1
|
Faulks CR, Biddau DT, Rossi VJ, Brazenor GA, Malham GM. Long-term outcomes following lumbar total disc replacement with M6-L. JOURNAL OF SPINE SURGERY (HONG KONG) 2022; 8:304-313. [PMID: 36285092 PMCID: PMC9547696 DOI: 10.21037/jss-22-36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022]
Abstract
Background The motion preserving benefits of lumbar total disc replacement (LTDR) are well established. There is a paucity of long-term follow-up data on the M6-L prosthesis. The aim was to evaluate the clinical and radiographic outcomes of patients undergoing LTDR with M6-L and make comment about its effectiveness and durability. Methods A retrospective single center chart review was performed of all patients who underwent LTDR with M6-L between January 1, 2011, and January 1, 2021, either as standalone device or combined with a caudal anterior lumbar interbody fusion (ALIF) (hybrid procedure). Preoperative, postoperative, and final follow-up patient reported outcome measures (PROMs) (VAS back, VAS leg, ODI, and SF-12) and patient satisfaction were recorded prospectively. Device range of motion (ROM), adjacent segment degeneration/disease and heterotopic ossification (HO) were obtained from flexion and extension lumbar radiographs at most recent follow-up. Results Sixty patients underwent LTDR with the M6-L device. Mean age was 41 [16-71] years and 38 (63%) were male. Sixteen (26.7%) underwent standalone LTDR, 42 (70.0%) a hybrid procedure, and 2 (3.3%) a 3-level procedure. Twenty-three (38.3%) patients were lost to follow-up. Thirty-seven (61.7%) were followed for a mean of 4.3 [1-10] years with 36/37 reviewed at a minimum of 2-years and 13/37 followed for over 5-years. Only one patient with osteopenia needed index level revision LTDR surgery for subsidence requiring supplemental posterior instrumentation. There were no osteolysis induced device related failures. Thirty patients obtained long-term follow-up radiographic data. Six patients had adjacent segment degeneration; none required surgery for adjacent segment disease (ASD). Three patients presented with clinically significant HO (2 with McAfee class III, 1 with class IV). The average M6-L ROM was 8.6 degrees. Mean preoperative baseline PROMs demonstrated statistically significant improvements postoperatively and were sustained at last follow-up (P<0.05). Conclusions Total disc replacement (TDR) with M6-L showed clinically significant improvement in PROMs that were sustained at long-term follow-up. There were no osteolysis induced device related failures. The device ROM was maintained and showed a downward trend over the 10-year study follow-up period. This paper demonstrated that the M6-L was an effective and durable arthroplasty device in this series.
Collapse
Affiliation(s)
- Charlie R. Faulks
- Neuroscience Institute, Epworth Hospital, Richmond, Melbourne, Australia
| | - Dean T. Biddau
- Neuroscience Institute, Epworth Hospital, Richmond, Melbourne, Australia
| | - Vincent J. Rossi
- Neuroscience Institute, Epworth Hospital, Richmond, Melbourne, Australia
- Department of Neurosurgery, Atrium Health Musculoskeletal Institute, Charlotte, NC, USA
- Carolina Neurosurgery & Spine Associates, Charlotte, NC, USA
| | - Graeme A. Brazenor
- Neuroscience Institute, Epworth Hospital, Richmond, Melbourne, Australia
| | - Gregory Michael Malham
- Neuroscience Institute, Epworth Hospital, Richmond, Melbourne, Australia
- Department of Spine Surgery Research and Surgical Innovations, Swinburne University of Technology, Melbourne, Australia
| |
Collapse
|
2
|
Midterm osteolysis-induced aseptic failure of the M6-C™ cervical total disc replacement secondary to polyethylene wear debris. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:1273-1282. [PMID: 35020078 DOI: 10.1007/s00586-021-07094-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/18/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND According to published meta-analyses, cervical total disc replacement (CTDR) seems to be superior to anterior cervical decompression and fusion (ACDF) in most clinical parameters. Despite short-term clinical success of CTDR, there are concerns regarding long-term durability of these prostheses. METHODS This prospective study involved 382 patients who received standalone CTDR or a hybrid procedure (ACDF/CTDR). A retrospective comparison between different CTDR devices was conducted regarding patient-reported outcome measures (PROMs), failure scenarios, and revision surgeries. The M6-C™ Artificial Cervical Disc (Orthofix, Lewisville, Texas) cohort was compared to the other CTDR devices clinically. Etiological reasons for revision, and the surgical technique of the revision was investigated. RESULTS Fifty-three patients received M6-C CTDR. Eighteen patients (34%) were revised at an average of 67 months postoperatively for wear-induced osteolysis. There were three additional cases of pending revision. The PROMs of the two groups were similar, indicating that the failure mode (wear-induced osteolysis) is often asymptomatic. The demographics of the two groups were also similar, with more women undergoing revision surgery than men. There were three one-level CTDR, four two-level hybrids, seven three-level hybrids, and three four-level hybrids revised anteriorly. Sixteen patients underwent removal of the prosthesis and were treated according to the extent of osteolysis. There were four vertebrectomies, six revisions to ACDF, and six revisions to another CTDR. One patient underwent supplemental fixation using a posterior approach. The other CTDR cohort had an incidence of 3.3% at the equivalent time, and none of these were due to osteolysis or wear-related events. CONCLUSIONS There is a concerning midterm failure rate related to ultra-high-molecular-weight-polyethylene wear-induced osteolysis in the M6-C. Patients implanted with the M6-C prosthesis should be contacted, informed, and clinically and radiologically assessed.
Collapse
|
3
|
The Role of Vertebral Porosity and Implant Loading Mode on Bone-Tissue Stress in the Human Vertebral Body Following Lumbar Total Disc Arthroplasty. Spine (Phila Pa 1976) 2021; 46:E1022-E1030. [PMID: 33660678 DOI: 10.1097/brs.0000000000004023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Micro-computed tomography- (micro-CT-) based finite element analysis of cadaveric human lumbar vertebrae virtually implanted with total disc arthroplasty (TDA) implants. OBJECTIVE (1) Assess the relationship between vertebral porosity and maximum levels of bone-tissue stress following TDA; (2) determine whether the implant's loading mode (axial compression vs. sagittal bending) alters the relationship between vertebral porosity and bone-tissue stress. SUMMARY OF BACKGROUND DATA Implant subsidence may be related to the bone biomechanics in the underlying vertebral body, which are poorly understood. For example, it remains unclear how the stresses that develop in the supporting bone tissue depend on the implant's loading mode or on typical inter-individual variations in vertebral morphology. METHODS Data from micro-CT scans from 12 human lumbar vertebrae (8 males, 4 females; 51-89 years of age; bone volume fraction [BV/TV] = 0.060-0.145) were used to construct high-resolution finite element models (37 μm element edge length) comprising disc-vertebra-implant motion segments. Implants were loaded to 800 N of force in axial compression, flexion-, and extension-induced impingement. For comparison, the same net loads were applied via an intact disc without an implant. Linear regression was used to assess the relationship between BV/TV, loading mode, and the specimen-specific change in stress caused by implantation. RESULTS The increase in maximum bone-tissue stress caused by implantation depended on loading mode (P < 0.001), increasing more in bending-induced impingement than axial compression (for the same applied force). The change in maximum stress was significantly associated with BV/TV (P = 0.002): higher porosity vertebrae experienced a disproportionate increase in stress compared with lower porosity vertebrae. There was a significant interaction between loading mode and BV/TV (P = 0.002), indicating that loading mode altered the relationship between BV/TV and the change in maximum bone-tissue stress. CONCLUSION Typically-sized TDA implants disproportionately increase the bone-tissue stress in more porous vertebrae; this affect is accentuated when the implant impinges in sagittal bending.Level of Evidence: N/A.
Collapse
|
4
|
Vanaclocha-Saiz A, Atienza CM, Vanaclocha V, Belloch V, Santabarbara JM, Jordá-Gómez P, Vanaclocha L. ICR in human cadaveric specimens: An essential parameter to consider in a new lumbar disc prosthesis design. NORTH AMERICAN SPINE SOCIETY JOURNAL 2020; 2:100016. [PMID: 35141586 PMCID: PMC8820058 DOI: 10.1016/j.xnsj.2020.100016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 06/14/2023]
Abstract
STUDY DESIGN Biomechanical study in cadaveric specimens. BACKGROUND The commercially available lumbar disc prostheses do not reproduce the intact disc's Instantaneous centre of Rotation (ICR), thus inducing an overload on adjacent anatomical structures, promoting secondary degeneration. AIM To examine biomechanical testing of cadaveric lumbar spine specimens in order to evaluate and define the ICR of intact lumbar discs. MATERIAL AND METHODS Twelve cold preserved fresh human cadaveric lumbosacral spine specimens were subjected to computerized tomography (CT), magnetic resonance imaging (MRI) and biomechanical testing. Kinematic studies were performed to analyse range of movements in order to determine ICR. RESULTS Flexoextension and lateral bending tests showed a positive linear correlation between the angle rotated and the displacement of the ICR in different axes. DISCUSSION ICR has not been taken into account in any of the available literature regarding lumbar disc prosthesis. Considering our results, neither the actual ball-and-socket nor the withdrawn elastomeric nucleus models fit the biomechanics of the lumbar spine, which could at least in part explain the failure rates of the implants in terms of postoperative failed back syndrome (low back pain). It is reasonable to consider then that an implant should also adapt the equations of the movement of the intact ICR of the joint to the post-surgical ICR. CONCLUSIONS This is the first cadaveric study on the ICR of the human lumbar spine. We have shown that it is feasible to calculate and consider this parameter in order to design future prosthesis with improved clinical and biomechanical characteristics.
Collapse
Affiliation(s)
| | - Carlos M Atienza
- Instituto de Biomecánica (IBV) Universitat Politècnica de Valencia, Valencia, Spain
- Instituto de Biomecánica de Valencia-CIBER BBN, Grupo de Tecnología Sanitaria (GTS-IBV), Valencia, Spain
| | | | | | | | | | | |
Collapse
|
5
|
Bonnheim NB, Keaveny TM. Load-transfer in the human vertebral body following lumbar total disc arthroplasty: Effects of implant size and stiffness in axial compression and forward flexion. JOR Spine 2020; 3:e1078. [PMID: 32211590 PMCID: PMC7084059 DOI: 10.1002/jsp2.1078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 11/07/2022] Open
Abstract
Adverse clinical outcomes for total disc arthroplasty (TDA), including subsidence, heterotopic ossification, and adjacent-level vertebral fracture, suggest problems with the underlying biomechanics. To gain insight, we investigated the role of size and stiffness of TDA implants on load-transfer within a vertebral body. Uniquely, we accounted for the realistic multi-scale geometric features of the trabecular micro-architecture and cortical shell. Using voxel-based finite element analysis derived from a micro-computed tomography scan of one human L1 vertebral body (74-μm-sized elements), a series of generic elliptically shaped implants were analyzed. We parametrically modeled three implant sizes (small, medium [a typical clinical size], and large) and three implant materials (metallic, E = 100 GPa; polymeric, E = 1 GPa; and tissue-engineered, E = 0.01 GPa). Analyses were run for two load cases: 800 N in uniform compression and flexion-induced anterior impingement. Results were compared to those of an intact model without an implant and loaded instead via a disc-like material. We found that TDA implantation increased stress in the bone tissue by over 50% in large portions of the vertebra. These changes depended more on implant size than material, and there was an interaction between implant size and loading condition. For the small implant, flexion increased the 98th-percentile of stress by 32 ± 24% relative to compression, but the overall stress distribution and trabecular-cortical load-sharing were relatively insensitive to loading mode. In contrast, for the medium and large implants, flexion increased the 98th-percentile of stress by 42 ± 9% and 87 ± 29%, respectively, and substantially re-distributed stress within the vertebra; in particular overloading the anterior trabecular centrum and cortex. We conclude that TDA implants can substantially alter stress deep within the lumbar vertebra, depending primarily on implant size. For implants of typical clinical size, bending-induced impingement can substantially increase stress in local regions and may therefore be one factor driving subsidence in vivo.
Collapse
Affiliation(s)
- Noah B. Bonnheim
- Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyCalifornia
| | - Tony M. Keaveny
- Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyCalifornia
- Department of BioengineeringUniversity of CaliforniaBerkeleyCalifornia
| |
Collapse
|
6
|
Werner JH, Rosenberg JH, Keeley KL, Agrawal DK. Immunobiology of periprosthetic inflammation and pain following ultra-high-molecular-weight-polyethylene wear debris in the lumbar spine. Expert Rev Clin Immunol 2018; 14:695-706. [PMID: 30099915 DOI: 10.1080/1744666x.2018.1511428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Wear debris-induced osteolysis is a common cause of arthroplasty failure in several joints including the knee, hip and intervertebral disc. Debris from the prosthesis can trigger an inflammatory response that leads to aseptic loosening and prosthesis failure. In the spine, periprosthetic pain also occurs following accumulation of wear debris through neovascularization of the disc. The role of the immune system in the pathobiology of periprosthetic osteolysis of joint replacements is debatable. Areas covered: We discussed the stimulation of pro-inflammatory and pro-protective and pro-regenerative pathways due to debris from the prosthetics. The balance between the two pathways may determine the outcome results. Also, the role of cytokines and immune cells in periprosthetic inflammation in the etiology of osteolysis is critically reviewed. Expert commentary: Therapies targeting the inflammatory process associated with ultra-high-molecular-weight polyethylene wear debris could reduce implant failure. Additionally, therapies targeting neovascularization of discs following arthroplasty could mitigate periprosthetic pain.
Collapse
Affiliation(s)
- John H Werner
- a Department of Clinical and Translational Science , Creighton University School of Medicine , Omaha , NE , USA
| | - John H Rosenberg
- a Department of Clinical and Translational Science , Creighton University School of Medicine , Omaha , NE , USA
| | - Kristen L Keeley
- a Department of Clinical and Translational Science , Creighton University School of Medicine , Omaha , NE , USA
| | - Devendra K Agrawal
- a Department of Clinical and Translational Science , Creighton University School of Medicine , Omaha , NE , USA
| |
Collapse
|
7
|
Abstract
BACKGROUND Replacement of a diseased lumbar intervertebral disc with an artificial device, a procedure known as lumbar total disc replacement (LTDR), has been practiced since the 1980s. METHODS Comprehensive review of published literature germane to LTDR, but comment is restricted to high-quality evidence reporting implantation of lumbar artificial discs that have been commercially available for at least 15 years at the time of writing and which continue to be commercially available. RESULTS LTDR is shown to be a noninferior (and sometimes superior) alternative to lumbar fusion in patients with discogenic low back pain and/or radicular pain attributable to lumbar disc degenerative disease (LDDD). Further, LTDR is a motion-preserving procedure, and evidence is emerging that it may also result in risk reduction for subsequent development and/or progression of adjacent segment disease. CONCLUSIONS In spite of the substantial logistical challenges to the safe introduction of LTDR to a health care facility, the procedure continues to gain acceptance, albeit slowly. CLINICAL RELEVANCE Patients with LDDD who are considering an offer of spinal surgery can only provide valid and informed consent if they have been made aware of all reasonable surgical and nonsurgical options that may benefit them. Accordingly, and in those cases in which LTDR may have a role to play, patients under consideration for other forms of spinal surgery should be informed that this valid procedure exists.
Collapse
Affiliation(s)
- Stephen Beatty
- Institute of Health Sciences, Waterford Institute of Technology, Waterford, Republic of Ireland
| |
Collapse
|
8
|
Lumbar Disk Arthroplasty for Degenerative Disk Disease: Literature Review. World Neurosurg 2017; 109:188-196. [PMID: 28987839 DOI: 10.1016/j.wneu.2017.09.153] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 12/13/2022]
Abstract
Low back pain is the principal cause of long-term disability worldwide. We intend to address one of its main causes, degenerative disk disease, a spinal condition involving degradation of an intervertebral disk. Following unsuccessful conservative treatment, patients may be recommended for surgery. The two main surgical treatments for lumbar degenerative disk disease are lumbar fusion: traditional standard surgical treatment and lumbar disk arthroplasty, also known as lumbar total disk replacement. Lumbar fusion aims to relieve pain by fusing vertebrae together to eliminate movement at the joint, but it has been criticized for problems involving insignificant pain relief, a reduced range of motion, and an increased risk of adjacent segment degeneration. This leads to development of the lumbar total disk replacement technique, which aims to relieve pain replacing a degenerated intervertebral disk with a moveable prosthesis, thus mimicking the functional anatomy and biomechanics of a native intervertebral disk. Over the years a large range of prosthetic disks has been developed. The efficacy and current evidence for these prostheses are discussed in this review. The results of this study are intended to guide clinical practice and future lumbar total disk replacement device choice and design.
Collapse
|
9
|
Food contact materials and gut health: Implications for toxicity assessment and relevance of high molecular weight migrants. Food Chem Toxicol 2017; 109:1-18. [PMID: 28830834 DOI: 10.1016/j.fct.2017.08.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 02/08/2023]
Abstract
Gut health is determined by an intact epithelial barrier and balanced gut microbiota, both involved in the regulation of immune responses in the gut. Disruption of this system contributes to the etiology of various non-communicable diseases, including intestinal, metabolic, and autoimmune disorders. Studies suggest that some direct food additives, but also some food contaminants, such as pesticide residues and substances migrating from food contact materials (FCMs), may adversely affect the gut barrier or gut microbiota. Here, we focus on gut-related effects of FCM-relevant substances (e.g. surfactants, N-ring containing substances, nanoparticles, and antimicrobials) and show that gut health is an underappreciated target in the toxicity assessment of FCMs. Understanding FCMs' impact on gut health requires more attention to ensure safety and prevent gut-related chronic diseases. Our review further points to the existence of large population subgroups with an increased intestinal permeability; this may lead to higher uptake of compounds of not only low (<1000 Da) but also high (>1000 Da) molecular weight. We discuss the potential toxicological relevance of high molecular weight compounds in the gut and suggest that the scientific justification for the application of a molecular weight-based cut-off in risk assessment of FCMs should be reevaluated.
Collapse
|
10
|
Salzmann SN, Plais N, Shue J, Girardi FP. Lumbar disc replacement surgery-successes and obstacles to widespread adoption. Curr Rev Musculoskelet Med 2017; 10:153-159. [PMID: 28324327 PMCID: PMC5435628 DOI: 10.1007/s12178-017-9397-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Lumbar disc replacement has been a surgical alternative to fusion surgery for the treatment of lumbar degenerative disc disease (DDD) for many years. Despite enthusiasm after the approval of the first devices, implantation rates have remained low, especially in the USA. The goal of this review is to provide a general overview of lumbar disc replacement in order to comprehend the successes and obstacles to widespread adoption. RECENT FINDINGS Although a large amount of evidence-based data including satisfactory long-term results is available, implantation rates in the USA have not increased in the last decade. Possible explanations for this include strict indications for use, challenging surgical techniques, lack of device selection, fear of late complications or revision surgeries, and reimbursement issues. Recent publications can address some of the past concerns, but there still remain obstacles to widespread adoption. Upcoming data on long-term outcome, implant durability and possible very late complications will determine the future of lumbar disc replacement surgery.
Collapse
Affiliation(s)
- Stephan N Salzmann
- Department of Orthopedic Surgery, Spine and Scoliosis Service, Hospital for Special Surgery, Weill Cornell Medical College, 535 East 70th Street, New York, NY, 10021, USA
| | - Nicolas Plais
- Department of Orthopedic Surgery, Spine and Scoliosis Service, Hospital for Special Surgery, Weill Cornell Medical College, 535 East 70th Street, New York, NY, 10021, USA
| | - Jennifer Shue
- Department of Orthopedic Surgery, Spine and Scoliosis Service, Hospital for Special Surgery, Weill Cornell Medical College, 535 East 70th Street, New York, NY, 10021, USA
| | - Federico P Girardi
- Department of Orthopedic Surgery, Spine and Scoliosis Service, Hospital for Special Surgery, Weill Cornell Medical College, 535 East 70th Street, New York, NY, 10021, USA.
| |
Collapse
|
11
|
Siskey R, Peck J, Mehta H, Kosydar A, Kurtz S, Hill G. Development of a clinically relevant impingement test method for a mobile bearing lumbar total disc replacement. Spine J 2016; 16:1133-42. [PMID: 27179625 DOI: 10.1016/j.spinee.2016.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/13/2016] [Accepted: 05/07/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Total disc arthroplasty is an alternative therapy to spinal fusion for the treatment of neck or low back pain and is hypothesized to reduce the risk of disease progression to the adjacent spinal levels. Radiographic and retrieval analyses of various total disc replacements (TDRs) have shown evidence of impingement damage. Impingement of TDRs can occur when the device reaches the limits of its functional range of motion, causing contact between peripheral regions of the device. PURPOSE Impingement can be associated with increased wear and mechanical damage; however, impingement conditions are not simulated in current standardized mechanical bench test methods. This study explored the test conditions necessary to apply clinically relevant impingement loading to a lumbar TDR in vitro. STUDY DESIGN An experimental protocol was developed and evaluated using in vivo retrievals for qualitative and quantitative validation. METHODS Retrieval analysis was conducted on a set of 11 size 3 retrieved Charité devices using American Society for Testing and Materials F561 as a guide. The impingement range of motion was determined using a combination of modeling and experiments, and was used as an input in vitro testing. A 1-million cycle in vitro test was then conducted, and the in vitro samples were characterized using methods similar to the retreived devices. RESULTS All in vitro tested samples exhibited impingement regions and damage patterns consistent with retrieved devices. Consistent with the retrievals, the impingement damage on the rim was a combination of abrasive wear and plastic deformation. Micro computed tomography (microCT) was used to quantitatively assess rim damage due to impingement. Rim penetration was statistically lower in the retrievals when compared with both in vitro groups. Rim elongation was comparable among all groups. The simulated-facet group had statistically greater angular rim deformations than the retrieval group and the no-facet group. CONCLUSIONS Results demonstrate that clinically relevant impingement seen on mobile bearings of lumbar TDRs can be replicated on the bench.
Collapse
Affiliation(s)
- Ryan Siskey
- Exponent, Inc., Philadelphia, PA, USA; Drexel University, Philadelphia, PA, USA.
| | - Jonathan Peck
- US Food and Drug Administration, White Oak, Building 66, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Hitesh Mehta
- US Food and Drug Administration, White Oak, Building 66, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Allison Kosydar
- Exponent, Inc., Philadelphia, PA, USA; Drexel University, Philadelphia, PA, USA
| | - Steven Kurtz
- Exponent, Inc., Philadelphia, PA, USA; Drexel University, Philadelphia, PA, USA
| | - Genevieve Hill
- US Food and Drug Administration, White Oak, Building 66, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
12
|
Abstract
PURPOSE The primary goal of this Policy Statement is to educate patients, physicians, medical providers, reviewers, adjustors, case managers, insurers, and all others involved or affected by insurance coverage decisions regarding lumbar disc replacement surgery. PROCEDURES This Policy Statement was developed by a panel of physicians selected by the Board of Directors of ISASS for their expertise and experience with lumbar TDR. The panel's recommendation was entirely based on the best evidence-based scientific research available regarding the safety and effectiveness of lumbar TDR.
Collapse
|
13
|
Veruva SY, Lanman TH, Isaza JE, MacDonald DW, Kurtz SM, Steinbeck MJ. UHMWPE wear debris and tissue reactions are reduced for contemporary designs of lumbar total disc replacements. Clin Orthop Relat Res 2015; 473:987-98. [PMID: 25367112 PMCID: PMC4317415 DOI: 10.1007/s11999-014-4029-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Lumbar total disc replacement (L-TDR) is a procedure used to relieve back pain and maintain mobility. Contemporary metal-on-polyethylene (MoP) L-TDRs were developed to address wear performance concerns about historical designs, but wear debris generation and periprosthetic tissue reactions for these newer implants have not been determined. QUESTIONS/PURPOSES The purpose of this study was to determine (1) whether periprosthetic ultrahigh-molecular-weight polyethylene (UHMWPE) wear debris and biological responses were present in tissues from revised contemporary MoP L-TDRs that contain conventional cores fabricated from γ-inert-sterilized UHMWPE; (2) how fixed- versus mobile-bearing design affected UHMWPE wear particle number, shape, and size; and (3) how these wear particle characteristics compare with historical MoP L-TDRs that contain cores fabricated from γ-air-sterilized UHMWPE. METHODS We evaluated periprosthetic tissues from 11 patients who received eight fixed-bearing ProDisc-L and four mobile-bearing CHARITÉ contemporary L-TDRs with a mean implantation time of 4.1 and 2.7 years, respectively. Histologic analysis of tissues was performed to assess biological responses and polarized light microscopy was used to quantify number and size/shape characteristics of UHMWPE wear particles from the fixed- and mobile-bearing devices. Comparisons were made to previously reported particle data for historical L-TDRs. RESULTS Five of seven (71%) fixed-bearing and one of four mobile-bearing L-TDR patient tissues contained at least 4 particles/mm(2) wear with associated macrophage infiltration. Tissues with wear debris were highly vascularized, whereas those without debris were more necrotic. Given the samples available, the tissue around mobile-bearing L-TDR was observed to contain 87% more, 11% rounder, and 11% less-elongated wear debris compared with tissues around fixed-bearing devices; however, there were no significant differences. Compared with historical L-TDRs, UHMWPE particle number and circularity for contemporary L-TDRs were 99% less (p = 0.003) and 50% rounder (p = 0.003). CONCLUSIONS In this preliminary study, short-term results suggest there was no significant influence of fixed- or mobile-bearing designs on wear particle characteristics of contemporary L-TDRs, but conventional UHMWPE has notably improved the wear resistance of these devices compared with historical UHMWPE.
Collapse
Affiliation(s)
- Sai Y. Veruva
- />Implant Research Center, Drexel University, 3401 Market Street, Suite 345, Philadelphia, PA 19104 USA
| | - Todd H. Lanman
- />Department of Surgery, University of California Los Angeles, Los Angeles, CA USA
| | | | - Daniel W. MacDonald
- />Implant Research Center, Drexel University, 3401 Market Street, Suite 345, Philadelphia, PA 19104 USA
| | - Steven M. Kurtz
- />Implant Research Center, Drexel University, 3401 Market Street, Suite 345, Philadelphia, PA 19104 USA
- />Exponent, Inc, Philadelphia, PA USA
| | - Marla J. Steinbeck
- />Implant Research Center, Drexel University, 3401 Market Street, Suite 345, Philadelphia, PA 19104 USA
- />Department of Orthopaedic Surgery, Drexel University College of Medicine, Philadelphia, PA USA
| |
Collapse
|
14
|
Which design and biomaterial factors affect clinical wear performance of total disc replacements? A systematic review. Clin Orthop Relat Res 2014; 472:3759-69. [PMID: 25002211 PMCID: PMC4397740 DOI: 10.1007/s11999-014-3751-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Total disc replacement was clinically introduced to reduce pain and preserve segmental motion of the lumbar and cervical spine. Previous case studies have reported on the wear and adverse local tissue reactions around artificial prostheses, but it is unclear how design and biomaterials affect clinical outcomes. QUESTIONS/PURPOSES Which design and material factors are associated with differences in clinical wear performance (implant wear and periprosthetic tissue response) of (1) lumbar and (2) cervical total disc replacements? METHODS We performed a systematic review on the topics of implant wear and periprosthetic tissue response using an advanced search in MEDLINE and Scopus electronic databases. Of the 340 references identified, 33 were retrieved for full-text evaluation, from which 16 papers met the inclusion criteria (12 on lumbar disc replacement and five on cervical disc replacement; one of the included studies reported on both lumbar and cervical disc replacement), which involved semiquantitative analysis of wear and adverse local tissue reactions along with a description of the device used. An additional three papers were located by searching bibliographies of key articles. There were seven case reports, three case series, two case-control studies, and seven analytical studies. The Methodological Index for Non-randomized Studies (MINORS) Scale was used to score case series and case-control studies, which yielded mean scores of 10.3 of 16 and 17.5 of 24, respectively. In general, the case series (three) and case-control (two) studies were of good quality. RESULTS In lumbar regions, metal-on-polymer devices with mobile-bearing designs consistently generated small and large polymeric wear debris, triggering periprosthetic tissue activation of macrophages and giant cells, respectively. In the cervical regions, metal-on-polymer devices with fixed-bearing designs had similar outcomes. All metal-on-metal constructs tended to generate small metallic wear debris, which typically triggered an adaptive immune response of predominantly activated lymphocytes. There were no retrieval studies on one-piece prostheses. CONCLUSIONS This review provides evidence that design and biomaterials affect the type of wear and inflammation. However, clinical study design, followup, and analytical techniques differ among investigations, preventing us from drawing firm conclusions about the relationship between implant design and wear performance for both cervical and lumbar total disc replacement.
Collapse
|
15
|
Ma R, Tang S, Tan H, Lin W, Wang Y, Wei J, Zhao L, Tang T. Preparation, characterization, and in vitro osteoblast functions of a nano-hydroxyapatite/polyetheretherketone biocomposite as orthopedic implant material. Int J Nanomedicine 2014; 9:3949-61. [PMID: 25170265 PMCID: PMC4145828 DOI: 10.2147/ijn.s67358] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A bioactive composite was prepared by incorporating 40 wt% nano-hydroxyapatite (nHA) into polyetheretherketone (PEEK) through a process of compounding, injection, and molding. The mechanical and surface properties of the nHA/PEEK composite were characterized, and the in vitro osteoblast functions in the composite were investigated. The mechanical properties (elastic modulus and compressive strength) of the nHA/PEEK composite increased significantly, while the tensile strength decreased slightly as compared with PEEK. Further, the addition of nHA into PEEK increased the surface roughness and hydrophilicity of the nHA/PEEK composite. In cell tests, compared with PEEK and ultra-high-molecular-weight polyethylene, it was found that the nHA/PEEK composite could promote the functions of MC3T3-E1 cells, including cell attachment, spreading, proliferation, alkaline phosphatase activity, calcium nodule formation, and expression of osteogenic differentiation-related genes. Incorporation of nHA into PEEK greatly improved the bioperformance of PEEK. The nHA/PEEK composite might be a promising orthopedic implant material.
Collapse
Affiliation(s)
- Rui Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China
| | - Songchao Tang
- Key Laboratory for Ultrafine Materials of Ministry of Education and The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Honglue Tan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China
| | - Wentao Lin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China
| | - Yugang Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education and The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Liming Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education and The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China
| |
Collapse
|
16
|
Baxter RM, MacDonald DW, Kurtz SM, Steinbeck MJ. Characteristics of highly cross-linked polyethylene wear debris in vivo. J Biomed Mater Res B Appl Biomater 2013; 101:467-75. [PMID: 23436587 PMCID: PMC3928672 DOI: 10.1002/jbm.b.32902] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 11/12/2012] [Accepted: 12/20/2012] [Indexed: 12/12/2022]
Abstract
Despite the widespread implementation of highly cross-linked polyethylene (HXLPE) liners to reduce the clinical incidence of osteolysis, it is not known if the improved wear resistance will outweigh the inflammatory potential of HXLPE wear debris generated in vivo. Thus, we asked: What are the differences in size, shape, number, and biological activity of polyethylene wear particles obtained from primary total hip arthroplasty revision surgery of conventional polyethylene (CPE) versus remelted or annealed HXLPE liners? Pseudocapsular tissue samples were collected from revision surgery of CPE and HXLPE (annealed and remelted) liners, and digested using nitric acid. The isolated polyethylene wear particles were evaluated using scanning electron microscopy. Tissues from both HXLPE cohorts contained an increased percentage of submicron particles compared to the CPE cohort. However, the total number of particles was lower for both HXLPE cohorts, as a result there was no significant difference in the volume fraction distribution and specific biological activity (SBA; the relative biological activity per unit volume) between cohorts. In contrast, based on the decreased size and number of HXLPE wear debris there was a significant decrease in total particle volume (mm(3)/g of tissue). Accordingly, when the SBA was normalized by total particle volume (mm(3)/gm tissue) or by component wear volume rate (mm(3)/year), functional biological activity of the HXLPE wear debris was significantly decreased compared to the CPE cohort. Indications for this study are that the osteolytic potential of wear debris generated by HXLPE liners in vivo is significantly reduced by improvements in polyethylene wear resistance.
Collapse
Affiliation(s)
- Ryan M Baxter
- School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|