
| | - Steven Hansberry
- San Francisco State University, California Institute of Regenerative Medicine Bridges to Stem Cell Research Program, San Francisco, CA, USA
| | - Kimberly E Taylor
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco, CA, USA
| | - Eileen M Shore
- Department of Orthopedic Surgery and The Center of Research for FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick S Kaplan
- Department of Orthopedic Surgery and The Center of Research for FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Pamela C Yelick
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, Boston, MA, USA
| | - Edward C Hsiao
- Institute for Human Genetics, the Program in Craniofacial Biology, the UCSF Eli and Edythe Broad Institute for Regeneration Medicine, and the Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, CA, USA
| |
Collapse
|
33
|
Pignolo RJ, Baujat G, Hsiao EC, Keen R, Wilson A, Packman J, Strahs AL, Grogan DR, Kaplan FS. Palovarotene for Fibrodysplasia Ossificans Progressiva (FOP): Results of a Randomized, Placebo-Controlled, Double-Blind Phase 2 Trial. J Bone Miner Res 2022; 37:1891-1902. [PMID: 35854638 PMCID: PMC9804935 DOI: 10.1002/jbmr.4655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/15/2022] [Accepted: 07/16/2022] [Indexed: 01/07/2023]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare genetic disorder characterized by progressive heterotopic ossification (HO), often heralded by flare-ups, leading to reduced movement and life expectancy. This placebo-controlled, double-blind trial (NCT02190747) evaluated palovarotene, an orally bioavailable selective retinoic acid receptor gamma agonist, for prevention of HO in patients with FOP. Patients experiencing a flare-up were enrolled in two cohorts: (1) patients ≥15 years were randomized 3:1 to palovarotene 10/5 mg (weeks 1-2/3-6) or placebo; (2) patients ≥6 years were randomized 3:3:2 to palovarotene 10/5 mg, palovarotene 5/2.5 mg (weeks 1-2/3-6), or placebo. Cohort data were pooled. The primary endpoint was the proportion of responders (no/minimal new HO at flare-up body region by plain radiograph) at week 6. Change from baseline in HO volume and new HO incidence were assessed by computed tomography (CT) at week 12. Tissue edema was assessed by magnetic resonance imaging (MRI) or ultrasound. Forty patients (aged 7-53 years) were enrolled (placebo: n = 10; palovarotene 5/2.5 mg: n = 9; palovarotene 10/5 mg: n = 21). Disease history was similar between groups. In the per-protocol population, the proportion of responders at week 6 by plain radiograph was 100% with palovarotene 10/5 mg; 88.9% with palovarotene 5/2.5 mg; 88.9% with placebo (Cochran-Armitage trend test: p = 0.17). At week 12, the proportions were 95.0% with palovarotene 10/5 mg; 88.9% with palovarotene 5/2.5 mg; 77.8% with placebo (Cochran-Armitage trend test: p = 0.15). Week 12 least-squares mean (LSmean) new HO volume, assessed by CT, was 3.8 × 103 mm3 with palovarotene 10/5 mg; 1.3 × 103 mm3 with palovarotene 5/2.5 mg; 18.0 × 103 mm3 with placebo (pairwise tests versus placebo: p ≤ 0.12). Palovarotene was well-tolerated. No patients discontinued treatment or required dose reduction; one patient had dose interruption due to elevated lipase. Although these findings were not statistically significant, they support further evaluation of palovarotene for prevention of HO in FOP in larger studies. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of Medicine, Divisions of Geriatric Medicine and Gerontology, Hospital Internal Medicine, and Endocrinology, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Geneviève Baujat
- Departement de Genetique, Institut IMAGINE and Hôpital Necker-Enfants Malades, Paris, France
| | - Edward C Hsiao
- Division of Endocrinology and Metabolism, UCSF Metabolic Bone Clinic, Institute for Human Genetics, Institute for Regeneration Medicine, and the Program for Craniofacial Biology, University of California-San Francisco, San Francisco, CA, USA
| | - Richard Keen
- Consultant Rheumatologist & Honorary Senior Lecturer in Metabolic Bone Disease, The Royal National Orthopaedic Hospital, Stanmore, UK
| | | | | | | | | | - Frederick S Kaplan
- Departments of Orthopaedic Surgery and Medicine, and The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Al Mukaddam M, Toder KS, Davis M, Cali A, Liljesthröm M, Hollywood S, Croskery K, Grandoulier AS, Böing EA, Whalen JD, Kaplan FS. The impact of fibrodysplasia ossificans progressiva (FOP) on patients and their family members: results from an international burden of illness survey. Expert Rev Pharmacoecon Outcomes Res 2022; 22:1199-1213. [PMID: 36017643 DOI: 10.1080/14737167.2022.2115360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare, genetic disorder of heterotopic ossification, which transforms soft, connective tissues into bone, resulting in limited joint function and severe disability. We present results from an international burden of illness survey (NCT04665323) assessing physical, quality of life (QoL), and economic impacts of FOP on patients and family members. METHODS Patient associations in 15 countries invited their members to participate; individuals with FOP and their family members were eligible. The survey was available online, in 11 languages, from January 18-April 30, 2021. Participants responded to assessments measuring joint function, QoL, healthcare service and living adaptation utilization, out-of-pocket costs, employment, and travel. RESULTS The survey received 463 responses (patients, n=219; family members, n=244). For patients, decreased joint function was associated with reduced QoL and greater reliance on living adaptations. Nearly half of primary caregivers experienced a mild to moderate impact on their health/psychological wellbeing. Most primary caregivers and patients (≥18 years) reported that FOP impacted their career decisions. CONCLUSIONS Data from this survey will improve understanding of the impact of FOP on patients and family members, which is important for identifying unmet needs, optimizing care, and improving support for the FOP community.
Collapse
Affiliation(s)
- Mona Al Mukaddam
- Departments of Orthopaedic Surgery and Medicine, The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine S Toder
- Departments of Orthopaedic Surgery and Medicine, The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Amanda Cali
- The Radiant Hope Foundation, Mountain Lakes, NJ, USA.,The Ian Cali FOP Research Fund, PENN Medicine, The Center for Research in FOP and Related Disorders, Philadelphia, PA, USA.,Tin Soldiers: Global Patient Identification Program, Johannesburg, South Africa
| | - Moira Liljesthröm
- Fundación FOP, Buenos Aires, Argentina.,Argentine Representative to the International President's Council of the International FOP Association, Buenos Aires, Argentina
| | | | | | | | | | | | - Frederick S Kaplan
- Departments of Orthopaedic Surgery and Medicine, The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
35
|
Eekhoff EM, de Ruiter RD, Smilde BJ, Schoenmaker T, de Vries TJ, Netelenbos C, Hsiao EC, Scott C, Haga N, Grunwald Z, De Cunto CL, di Rocco M, Delai PLR, Diecidue RJ, Madhuri V, Cho TJ, Morhart R, Friedman CS, Zasloff M, Pals G, Shim JH, Gao G, Kaplan F, Pignolo RJ, Micha D. Gene Therapy for Fibrodysplasia Ossificans Progressiva: Feasibility and Obstacles. Hum Gene Ther 2022; 33:782-788. [PMID: 35502479 PMCID: PMC9419966 DOI: 10.1089/hum.2022.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/06/2022] [Indexed: 02/02/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare and devastating genetic disease, in which soft connective tissue is converted into heterotopic bone through an endochondral ossification process. Patients succumb early as they gradually become trapped in a second skeleton of heterotopic bone. Although the underlying genetic defect is long known, the inherent complexity of the disease has hindered the discovery of effective preventions and treatments. New developments in the gene therapy field have motivated its consideration as an attractive therapeutic option for FOP. However, the immune system's role in FOP activation and the as-yet unknown primary causative cell, are crucial issues which must be taken into account in the therapy design. While gene therapy offers a potential therapeutic solution, more knowledge about FOP is needed to enable its optimal and safe application.
Collapse
Affiliation(s)
- Elisabeth M.W. Eekhoff
- Section Endocrinology, Department of Internal Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Rare Bone Disease Center, Amsterdam Bone Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Ruben D. de Ruiter
- Section Endocrinology, Department of Internal Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Rare Bone Disease Center, Amsterdam Bone Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Bernard J. Smilde
- Section Endocrinology, Department of Internal Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Rare Bone Disease Center, Amsterdam Bone Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands
| | - Teun J. de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands
| | - Coen Netelenbos
- Section Endocrinology, Department of Internal Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Rare Bone Disease Center, Amsterdam Bone Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Edward C. Hsiao
- Division of Endocrinology and Metabolism, Department of Medicine, Institute for Human Genetics, Program in Craniofacial Biology, the Institute for Regeneration Medicine, University of California, San Francisco, California, USA
| | - Christiaan Scott
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Heath, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Nobuhiko Haga
- Rehabilitation Services Bureau, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, Japan
| | - Zvi Grunwald
- Department of Anesthesiology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, USA
| | - Carmen L. De Cunto
- Department of Pediatrics, Section Pediatric Rheumatology, Hospital Italiano Buenos Aires, Argentina
| | - Maja di Rocco
- Department of Pediatrics, Unit of Rare Diseases, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Patricia L. R. Delai
- Teaching and Research Institute of the Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Robert J. Diecidue
- Department of Oral and Maxillofacial Surgery, Sidney Kimmel Medical College, Philadelphia, USA
| | - Vrisha Madhuri
- Department of Paediatric Orthopaedics and Center for Stem Cell Research, Christian Medical College and Hospital, Vellore, India
| | - Tae-Joon Cho
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Rolf Morhart
- Department of Pediatrics, Garmisch-Partenkichen Medical Center, Garmisch-Partenkirchen, Germany
| | - Clive S. Friedman
- Schulich School of Medicine and Dentistry, Western University, Clinical Skills Building, London, Ontario, Canada
| | - Michael Zasloff
- Surgery and Pediatrics, MedStar Georgetown Transplant Institute, Washington, District of Columbia, USA
| | - Gerard Pals
- Department of Human Genetics, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Rare Bone Disease Center, Amsterdam Bone Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jae-Hyuck Shim
- Department of Medicine/Rheumatology, Horae Gene Therapy Center, Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Guangping Gao
- Department of Microbiology and Physiological Systems, Horae Gene Therapy Center, Viral Vector Core, Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Frederick Kaplan
- Department of Orthopaedic Surgery and Medicine, Center for Research in FOP and Related Disorders, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Dimitra Micha
- Department of Human Genetics, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Rare Bone Disease Center, Amsterdam Bone Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Hwang CD, Pagani CA, Nunez JH, Cherief M, Qin Q, Gomez-Salazar M, Kadaikal B, Kang H, Chowdary AR, Patel N, James AW, Levi B. Contemporary perspectives on heterotopic ossification. JCI Insight 2022; 7:158996. [PMID: 35866484 PMCID: PMC9431693 DOI: 10.1172/jci.insight.158996] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is the formation of ectopic bone that is primarily genetically driven (fibrodysplasia ossificans progressiva [FOP]) or acquired in the setting of trauma (tHO). HO has undergone intense investigation, especially over the last 50 years, as awareness has increased around improving clinical technologies and incidence, such as with ongoing wartime conflicts. Current treatments for tHO and FOP remain prophylactic and include NSAIDs and glucocorticoids, respectively, whereas other proposed therapeutic modalities exhibit prohibitive risk profiles. Contemporary studies have elucidated mechanisms behind tHO and FOP and have described new distinct niches independent of inflammation that regulate ectopic bone formation. These investigations have propagated a paradigm shift in the approach to treatment and management of a historically difficult surgical problem, with ongoing clinical trials and promising new targets.
Collapse
Affiliation(s)
- Charles D Hwang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Harvard University, Boston, Massachusetts, USA
| | - Chase A Pagani
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Johanna H Nunez
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Balram Kadaikal
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Heeseog Kang
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ashish R Chowdary
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nicole Patel
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Benjamin Levi
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
37
|
Huenerfauth EI, Molnár V, Rosati M, Ciurkiewicz M, Söbbeler FJ, Harms O, Hildebrandt R, Baumgärtner W, Tipold A, Volk HA, Nessler J. Case Report: Unable to Jump Like a Kangaroo Due to Myositis Ossificans Circumscripta. Front Vet Sci 2022; 9:886495. [PMID: 35865877 PMCID: PMC9295721 DOI: 10.3389/fvets.2022.886495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
A male 10-year-old captive red kangaroo (Macropus rufus) was presented with a chronic progressive pelvic limb lameness and reluctance to jump. The general examination revealed a palpable induration of the lumbar epaxial muscles. Magnetic resonance imaging performed under general anesthesia revealed bilateral almost symmetric, well-circumscribed mass lesions in superficial erector spinae muscles. The lesions had irregular to multilobulated appearance with hyper-, hypo-, and isointense areas in T2- and T1-weighted (w) sequences without contrast enhancement. On computed tomography, a peripheral rim of mineralization was apparent. Histopathological analysis of a muscle biopsy showed osseous trabeculae with rare clusters of chondrocytes indicating metaplasia of muscle tissue to bone. No indications of inflammation or malignancy were visible. The clinical, histopathological, and imaging workup of this case was consistent with myositis ossificans circumscripta. This disorder is particularly well-known among human professional athletes such as basketball players, where excessive, chronic-repetitive force or blunt trauma causes microtrauma to the musculature. Metaplasia of muscle tissue due to abnormal regeneration processes causes heterotopic ossification. The kangaroo's clinical signs improved with cyto-reductive surgery, cage rest, weight reduction, and meloxicam without further relapse.
Collapse
Affiliation(s)
- Enrice I. Huenerfauth
- Department of Small Animal Internal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany
- *Correspondence: Enrice I. Huenerfauth
| | | | - Marco Rosati
- Section of Clinical and Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Malgorzata Ciurkiewicz
- Department for Pathology, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Franz J. Söbbeler
- Department of Small Animal Internal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Oliver Harms
- Department of Small Animal Internal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Robert Hildebrandt
- Department of Small Animal Internal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department for Pathology, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Andrea Tipold
- Department of Small Animal Internal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Holger A. Volk
- Department of Small Animal Internal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Jasmin Nessler
- Department of Small Animal Internal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany
| |
Collapse
|
38
|
Guinness F, Coleman M, Gillbride M. Dexmedetomidine sedation for a dental extraction in a patient with known difficult airway. Anaesth Rep 2022; 10:e12184. [PMID: 35983243 PMCID: PMC9372726 DOI: 10.1002/anr3.12184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/08/2022] Open
Abstract
Fibrodysplasia ossificans progressiva is an autosomal dominant condition that causes cervical spine fusion and ankylosis of the temporomandibular joint, resulting in anaesthetic challenges. Awake tracheal intubation with flexible bronchoscopy is recommended for general anaesthetics required by patients with this disease. This case report describes the novel approach of using dexmedetomidine sedation in combination with local anaesthesia to allow dental extraction of the fifth and seventh upper left teeth in a patient with fibrodyplasia ossificans progressive, who had a known difficult airway and profound thrombocytopenia. This procedure was not previously tolerated by the patient under local anaesthesia alone. The use of dexmedetomidine was successful in facilitating completion of the procedure with a high degree of patient satisfaction. We discuss the advantages of dexmedetomidine over other sedative agents due to its minimal effects on respiratory drive and airway muscle tone. We highlight the use of dexmedetomidine for complex cases such as this, where tracheal intubation is potentially challenging, but the procedure itself could be managed under sedation and local anaesthesia.
Collapse
Affiliation(s)
- F. Guinness
- Department of AnaesthesiaUniversity Hospital LimerickLimerickIreland
| | - M. Coleman
- Department of AnaesthesiaUniversity Hospital LimerickLimerickIreland
| | - M. Gillbride
- Department of Oral and Maxillofacial SurgeryUniversity Hospital LimerickLimerickIreland
| |
Collapse
|
39
|
Pathophysiology and Emerging Molecular Therapeutic Targets in Heterotopic Ossification. Int J Mol Sci 2022; 23:ijms23136983. [PMID: 35805978 PMCID: PMC9266941 DOI: 10.3390/ijms23136983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022] Open
Abstract
The term heterotopic ossification (HO) describes bone formation in tissues where bone is normally not present. Musculoskeletal trauma induces signalling events that in turn trigger cells, probably of mesenchymal origin, to differentiate into bone. The aetiology of HO includes extremely rare but severe, generalised and fatal monogenic forms of the disease; and as a common complex disorder in response to musculoskeletal, neurological or burn trauma. The resulting bone forms through a combination of endochondral and intramembranous ossification, depending on the aetiology, initiating stimulus and affected tissue. Given the heterogeneity of the disease, many cell types and biological pathways have been studied in efforts to find effective therapeutic strategies for the disorder. Cells of mesenchymal, haematopoietic and neuroectodermal lineages have all been implicated in the pathogenesis of HO, and the emerging dominant signalling pathways are thought to occur through the bone morphogenetic proteins (BMP), mammalian target of rapamycin (mTOR), and retinoic acid receptor pathways. Increased understanding of these disease mechanisms has resulted in the emergence of several novel investigational therapeutic avenues, including palovarotene and other retinoic acid receptor agonists and activin A inhibitors that target both canonical and non-canonical signalling downstream of the BMP type 1 receptor. In this article we aim to illustrate the key cellular and molecular mechanisms involved in the pathogenesis of HO and outline recent advances in emerging molecular therapies to treat and prevent HO that have had early success in the monogenic disease and are currently being explored in the common complex forms of HO.
Collapse
|
40
|
Collins MT. Twists in the fibrodysplasia ossificans progressiva story challenge and expand our understanding of BMP biology. J Clin Invest 2022; 132:160773. [PMID: 35703179 PMCID: PMC9197510 DOI: 10.1172/jci160773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an ultrarare, debilitating disease in which heterotopic bone is formed in certain soft tissues. A gain-of-function variant in the cytoplasmic domain of the activin A receptor type I (ACVR1) exists in all patients with FOP. Strikingly, these FOP-causing variants imbue a neofunction to ACVR1 — the ability to recognize activin A as an agonist with bone morphogenic protein–like signaling that leads to heterotopic ossification (HO). These findings are supported by the efficacy of anti–activin A antibodies in preventing HO in FOP mice. This surprising story continues in companion papers in this issue of the JCI. Aykul et al. and Lees-Shepard et al. independently found that antibodies against ACVR1, which were being developed as potential therapeutics for FOP, instead caused HO in FOP mice. While this unexpected finding may be the clinical final act for such antibodies, it provides another twist in the unique and evolving FOP story.
Collapse
|
41
|
Smilde BJ, Stockklausner C, Keen R, Whittaker A, Bullock AN, von Delft A, van Schoor NM, Yu PB, Eekhoff EMW. Protocol paper: a multi-center, double-blinded, randomized, 6-month, placebo-controlled study followed by 12-month open label extension to evaluate the safety and efficacy of Saracatinib in Fibrodysplasia Ossificans Progressiva (STOPFOP). BMC Musculoskelet Disord 2022; 23:519. [PMID: 35650602 PMCID: PMC9156821 DOI: 10.1186/s12891-022-05471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
Background Fibrodysplasia Ossificans Progressiva (FOP) is a genetic, progressive and devastating disease characterized by severe heterotopic ossification (HO), loss of mobility and early death. There are no FDA approved medications. The STOPFOP team identified AZD0530 (saracatinib) as a potent inhibitor of the ALK2/ACVR1-kinase which is the causative gene for this rare bone disease. AZD0530 was proven to prevent HO formation in FOP mouse models. The STOPFOP trial investigates the repositioning of AZD0530, originally developed for ovarian cancer treatment, to treat patients with FOP. Methods The STOPFOP trial is a phase 2a study. It is designed as a European, multicentre, 6-month double blind randomized controlled trial of AZD0530 versus placebo, followed by a 12-month trial comparing open-label extended AZD0530 treatment with natural history data as a control. Enrollment will include 20 FOP patients, aged 18–65 years, with the classic FOP mutation (ALK2 R206H). The primary endpoint is objective change in heterotopic bone volume measured by low-dose whole-body computer tomography (CT) in the RCT phase. Secondary endpoints include 18F NaF PET activity and patient reported outcome measures. Discussion Clinical trials in rare diseases with limited study populations pose unique challenges. An ideal solution for limiting risks in early clinical studies is drug repositioning – using existing clinical molecules for new disease indications. Using existing assets may also allow a more fluid transition into clinical practice. With positive study outcome, AZD0530 may provide a therapy for FOP that can be rapidly progressed due to the availability of existing safety data from 28 registered clinical trials with AZD0530 involving over 600 patients. Trial registration EudraCT, 2019–003324-20. Registered 16 October 2019, https://www.clinicaltrialsregister.eu/ctr-search/trial/2019-003324-20/NL. Clinicaltrials.gov, NCT04307953. Registered 13 March 2020. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05471-x.
Collapse
Affiliation(s)
- Bernard J Smilde
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.,Tissue Function and Regeneration, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Clemens Stockklausner
- Department of Paediatrics, Klinikum Garmisch-Partenkirchen, Garmisch Partenkirchen, Germany
| | - Richard Keen
- Department of Rheumatology, Royal National Orthopaedic Hospital, London, UK
| | - Andrew Whittaker
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Annette von Delft
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Oxford Biomedical Research Centre, National Institute for Health Research, University of Oxford, Oxford, UK
| | - Natasja M van Schoor
- Epidemiology and Data Science, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Aging and Later Life, Amsterdam Public Health, Amsterdam, The Netherlands
| | - Paul B Yu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, USA
| | - E Marelise W Eekhoff
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands. .,Tissue Function and Regeneration, Amsterdam Movement Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
42
|
Lees-Shepard JB, Stoessel SJ, Chandler JT, Bouchard K, Bento P, Apuzzo LN, Devarakonda PM, Hunter JW, Goldhamer DJ. An anti-ACVR1 antibody exacerbates heterotopic ossification by fibro-adipogenic progenitors in fibrodysplasia ossificans progressiva mice. J Clin Invest 2022; 132:153795. [PMID: 35503416 PMCID: PMC9197527 DOI: 10.1172/jci153795] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by progressive and catastrophic heterotopic ossification (HO) of skeletal muscle and associated soft tissues. FOP is caused by dominantly acting mutations in the gene encoding the bone morphogenetic protein (BMP) type I receptor, ACVR1 (ALK2), the most prevalent of which results in an arginine to histidine substitution at position 206[ACVR1(R206H)]. The fundamental pathological consequence of FOP-causing ACVR1 receptor mutations is to enable activin A to initiate canonical BMP signaling in fibro-adipogenic progenitors (FAPs), which drives HO. We developed a monoclonal blocking antibody (JAB0505) to the extracellular domain of ACVR1 and tested its effect on HO in two independent FOP mouse models. Although JAB0505 inhibited BMP-dependent gene expression in wild-type and ACVR1(R206H)-overexpressing cell lines, JAB0505 treatment profoundly exacerbated injury-induced HO. JAB0505-treated mice exhibited multiple, distinct foci of heterotopic lesions, suggesting an atypically broad anatomical domain of FAP recruitment to endochondral ossification. This was accompanied by dysregulated FAP population growth and an abnormally sustained immunological reaction following muscle injury. JAB0505 drove injury-induced HO in the absence of activin A, indicating that JAB0505 has receptor agonist activity. These data raise serious safety and efficacy concerns for the use of bivalent anti-ACVR1 antibodies to treat patients with FOP.
Collapse
Affiliation(s)
- John B Lees-Shepard
- Skeletal Diseases, Regeneron Pharmaceuticals, Tarrytown, United States of America
| | - Sean J Stoessel
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States of America
| | - Julian T Chandler
- Discovery Research, Alexion Pharmaceuticals, New Haven, United States of America
| | - Keith Bouchard
- Discovery Research, Alexion Pharmaceuticals, New Haven, United States of America
| | - Patricia Bento
- Product Development and Clinical Supply, Alexion Pharmaceuticals, New Haven, United States of America
| | - Lorraine N Apuzzo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States of America
| | | | - Jeffrey W Hunter
- Discovery Research, Alexion Pharmaceuticals, New Haven, United States of America
| | - David J Goldhamer
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States of America
| |
Collapse
|
43
|
Current challenges and opportunities in the care of patients with fibrodysplasia ossificans progressiva (FOP): an international, multi-stakeholder perspective. Orphanet J Rare Dis 2022; 17:168. [PMID: 35436894 PMCID: PMC9014788 DOI: 10.1186/s13023-022-02224-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/06/2022] [Indexed: 11/24/2022] Open
Abstract
Background Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare, disabling genetic disorder characterized by congenital malformations of the great toes and progressive heterotopic ossification of soft and connective tissues. Assiduous attention to the unmet needs of this patient community is crucial to prevent potential iatrogenic harm and optimize care for individuals with FOP. Objective To gather international expert opinion and real-world experience on the key challenges for individuals with FOP and their families, highlight critical gaps in care, communication, and research, and provide recommendations for improvement. Methods An international group of expert clinicians, patients and patient advocates, caregivers and representatives from the international FOP community participated in a virtual, half-day meeting on 22 March 2021 to discuss the key unmet needs of individuals with FOP. Results Individuals with FOP often face the frustration of long diagnostic journeys, the burden of self-advocacy and the navigation of novel care pathways. Globally, patients with FOP are also confronted with inequities in access to diagnosis and specialist care, and consequently, unequal access to registries, clinical trials, and essential support from patient associations. Organizations such as the International FOP Association, the International Clinical Council on FOP, and national FOP organizations work to provide information, facilitate access to expert clinical guidance, nurture patient empowerment, fund FOP research and/or foster meaningful collaborations with the research community. The non-profit Tin Soldiers Global FOP Patient Search program aims to identify and provide a pathway to diagnosis and care for individuals with FOP, particularly in underserved communities. Such global initiatives and the increasingly widespread use of telemedicine and digital platforms offer opportunities to improve vital access to care and research. Conclusions This multi-stakeholder perspective highlights some of the unmet needs of individuals with FOP and their families. Regional and international organizations play an important role in improving the quality of life of those they reach in the global FOP community. However, globally, fundamental issues remain around raising awareness of FOP among healthcare professionals, identifying individuals with FOP, reducing time to diagnosis, and ensuring access to best practice in care, support, and clinical research. Medical writing support was industry-sponsored. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02224-w.
Collapse
|
44
|
Smilde BJ, Botman E, de Ruiter RD, Smit JM, Teunissen BP, Lubbers WD, Schwarte LA, Schober P, Eekhoff EMW. Monitoring and Management of Fibrodysplasia Ossificans Progressiva: Current Perspectives. Orthop Res Rev 2022; 14:113-120. [PMID: 35480068 PMCID: PMC9035442 DOI: 10.2147/orr.s337491] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/02/2022] [Indexed: 11/23/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP), sometimes known as myositis ossificans progressiva, is an ultra-rare disease in which bone is formed in muscular tissue, tendons and ligaments. This is known as heterotopic ossification (HO). FOP is caused by a heterozygous mutation in the highly conserved ACVR1/ALK2 gene which affects about 1 in 1.5–2 million individuals. At birth, patients with the predominant R206H mutation only exhibit a bilateral hallux valgus. During childhood, heterotopic bone formation develops in a typical pattern, affecting the axial muscles first before appendicular body parts are involved. HO can start spontaneously but is often elicited by soft tissue trauma or medical procedures. After soft tissue injury, an inflammatory process called a flare-up can start, followed by the formation of HO. HO leads to a limited range of motion, culminating in complete ankylosis of nearly all joints. As a result of HO surrounding the thorax, patients often suffer from thoracic insufficiency syndrome (TIS). TIS is the most common cause of a limited life expectancy for FOP patients, with a median life expectancy of 56 years. Management is focused on preventing soft-tissue injury that can provoke flare-ups. This includes prevention of iatrogenic damage by biopsies, intramuscular injections and surgery. Anti-inflammatory medication is often started when a flare-up occurs but has a poor basis of evidence. Several forms of potential treatment for FOP are being researched in clinical trials. Progression of the disease is monitored using CT and 18F-NaF PET/CT combined with functional assessments. Patients are regularly evaluated for frequently occurring complications such as restrictive lung disease. Here, we review the current management, monitoring and treatment of FOP.
Collapse
Affiliation(s)
- Bernard J Smilde
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine Section Endocrinology, Amsterdam, the Netherlands
- Amsterdam UMC, Amsterdam Bone Center, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, the Netherlands
| | - Esmée Botman
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine Section Endocrinology, Amsterdam, the Netherlands
- Amsterdam UMC, Amsterdam Bone Center, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, the Netherlands
| | - Ruben D de Ruiter
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine Section Endocrinology, Amsterdam, the Netherlands
- Amsterdam UMC, Amsterdam Bone Center, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, the Netherlands
| | - Jan Maerten Smit
- Amsterdam UMC, Amsterdam Bone Center, Amsterdam, the Netherlands
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Plastic, Reconstructive and Hand Surgery, Amsterdam, the Netherlands
| | - Berend P Teunissen
- Amsterdam UMC, Amsterdam Bone Center, Amsterdam, the Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands
| | - Wouter D Lubbers
- Amsterdam UMC, Amsterdam Bone Center, Amsterdam, the Netherlands
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Anaesthesiology, Amsterdam, the Netherlands
| | - Lothar A Schwarte
- Amsterdam UMC, Amsterdam Bone Center, Amsterdam, the Netherlands
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Anaesthesiology, Amsterdam, the Netherlands
| | - Patrick Schober
- Amsterdam UMC, Amsterdam Bone Center, Amsterdam, the Netherlands
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Anaesthesiology, Amsterdam, the Netherlands
| | - E Marelise W Eekhoff
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine Section Endocrinology, Amsterdam, the Netherlands
- Amsterdam UMC, Amsterdam Bone Center, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, Amsterdam, the Netherlands
- Correspondence: E Marelise W Eekhoff, Department of Internal Medicine section Endocrinology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands, Tel +31 204440588, Email
| |
Collapse
|
45
|
Elamin M, Almutasim Ibrahim A, Omer A. Fibrodysplasia Ossificans Progressiva: A Report of Four Cases. Cureus 2022; 14:e23392. [PMID: 35475090 PMCID: PMC9022658 DOI: 10.7759/cureus.23392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare disease with less than a thousand confirmed cases. It is a severely disabling genetic condition that affects soft tissues and is characterized by progressive extraskeletal heterotopic ossification and great toe deformities. The mode of FOP inheritance is autosomal dominant with no association to race, gender, or geographic distribution. While laboratory results and imaging studies support the identification of FOP, the diagnosis of this rare condition is mainly clinical. Recently, FOP has been linked to a mutation of the ACVR1/ALK2 gene that induces osteoblast activation. We are reporting four cases of fibrodysplasia ossificans progressiva over a period of two years (2014-2016). Three out of four cases were treated conservatively. The first case was treated by excision of a bony bar, and the patient developed progressive bony formation and restriction of movement afterwards. Almost always, FOP needs to be treated conservatively with non-steroidal anti-inflammatory drugs (NSAIDs) and gentle physiotherapy. Aside from anesthetic complications, surgical interventions provoke more bone formation, hence the recurrent joint restriction. Therefore, surgery should only be reserved for severely disabling deformities.
Collapse
|
46
|
Wang H, Zhang Q, Kaplan FS, Pignolo RJ. Clearance of Senescent Cells From Injured Muscle Abrogates Heterotopic Ossification in Mouse Models of Fibrodysplasia Ossificans Progressiva. J Bone Miner Res 2022; 37:95-107. [PMID: 34633114 PMCID: PMC8770661 DOI: 10.1002/jbmr.4458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/19/2021] [Accepted: 10/02/2021] [Indexed: 11/10/2022]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease caused by mutations in activin A receptor type I/activin-like kinase 2 (ACVR1/ALK2), a bone morphogenetic protein (BMP) type I receptor, resulting in the formation of extraskeletal or heterotopic ossification (HO) and other features consistent with premature aging. During the first decade of life, episodic bouts of inflammatory swellings (flare-ups) occur, which are typically triggered by soft tissue trauma. Through an endochondral process, these exacerbations ultimately result in skeletal muscles, tendons, ligaments, fascia, and aponeuroses transforming into ectopic bone, rendering movement impossible. We have previously shown that soft tissue injury causes early FOP lesions characterized by cellular hypoxia, cellular damage, and local inflammation. Here we show that muscle injury in FOP also results in senescent cell accumulation, and that senescence promotes tissue reprogramming toward a chondrogenic fate in FOP muscle but not wild-type (WT) muscle. Using a combination of senolytic drugs we show that senescent cell clearance and reduction in the senescence associated secretory phenotype (SASP) ameliorate HO in mouse models of FOP. We conclude that injury-induced senescent cell burden and the SASP contribute to FOP lesion formation and that tissue reprogramming in FOP is mediated by cellular senescence, altering myogenic cell fate toward a chondrogenic cell fate. Furthermore, pharmacological removal of senescent cells abrogates tissue reprogramming and HO formation. Here we provide proof-of-principle evidence for senolytic drugs as a future therapeutic strategy in FOP. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Haitao Wang
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Qiang Zhang
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP & Related Disorders, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Pignolo
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
47
|
Nishida K, Ikawa Y, Nakamura T, Ohta K, Wada T. Severe pulmonary hypertension with fibrodysplasia ossificans progressiva. Pediatr Int 2022; 64:e15250. [PMID: 35998152 DOI: 10.1111/ped.15250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/05/2022] [Accepted: 05/23/2022] [Indexed: 01/05/2023]
Affiliation(s)
- Keigo Nishida
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yasuhiro Ikawa
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Taichi Nakamura
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kunio Ohta
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
48
|
Acosta CES, Fernández ER. Fibrodysplasia Ossificans Progressiva. J Clin Rheumatol 2021; 27:S858. [PMID: 35073643 DOI: 10.1097/rhu.0000000000000494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Pignolo RJ, Pacifici M. Retinoid Agonists in the Targeting of Heterotopic Ossification. Cells 2021; 10:cells10113245. [PMID: 34831466 PMCID: PMC8617746 DOI: 10.3390/cells10113245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022] Open
Abstract
Retinoids are metabolic derivatives of vitamin A and regulate the function of many tissues and organs both prenatally and postnatally. Active retinoids, such as all trans-retinoic acid, are produced in the cytoplasm and then interact with nuclear retinoic acid receptors (RARs) to up-regulate the transcription of target genes. The RARs can also interact with target gene response elements in the absence of retinoids and exert a transcriptional repression function. Studies from several labs, including ours, showed that chondrogenic cell differentiation and cartilage maturation require (i) the absence of retinoid signaling and (ii) the repression function by unliganded RARs. These and related insights led to the proposition that synthetic retinoid agonists could thus represent pharmacological agents to inhibit heterotopic ossification (HO), a process that recapitulates developmental skeletogenesis and involves chondrogenesis, cartilage maturation, and endochondral ossification. One form of HO is acquired and is caused by injury, and another severe and often fatal form of it is genetic and occurs in patients with fibrodysplasia ossificans progressiva (FOP). Mouse models of FOP bearing mutant ACVR1R206H, characteristic of most FOP patients, were used to test the ability of the retinoid agonists selective for RARα and RARγ against spontaneous and injury-induced HO. The RARγ agonists were found to be most effective, and one such compound, palovarotene, was selected for testing in FOP patients. The safety and effectiveness data from recent and ongoing phase II and phase III clinical trials support the notion that palovarotene may represent a disease-modifying treatment for patients with FOP. The post hoc analyses showed substantial efficacy but also revealed side effects and complications, including premature growth plate closure in some patients. Skeletally immature patients will need to be carefully weighed in any future regulatory indications of palovarotene as an important therapeutic option in FOP.
Collapse
Affiliation(s)
- Robert J. Pignolo
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopedics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| |
Collapse
|
50
|
Pignolo RJ, Hsiao EC, Baujat G, Lapidus D, Sherman A, Kaplan FS. Prevalence of fibrodysplasia ossificans progressiva (FOP) in the United States: estimate from three treatment centers and a patient organization. Orphanet J Rare Dis 2021; 16:350. [PMID: 34353327 PMCID: PMC8340531 DOI: 10.1186/s13023-021-01983-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fibrodysplasia ossificans progressiva (FOP), an ultra-rare, progressive, and permanently disabling disorder of extraskeletal ossification, is characterized by episodic and painful flare-ups and irreversible heterotopic ossification in muscles, tendons, and ligaments. Prevalence estimates have been hindered by the rarity of FOP and the heterogeneity of disease presentation. This study aimed to provide a baseline prevalence of FOP in the United States, based on contact with one of 3 leading treatment centers for FOP (University of Pennsylvania, Mayo Clinic, or University of California San Francisco), the International Fibrodysplasia Ossificans Progressiva Association (IFOPA) membership list, or the IFOPA FOP Registry through July 22, 2020. RESULTS Patient records were reviewed, collected, and deduplicated using first and last name initials, sex, state, and year of birth. A Kaplan-Meier survival curve was applied to each individual patient to estimate the probability that he or she was still alive, and a probability-weighted net prevalence estimate was calculated. After deduplication, 373 unique patients were identified in the United States, 294 of whom who were not listed as deceased in any list. The average time since last contact for 284 patients was 1.5 years. Based on the application of the survival probability, it is estimated that 279 of these patients were alive on the prevalence date (22 July 2020). An adjusted prevalence of 0.88 per million US residents was calculated using either an average survival rate estimate of 98.4% or a conservative survival rate estimate of 92.3% (based on the Kaplan-Meier survival curve from a previous study) and the US Census 2020 estimate of 329,992,681 on prevalence day. CONCLUSIONS This study suggests that the prevalence of FOP is higher than the often-cited value of 0.5 per million. Even so, because inclusion in this study was contingent upon treatment by the authors, IFOPA membership with confirmed clinical diagnosis, and the FOP Registry, the prevalence of FOP in the US may be higher than that identified here. Thus, it is imperative that efforts be made to identify and provide expert care for patients with this ultra-rare, significantly debilitating disease.
Collapse
Affiliation(s)
- Robert J Pignolo
- Geriatric Medicine & Gerontology, Robert and Arlene Kogod Professor of Geriatric Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Edward C Hsiao
- Robert L. Kroc Chair in Rheumatic and Connective Tissue Diseases III, Division of Endocrinology and Metabolism, University of California, San Francisco, CA, USA.,Department of Medicine, Institute for Human Genetics, University of California, San Francisco, CA, USA.,Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - Genevieve Baujat
- Department of Clinical Genetics, INSERM U1163, Paris-Descartes University, Imagine Institute, Necker-Enfants Malades Hospital, Paris, France
| | | | - Adam Sherman
- The International FOP Association, North Kansas City, MO, USA
| | - Frederick S Kaplan
- Departments of Orthopaedic Surgery and Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,The Center for Research in FOP & Related Disorders, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|