1
|
Liu Z, Jin X, Miao Y, Wang P, Gu Y, Shangguan X, Chen L, Wang G. Identification and Characterization of C-Mos in Pearl Mussel Hyriopsis cumingii and Its Role in Gonadal Development. Biomolecules 2023; 13:931. [PMID: 37371511 DOI: 10.3390/biom13060931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
C-Mos, a proto-oncogene, regulates oocyte maturation by activating the classical MAPK pathway in cells. To examine the function of C-Mos in Hyriopsis cumingii, C-Mos was identified in this study. The full-length cDNA of C-Mos was 2213 bp, including 144 bp in the 5' UTR, 923 bp in 3' the UTR, and 1146 bp in the open reading frame (ORF) region. During early gonad development, the expression of C-Mos from 4 to 6 months of age in H. cumingii was significantly higher than that in other months, with the highest expression in 6-month-old H. cumingii, suggesting that C-Mos may be involved in early gonadal development in H. cumingii. Clear hybridization signals were found by in situ hybridization in the oocytes, oocyte nucleus and oogonium, and a small number of hybridization signals were found in the follicular wall of the male gonads. In addition, the C-Mos RNA interference (RNAi) assay results showed that the knockdown of C-Mos caused a down-regulation of ERK and P90rsk. In summary, these results indicate that C-Mos has a crucial part to play in gonadal development in H. cumingii.
Collapse
Affiliation(s)
- Zongyu Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Xin Jin
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Yulin Miao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Ping Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Yang Gu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Xiaozhao Shangguan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Lijing Chen
- Shanghai Vocational College of Agriculture and Forestry, Shanghai 201699, China
| | - Guiling Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| |
Collapse
|
2
|
Liu Y, Bai S, Wang Y, Li X, Qu J, Han M, Zhai J, Li W, Liu J, Zhang Q. Intensive masculinization caused by chronic heat stress in juvenile Cynoglossus semilaevis: Growth performance, gonadal histology and gene responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113250. [PMID: 35121259 DOI: 10.1016/j.ecoenv.2022.113250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The sea temperature has been observed to chronically increase during the past decades, leaving unpredictable influences to the marine biological resources. Thus, it is of vital significance to study the biological responses of ocean inhabited organisms with the artificially stimulated heat stress environment. Cynoglossus semilaevis provides us with an ideal model to study the influence of chronic heat stress on the sexual differentiation in marine teleosts for its genetic sex determination (GSD) + environmental effected (EE) sex determination system. In this study, the comparative experiment was conducted employing heated seawater (HT group) and ambient seawater (CT group) to cultivate juvenile C. semilaevis respectively. Significant differences were exhibited in growth performance and a delayed germ cell development effect was found in pseudomales formed under chronic heat stress. Using transcriptome analysis, the transcription profile of 55 days post fertilization (dpf) and 100 dpf juveniles' gonads were studied. A total of 47 libraries were constructed with an average mapping rate of 94.63% after assembling. GO and KEGG enrichment were proceeded using DEGs screened out between (1) pseudomale gonads at 55 dpf and 100 dpf in HT and CT group (2) pseudomale and female gonads at 55 dpf and 100 dpf in HT and CT group. Terms and pathways involved in steroid stimulation, reproduction ability, germ cell proliferation et al. were shed light on. The expression pattern of 29 DEGs including amh, hsp90b1, pgr et al. were also provided to supplement the results of functional enrichment. Weighted gene co-expression networks analysis (WGCNA) was constructed and hspb8-like, histone H2A.V were exhibited to play vital roles in the heat-induced masculinization. Our findings facilitate the understanding for transcriptional variations in intensive masculinization cause by chronic heat stress of C. semilaevis and provide referable study of the influences on the teleosts in elevated sea temperature.
Collapse
Affiliation(s)
- Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Shujun Bai
- Laboratory of Fisheries Oceanography, College of Fisheries, Ocean University of China, Qingdao, China
| | - Yujue Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Xiaoqi Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Miao Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Jieming Zhai
- Laizhou Mingbo Aquatic Co., Ltd., Laizhou, China
| | - Wensheng Li
- Laizhou Mingbo Aquatic Co., Ltd., Laizhou, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
3
|
Liu T, Li R, Liu L, Wu S, Zhang L, Li Y, Wei H, Shu Y, Yang Y, Wang S, Xing Q, Zhang L, Bao Z. The Effect of Temperature on Gonadal Sex Differentiation of Yesso Scallop Patinopecten yessoensis. Front Cell Dev Biol 2022; 9:803046. [PMID: 35174162 PMCID: PMC8841428 DOI: 10.3389/fcell.2021.803046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Many marine organisms are generally poikilotherms, making seawater temperature one of the most important environmental factors affecting gonadal sex differentiation. Mollusca is the second-largest animal phylum with diverse reproductive systems, but studies on the impact of temperature on sex differentiation are limited to a few sequential hermaphrodites. By combining morphological and molecular analyses, we investigated the effect of temperature on gonadal sex differentiation of a commercially important gonochoristic scallop Patinopecten yessoensis in the field and under laboratory conditions. Based on the relative expression of FoxL2 and Dmrt1L in the gonads of 6- to 12 month-old scallops, we found the scallops start to differentiate at 7 months old in September when the seawater temperature was 21°C. To eliminate the effect of factors other than temperature on sex differentiation, we compared the gonadal development of juvenile scallops at different temperatures (21, 16 and 11°C) under laboratory conditions. After 50 days of treatment, the 11°C group contain more germ cell types, and have higher sex differentiation rates than the 21°C group. But no obvious sex bias was observed. These results suggest that high temperature (21°C) inhibits sex differentiation, whereas low temperature (11°C) accelerates sex differentiation by 2 months for this cold-water species. It also supports juvenile P. yessoensis is gonochoristic rather than protandrous hermaphroditic. Our study addresses for the first time an environmental influence associated with genetic controls on scallop sex differentiation. It will facilitate a better understanding of how environmental factors affect gonadal development in poikilotherms, especially in the less studied molluscs.
Collapse
Affiliation(s)
- Tian Liu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Ruojiao Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Liangjie Liu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Shaoxuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Lijing Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yajuan Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Huilan Wei
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Ya Shu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yaxin Yang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology and Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology and Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Lingling Zhang,
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology and Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| |
Collapse
|
4
|
Suzuki M, Okumura T, Uchida K, Ikeda Y, Tomooka Y, Nakajima T. Cell culture and genetic transfection methods for the Japanese scallop, Patinopecten yessoensis. FEBS Open Bio 2021; 11:2282-2291. [PMID: 34174169 PMCID: PMC8329786 DOI: 10.1002/2211-5463.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/24/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022] Open
Abstract
Cell cultures can simplify assays of biological phenomena; therefore, cell culture systems have been established for many species, even invertebrates. However, there are few primary culture systems from marine invertebrates that can be maintained long term. The Japanese scallop, Patinopecten yessoensis, is a marine bivalve. Cell culture systems for the scallop have only been established for a few organ-derived cell types and for embryonic cells. We developed a primary culture system for cells from male and female scallop gonads, hepatopancreas, and adductor muscle by utilizing culture conditions closer to those in nature, with regard to temperature, osmolarity, and nutrition. Primary cultured female gonadal cells were maintained for more than 1 month and had potential for proliferation. Furthermore, a genetic transfection system was attempted using a scallop-derived promoter and a lipofection reagent. GFP-positive cells were detected in the attempt. These technical developments would promote our understanding of biochemical mechanisms in scallops as well as providing clues for establishment of immortalized molluscan cell lines.
Collapse
Affiliation(s)
- Minako Suzuki
- Department of Biological Science and TechnologyFaculty of Industrial Science and TechnologyTokyo University of ScienceKatsushika‐kuJapan
- Department of Basic BiologySchool of Life ScienceThe Graduate University for Advanced StudiesSOKENDAIOkazaki AichiJapan
| | - Tomomi Okumura
- Department of Biological Science and TechnologyFaculty of Industrial Science and TechnologyTokyo University of ScienceKatsushika‐kuJapan
| | - Koki Uchida
- Department of Biological Science and TechnologyFaculty of Industrial Science and TechnologyTokyo University of ScienceKatsushika‐kuJapan
| | - Yukinori Ikeda
- Department of Biological Science and TechnologyFaculty of Industrial Science and TechnologyTokyo University of ScienceKatsushika‐kuJapan
- Institute of Industrial ScienceThe University of TokyoMeguro‐kuJapan
| | - Yasuhiro Tomooka
- Department of Biological Science and TechnologyFaculty of Industrial Science and TechnologyTokyo University of ScienceKatsushika‐kuJapan
| | - Tadaaki Nakajima
- Department of Biological Science and TechnologyFaculty of Industrial Science and TechnologyTokyo University of ScienceKatsushika‐kuJapan
- Department of ScienceYokohama City UniversityKanazawa‐kuJapan
| |
Collapse
|
5
|
Li S, Lin G, Fang W, Gao D, Huang J, Xie J, Lu J. Identification and Comparison of microRNAs in the Gonad of the Yellowfin Seabream ( Acanthopagrus Latus). Int J Mol Sci 2020; 21:E5690. [PMID: 32784462 PMCID: PMC7461063 DOI: 10.3390/ijms21165690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Yellowfin seabream (Acanthopagrus latus) is a commercially important fish in Asian coastal waters. Although natural sex reversal has been described in yellowfin seabream, the mechanisms underlying sexual differentiation and gonadal development in this species remain unclear. MicroRNAs (miRNAs) have been shown to play crucial roles in gametogenesis and gonadal development. Here, two libraries of small RNAs, constructed from the testes and ovaries of yellowfin seabream, were sequenced. Across both gonads, we identified 324 conserved miRNAs and 92 novel miRNAs: 67 ovary-biased miRNAs, including the miR-200 families, the miR-29 families, miR-21, and miR-725; and 88 testis-biased miRNAs, including the let-7 families, the miR-10 families, miR-7, miR-9, and miR-202-3p. GO (Gene Ontology) annotations and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses of putative target genes indicated that many target genes were significantly enriched in the steroid biosynthesis pathway and in the reproductive process. Our integrated miRNA-mRNA analysis demonstrated a putative negatively correlated expression pattern in yellowfin seabream gonads. This study profiled the expression patterns of sex-biased miRNAs in yellowfin seabream gonads, and provided important molecular resources that will help to clarify the miRNA-mediated post-transcriptional regulation of sexual differentiation and gonadal development in this species.
Collapse
Affiliation(s)
- Shizhu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Dong Gao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Jing Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Jingui Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
- Southern Marine Sciences and Engineering Guangdong Laboratory, Zhuhai 519082, China
| |
Collapse
|
6
|
Li S, Lin G, Fang W, Huang P, Gao D, Huang J, Xie J, Lu J. Gonadal Transcriptome Analysis of Sex-Related Genes in the Protandrous Yellowfin Seabream ( Acanthopagrus latus). Front Genet 2020; 11:709. [PMID: 32765585 PMCID: PMC7378800 DOI: 10.3389/fgene.2020.00709] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Yellowfin seabream (Acanthopagrus latus), a protandrous hermaphroditic fish, is a good model for studying the mechanism of sex reversal. However, limited knowledge is known about the genetic information related to reproduction and sex differentiation in this species. Here, we performed de novo transcriptome sequencing analysis of the testis, ovotestis, and ovary to identify sex-related genes in yellowfin seabream. The results assembled 71,765 unigenes in which 16,126 and 17,560 unigenes were differentially expressed in the ovotestis and ovary compared to the testis, respectively. The most differentially expressed gene (DEG)-enriched Kyoto Encyclopedia of Genes and Genomes and GO pathways were closely associated with the synthesis of sex steroid hormones. Functional analyses identified 55 important sex-related DEGs, including 32 testis-biased DEGs (dmrt1, amh, and sox9, etc.), 20 ovary-biased DEGs (cyp19a, foxl2, and wnt4, etc.), and 3 ovotestis-biased DEGs (lhb, dmrt2, and foxh1). Furthermore, the testis-specific expression of dmrt1 and the brain-pituitary-ovary axis expression of foxl2 were characterized, suggesting that they might play important roles in sex differentiation in yellowfin seabream. Our present work provided an important molecular basis for elucidating the mechanisms underlying sexual transition and reproductional regulation in yellowfin seabream.
Collapse
Affiliation(s)
- Shizhu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Peilin Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Jing Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Jingui Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
7
|
Attaallah A, Marchionni S, El-Beltagy A, Abdelaziz K, Lorenzini A, Milani L. Cell cultures of the Manila clam and their possible use in biomonitoring and species preservation. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1827052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- A. Attaallah
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - S. Marchionni
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - A. El-Beltagy
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - K. Abdelaziz
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - A. Lorenzini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - L. Milani
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Phenotypic Stability of Sex and Expression of Sex Identification Markers in the Adult Yesso Scallop Mizuhopecten yessoensis throughout the Reproductive Cycle. Animals (Basel) 2019; 9:ani9050277. [PMID: 31137722 PMCID: PMC6562885 DOI: 10.3390/ani9050277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 02/03/2023] Open
Abstract
Simple Summary Bivalve sex is thought to fluctuate depending on environmental conditions. So far, there has been no investigation on the phenotypic stability of sex in the commercially important Yesso scallop Mizuhopecten yessoensis. The present study revealed that the sex of the Yesso scallop is stable after initial sex differentiation and that this species maintains a sex-stable maturation system throughout its life. In addition, gonad differentiation for each sex was precisely characterized by using molecular markers throughout the maturational cycle. Abstract The objective of the present study was to analyze the phenotypic stability of sex after sex differentiation in the Yesso scallop, which is a gonochoristic species that has been described as protandrous. So far, no study has investigated in detail the sexual fate of the scallop after completion of sex differentiation, although bivalve species often show annual sex change. In the present study, we performed a tracking experiment to analyze the phenotypic stability of sex in scallops between one and two years of age. We also conducted molecular marker analyses to describe sex differentiation and gonad development. The results of the tracking experiment revealed that all scallops maintained their initial sex phenotype, as identified in the last reproductive period. Using molecular analyses, we characterized my-dmrt2 and my-foxl2 as sex identification markers for the testis and ovary, respectively. We conclude by proposing that the Yesso scallop is a sex-stable bivalve after its initial sex differentiation and that it maintains a sex-stable maturation system throughout its life. The sex-specific molecular markers identified in this study are useful tools to assess the reproductive status of the Yesso scallop.
Collapse
|
9
|
Li R, Zhang L, Li W, Zhang Y, Li Y, Zhang M, Zhao L, Hu X, Wang S, Bao Z. FOXL2 and DMRT1L Are Yin and Yang Genes for Determining Timing of Sex Differentiation in the Bivalve Mollusk Patinopecten yessoensis. Front Physiol 2018; 9:1166. [PMID: 30246781 PMCID: PMC6113668 DOI: 10.3389/fphys.2018.01166] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/03/2018] [Indexed: 01/24/2023] Open
Abstract
Sex determination and differentiation have long been a research hotspot in metazoans. However, little is known about when and how sex differentiation occurs in most mollusks. In this study, we conducted a combined morphological and molecular study on sex differentiation in the Yesso scallop Patinopecten yessoensis. Histological examination on gonads from 5- to 13-month-old juveniles revealed that the morphological sex differentiation occurred at 10 months of age. To determine the onset of molecular sex differentiation, molecular markers were screened for early identification of sex. The gonadal expression profiles of eight candidate genes for sex determination or differentiation showed that only two genes displayed sexually dimorphic expression, with FOXL2 being abundant in ovaries and DMRT1L in testes. In situ hybridization revealed that both of them were detected in germ cells and follicle cells. We therefore developed LOG10(DMRT1L/FOXL2) for scallop sex identification and confirmed its feasibility in differentiated individuals. By tracing its changes in 5- to 13-month-old juveniles, molecular sex differentiation time was determined: some scallops differentiate early in September when they are 7 months old, and some do late in December when they are 10 months old. Two kinds of coexpression patterns were found between FOXL2 and DMRT1L: expected antagonism after differentiation and unexpected coordination before differentiation. Our results revealed that scallop sex differentiation co-occurs with the formation of follicles, and molecular sex differentiation is established prior to morphological sex differentiation. Our study will assist in a better understanding of the molecular mechanism underlying bivalve sex differentiation.
Collapse
Affiliation(s)
- Ruojiao Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wanru Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yang Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yangping Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Meiwei Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Liang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Silina AV. Sex change in scallop Patinopecten yessoensis: response to population composition? PeerJ 2018; 6:e5240. [PMID: 30013855 PMCID: PMC6046201 DOI: 10.7717/peerj.5240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/18/2018] [Indexed: 11/29/2022] Open
Abstract
Sex structure is very labile between populations and specific for each population because it is a result of genetic, ontogenetic and biocenotic influences on the mollusks. In this study, the age frequency distribution, age-sex structure, and sex ratio were assessed in the wild populations of the Yeso scallop Patinopecten yessoensis (Jay) observed at fifteen sites in the northwestern Sea of Japan (=East Sea). The sex ratio varied between the populations from 0.83:1 to 1.52:1 (males/females), with the mean sex ratio being 1.03 ± 0.05:1. Within a population, the proportions of males and females in term of number differed between age classes. Males were more numerous than females in the younger age classes, and females prevailed over males in the older age classes. It was found that in different scallop populations the sex change occurred at different ages. In the populations that predominantly consisted of young (two- to four-year-old) individuals, males prevailed over females in the age class 2 yr.; the equal male/female proportion was found in the age class 3 yr.; and in older age classes, females prevailed over males. Another pattern was observed in the populations that consisted mainly of middle-aged (five- to six-year-old) individuals. Here, the age-sex ratio became equal at an age of 4–6 years. In the old populations (mainly 6–12-year-olds) the equal male/female proportion was observed at an age of 8–10 years. Thus, the age of sex change was not uniform for the scallop populations. It depended on the age structure of the population and, thus, was socially controlled. The greater number of females in the older age classes suggests a protandric sex change.
Collapse
Affiliation(s)
- Alla V Silina
- Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|