1
|
Giacometti D, Bars-Closel M, Kohlsdorf T, de Carvalho JE, Cury de Barros F. Environmental temperature predicts resting metabolic rates in tropidurinae lizards. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:1039-1052. [PMID: 36127811 DOI: 10.1002/jez.2656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/26/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Interspecific variation in metabolic rates may be associated with climate, habitat structure, and resource availability. Despite a strong link between ecology and physiology, there is a dearth in the understanding of how the costs of body maintenance change during ecological transitions. We focused on an ecologically diverse group of neotropical lizards (Tropidurinae) to investigate whether and how resting metabolic rate (RMR) evolved under divergent micro- and macrohabitat conditions. Using a phylogenetic framework, we tested whether species from hot and dry habitats had lower RMRs in relation to those from cooler and mesic habitats, and investigated whether microhabitat usage had an effect over body mass-adjusted RMRs. Our results suggest that RMRs are not phylogenetically structured in Tropidurinae. We found no correlation between metabolism, precipitation, and microhabitat usage. Species from warmer habitats had lower RMR compared to those from cooler habitats, supporting a mechanism of negative compensation in metabolic responses to temperature. Ectotherms from warmer habitats can limit energetic demand and expenditure through reduced RMR, whereas those from cooler habitats may sustain activity despite thermal constraints via increased RMR. Our work highlights the role of temperature in shaping metabolic responses in lizards, giving additional support to the notion that physiology and ecological contexts are intertwined.
Collapse
Affiliation(s)
- Danilo Giacometti
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Diadema, São Paulo, Brasil
| | - Melissa Bars-Closel
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Tiana Kohlsdorf
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - José Eduardo de Carvalho
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Diadema, São Paulo, Brasil
| | - Fábio Cury de Barros
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Diadema, São Paulo, Brasil
- Departamento de Biociências, Universidade do Estado de Minas Gerais, Passos, Minas Gerais, Brasil
| |
Collapse
|
2
|
C de Figueiredo A, A K Nogueira L, C M Titon S, R Gomes F, E de Carvalho J. Immune and hormonal regulation of the Boa constrictor (Serpentes; Boidae) in response to feeding. Comp Biochem Physiol A Mol Integr Physiol 2021; 264:111119. [PMID: 34793953 DOI: 10.1016/j.cbpa.2021.111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022]
Abstract
Feeding upregulates immune function and the systemic and local (gastrointestinal tract) concentrations of some immunoregulatory hormones, as corticosterone (CORT) and melatonin (MEL), in mammals and anurans. However, little is known about the immune and hormonal regulation in response to feeding in other ectothermic vertebrates, especially snakes, in which the postprandial metabolic changes are pronounced. Here, we investigated the effects feeding have on hormonal and innate immune responses in the snake, Boa constrictor. We divided juvenile males into two groups: fasting and fed with mice (30% of body mass). We measured the rates of oxygen consumption, plasma CORT levels, heterophil/lymphocyte ratio (HL ratio), plasma bacterial killing ability (BKA), and stomach and intestine MEL in fasting snakes and 48 h after meal intake. We observed increased rates of oxygen consumption, plasma CORT levels, and HL ratio, along with a tendency of decreased stomach and intestine MEL in fed snakes compared to fasting ones. BKA was not affected by feeding. Overall, we found that feeding modulates metabolic rates, CORT levels, and immune cell distribution in boas. Increased baseline CORT may be important to mobilize energy to support the metabolic increment during the postprandial period. Increased HL ratio might be an immunoregulatory effect of increased CORT, which has been shown in different physiological situations such as in response to immune challenge. Our results suggest that feeding activates the hypothalamic-pituitary-adrenal axis and modulates immune cell redistribution, possibly contributing to fighting potential injuries and infections derived from predation and from pathogens present in ingested food.
Collapse
Affiliation(s)
- Aymam C de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária, CEP 05508-900, São Paulo, SP, Brazil.
| | - Letícia A K Nogueira
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, CEP 09972-270, Diadema, SP, Brazil
| | - Stefanny C M Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária, CEP 05508-900, São Paulo, SP, Brazil
| | - Fernando R Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária, CEP 05508-900, São Paulo, SP, Brazil
| | - José E de Carvalho
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, CEP 09972-270, Diadema, SP, Brazil
| |
Collapse
|
3
|
Bury S. Intestinal upregulation and specific dynamic action in snakes - Implications for the 'pay before pumping' hypothesis. Comp Biochem Physiol A Mol Integr Physiol 2021; 263:111080. [PMID: 34543726 DOI: 10.1016/j.cbpa.2021.111080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Animals which feed infrequently and on large prey, like many snake species, are characterized by a high magnitude of gut upregulation upon ingesting a meal. The intensity of intestinal upregulation was hypothesized to be proportional to the time and energy required for food processing (Specific-Dynamic-Action; SDA); hence, a positive correlation between the scope of intestinal growth and SDA response can be deduced. Such a correlation would support the so far not well established link between the intestinal and metabolic consequences of digestion. In this study I tested this prediction using an interspecific dataset on snakes gleaned from published sources. I found that SDAduration and SDAscope were positively correlated with post-feeding factorial increase in small intestine mass, but not with microvillar elongation. This indicates that a wide range of whole intestine remodelling (up- but potentially also downregulation) may temporarily prolong meal processing and that a greater magnitude of intestinal growth requires a stronger metabolic elevation. However, these effects do not seem large enough to drive the variation in the entire energetic costs of digestion, because SDAexpenditure was not affected either by intestinal or microvillar growth. I therefore propose that intestinal upregulation elicits non-negligible costs, but that these costs are a fairly small component of the whole SDAexpenditure.
Collapse
Affiliation(s)
- Stanisław Bury
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|
4
|
Lima‐Santos J, Almeida‐Santos SM, Carvalho JE, Brasileiro CA. Does reproductive effort influence the metabolic rate of
Tomodon dorsatus
snakes? ACTA ZOOL-STOCKHOLM 2021. [DOI: 10.1111/azo.12406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jade Lima‐Santos
- Programa de Pós‐Graduação em Ecologia e Evolução Universidade Federal de São Paulo, Campus Diadema São Paulo Brazil
| | | | - José Eduardo Carvalho
- Programa de Pós‐Graduação em Ecologia e Evolução Universidade Federal de São Paulo, Campus Diadema São Paulo Brazil
- Departamento de Ecologia e Biologia Evolutiva Universidade Federal de São Paulo, Campus Diadema São Paulo Brazil
| | - Cinthia A. Brasileiro
- Programa de Pós‐Graduação em Ecologia e Evolução Universidade Federal de São Paulo, Campus Diadema São Paulo Brazil
- Departamento de Ecologia e Biologia Evolutiva Universidade Federal de São Paulo, Campus Diadema São Paulo Brazil
| |
Collapse
|
5
|
Bury S. Energy expenses on prey processing are comparable, but paid at a higher metabolic scope and for a longer time in ambush vs active predators: a multispecies study on snakes. Oecologia 2021; 197:61-70. [PMID: 34392416 PMCID: PMC8445871 DOI: 10.1007/s00442-021-05014-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/05/2021] [Indexed: 12/04/2022]
Abstract
Snakes are characterized by distinct foraging strategies, from ambush to active hunting, which can be predicted to substantially affect the energy budget as a result of differential activity rates and feeding frequencies. Intense foraging activity and continuously upregulated viscera as a result of frequent feeding leads to a higher standard metabolic rate (SMR) in active than in ambush predators. Conversely, the costs of digestion (Specific Dynamic Action—SDA) are expected to be higher in ambush predators following the substantial remodelling of the gut upon ingestion of a meal after a long fasting period. This prediction was tested on an interspecific scale using a large multispecies dataset (> 40 species) obtained from published sources. I found that the metabolic scope and duration of SDA tended to reach higher values in ambush than in active predators, which probably reflects the greater magnitude of postprandial physiological upregulation in the former. In contrast, the SDA energy expenditure appeared to be unrelated to the foraging mode. The costs of visceral activation conceivably are not negligible, but represent a minor part of the total costs of digestion, possibly not large enough to elicit a foraging-mode driven variation in SDA energy expenditure. Non-mutually exclusive is that the higher costs of structural upregulation in ambush predators are balanced by the improved, thus potentially less expensive, functional performance of the more efficient intestines. I finally suggest that ambush predators may be less susceptible than active predators to the metabolic ‘meltdown effect’ driven by climate change.
Collapse
Affiliation(s)
- Stanisław Bury
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| |
Collapse
|
6
|
Lima‐Santos J, Carvalho JE, Brasileiro CA. How sexual differences affect locomotor performance and metabolism of the Sword Snake: An integrated view from energetics. J Zool (1987) 2021. [DOI: 10.1111/jzo.12908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- J. Lima‐Santos
- Programa de Pós‐Graduação em Ecologia e Evolução Universidade Federal de São Paulo Diadema SP Brazil
| | - J. E. Carvalho
- Programa de Pós‐Graduação em Ecologia e Evolução Universidade Federal de São Paulo Diadema SP Brazil
- Departamento de Ecologia e Biologia Evolutiva Universidade Federal de São Paulo Diadema SP Brazil
| | - C. A. Brasileiro
- Programa de Pós‐Graduação em Ecologia e Evolução Universidade Federal de São Paulo Diadema SP Brazil
- Departamento de Ecologia e Biologia Evolutiva Universidade Federal de São Paulo Diadema SP Brazil
| |
Collapse
|
7
|
de Figueiredo AC, de Carvalho JE. Do prolonged fasting periods influence the postprandial metabolic responses in turtles? What can Trachemys scripta elegans teach us about this? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:644-651. [PMID: 32996720 DOI: 10.1002/jez.2416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/30/2022]
Abstract
The postprandial period is characterized by a modification of the gastrointestinal activity after food intake, accompanied by an increase in metabolic rate, secretion of acids, and absorption of nutrients. For ectothermic vertebrates, those changes are particularly prominent given the relatively low metabolic cost and the low frequency of food uptake. However, prolonged fasting periods decrease energy reserves and may compromise the upregulation of costly processes, such as the increase in metabolic rate after resuming the meal intake. Assuming that the main source of energy needed to support such events is provided from the animal's own body reserves, our aim with this study is to test the hypothesis that the longer the period of fasting, the smaller the metabolic rate increase during the postprandial period, since lesser energy reserves trigger these increases. For this, we measured the oxygen consumption rates (V̇O2 ) of red-eared slider turtles, Trachemys scripta elegans, submitted to different periods of fasting (47 and 102 days), before and after the ingestion of meals equivalent to 5% of their body masses. Despite the longer fasting period, which led to a reduction of 10.77% in the body mass of the turtles, there were no differences between the two experimental groups regarding maximum V̇O2 values after food intake (V̇O2 peak), postprandial metabolic scope, mean time to V̇O2 peak, and postprandial duration. Results indicate that 102 fasting days does not compromise aerobic metabolic increase during postprandial period and does not impair digestive process of the turtles, even with a loss of body mass.
Collapse
Affiliation(s)
- Aymam C de Figueiredo
- Programa de Pós-Graduação em Ecologia e Evolução, Laboratório de Ecologia, Zoologia e Fisiologia Comparada, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, campus Diadema, Diadema, São Paulo, Brazil
| | - José E de Carvalho
- Programa de Pós-Graduação em Ecologia e Evolução, Laboratório de Ecologia, Zoologia e Fisiologia Comparada, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, campus Diadema, Diadema, São Paulo, Brazil.,Departamento de Ecologia e Biologia Evolutiva, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, campus Diadema, Diadema, São Paulo, Brazil
| |
Collapse
|
8
|
Spencer MM, Pierson MT, Gienger CM. Comparative energetics and thermal responses to feeding in allied Agkistrodon snakes with contrasting diet and habitat use. J Comp Physiol B 2020; 190:329-339. [DOI: 10.1007/s00360-020-01267-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 11/28/2022]
|