1
|
Huan P, Cui M, Wang Q, Liu B. CRISPR/Cas9-mediated mutagenesis reveals the roles of calaxin in gastropod larval cilia. Gene 2021; 787:145640. [PMID: 33845135 DOI: 10.1016/j.gene.2021.145640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 12/27/2022]
Abstract
Obtaining detectable knockout phenotypes in the G0 generation is essential for gene function studies. Although CRISPR/Cas9-mediated gene editing has been employed to knock out molluscan genes, detectable phenotypes in the G0 generation have not been reported in these animals. In this study, we determined the knockout phenotype of a cilium-related gene, calaxin, using CRISPR/Cas9 technology in the gastropod mollusk Lottia goshimai. Injections with the Cas9-sgRNA complex caused approximately 30-80% of the injected larvae to exhibit a short-cilia phenotype characteristic of shortened cilia and decreased motility in the larvae. This phenotype was detectable in the G0 generation and was consistent for two independent sgRNAs. Genotyping of the injected larvae revealed various types of deletions and insertions in the target gene, which occurred in all sequences from the short-cilia larvae. This result indicated that the short-cilia phenotype was indeed caused by calaxin knockout. This possibility was supported by an RNAi assay targeting calaxin, which produced a highly similar short-cilia phenotype. We observed that a single SNP in the target sequences of the sgRNAs could show varied effects on the efficiency of mutagenesis. These results help to establish a foundation for future studies on molluscan gene editing using the CRISPR/Cas9 technique and contribute to the body of knowledge on molluscan ciliary functions.
Collapse
Affiliation(s)
- Pin Huan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266000 Qingdao, China; University of Chinese Academy of Sciences, 100039 Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
| | - Menglu Cui
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China; University of Chinese Academy of Sciences, 100039 Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
| | - Qian Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China; University of Chinese Academy of Sciences, 100039 Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266000 Qingdao, China; University of Chinese Academy of Sciences, 100039 Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China.
| |
Collapse
|