1
|
Bian HX, Chen DB, Li YP, Tan EG, Su X, Huang JC, Su JF, Liu YQ. Transcriptomic analysis of Bombyx mori corpora allata with comparison to prothoracic glands in the final instar larvae. Gene 2021; 813:146095. [PMID: 34902509 DOI: 10.1016/j.gene.2021.146095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/28/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022]
Abstract
The corpus allatum (CA) is an endocrine organ of insects that synthesizes juvenile hormone (JH). Yet little is known regarding the global gene expression profile for the CA, although JH signaling pathway has been well-studied in insects. Here, we report the availability of the transcriptome resource of the isolated CA from the final (fifth) instar larvae of the silkworm, Bombyx mori when the JH titer is low. We also compare it with prothoracic gland (PG) that produces the precursor of 20-hydroxyecdysone (20E), to find some common features in the JH and 20E related genes between the two organs. A total of 17,262 genes were generated using a combination of genome-guided assembly and annotation, in which 10,878 unigenes were enriched in 58 Gene Ontology terms, representing almost all expressed genes in the CA of the 5th instar larvae of B. mori. Transcriptome analysis confirmed that gene for Torso, the receptor of prothoracicotropic hormone (PTTH), is present in the PG but not in the CA. Transcriptome comparison and quantitative real time-PCR indicated that 11 genes related to JH biosynthesis and regulation and six genes for 20E are expressed in both the CA and PG, suggesting that the two organs may cross talk with each other through these genes. The temporal expression profiles of the two genes for the multifunctional neurohormonal factor sericotropin precursor and the uncharacterized protein LOC114249572, the most abundant in the CA and PG transcriptomes respectively, suggested that they might play important roles in the JH and 20E biosynthesis. The present work provides new insights into the CA and PG.
Collapse
Affiliation(s)
- Hai-Xu Bian
- College of Plant Protection, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Dong-Bin Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Yu-Ping Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - En-Guang Tan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Xin Su
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Jing-Chao Huang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Jun-Fang Su
- Center for Experimental Teaching, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yan-Qun Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China.
| |
Collapse
|
2
|
Colizzi FS, Beer K, Cuti P, Deppisch P, Martínez Torres D, Yoshii T, Helfrich-Förster C. Antibodies Against the Clock Proteins Period and Cryptochrome Reveal the Neuronal Organization of the Circadian Clock in the Pea Aphid. Front Physiol 2021; 12:705048. [PMID: 34366893 PMCID: PMC8336691 DOI: 10.3389/fphys.2021.705048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Circadian clocks prepare the organism to cyclic environmental changes in light, temperature, or food availability. Here, we characterized the master clock in the brain of a strongly photoperiodic insect, the aphid Acyrthosiphon pisum, immunohistochemically with antibodies against A. pisum Period (PER), Drosophila melanogaster Cryptochrome (CRY1), and crab Pigment-Dispersing Hormone (PDH). The latter antibody detects all so far known PDHs and PDFs (Pigment-Dispersing Factors), which play a dominant role in the circadian system of many arthropods. We found that, under long days, PER and CRY are expressed in a rhythmic manner in three regions of the brain: the dorsal and lateral protocerebrum and the lamina. No staining was detected with anti-PDH, suggesting that aphids lack PDF. All the CRY1-positive cells co-expressed PER and showed daily PER/CRY1 oscillations of high amplitude, while the PER oscillations of the CRY1-negative PER neurons were of considerable lower amplitude. The CRY1 oscillations were highly synchronous in all neurons, suggesting that aphid CRY1, similarly to Drosophila CRY1, is light sensitive and its oscillations are synchronized by light-dark cycles. Nevertheless, in contrast to Drosophila CRY1, aphid CRY1 was not degraded by light, but steadily increased during the day and decreased during the night. PER was always located in the nuclei of the clock neurons, while CRY was predominantly cytoplasmic and revealed the projections of the PER/CRY1-positive neurons. We traced the PER/CRY1-positive neurons through the aphid protocerebrum discovering striking similarities with the circadian clock of D. melanogaster: The CRY1 fibers innervate the dorsal and lateral protocerebrum and putatively connect the different PER-positive neurons with each other. They also run toward the pars intercerebralis, which controls hormone release via the neurohemal organ, the corpora cardiaca. In contrast to Drosophila, the CRY1-positive fibers additionally travel directly toward the corpora cardiaca and the close-by endocrine gland, corpora allata. This suggests a direct link between the circadian clock and the photoperiodic control of hormone release that can be studied in the future.
Collapse
Affiliation(s)
- Francesca Sara Colizzi
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Paolo Cuti
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain
| | - Peter Deppisch
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - David Martínez Torres
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Nakata M, Kikuchi Y, Iwami M, Takayanagi-Kiya S, Kiya T. Identification and characterization of sexually dimorphic neurons that express the sex-determining gene doublesex in the brain of silkmoth Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 129:103518. [PMID: 33421546 DOI: 10.1016/j.ibmb.2021.103518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
Sexual differences in behavior are generated by sexually dimorphic neural circuits in animals. In insects, a highly conserved sex-determining gene doublesex (dsx) plays essential roles in the development of sexual dimorphisms. In the present study, to elucidate the neural basis of sexual differences in behaviors of silkmoth Bombyx mori, we investigated Bombyx mori dsx (Bmdsx) expression in the brains through development. In the brain, Bmdsx was differentially expressed in sex- and developmental stage-dependent manners. BmDSX protein-expressing cells were located in the dorsomedial region of the pupal and adult brains, and constituted two and one neural clusters in males and females, respectively. The number of BmDSX-positive cells was developmentally regulated and peaked at the early to middle pupal stages, suggesting that the sexually dimorphic neural circuits are established during this period. The detection of a neural activity marker protein BmHR38 suggested that the BmDSX-positive cells are not active during sexual behavior in both male and female moths, even though the cells in the vicinity of the BmDSX-positive cell clusters are active. These results imply that Bmdsx plays roles in the development of sexually dimorphic neural circuits, but the neural circuits are not related to sexual behavior in silkmoths.
Collapse
Affiliation(s)
- Masami Nakata
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | - Yusuke Kikuchi
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | - Masafumi Iwami
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | - Seika Takayanagi-Kiya
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | - Taketoshi Kiya
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan.
| |
Collapse
|
4
|
Fujimori H, Zhou YJ, Fukumura K, Matsumoto S, Tukamoto Y, Nagata S. Specific distribution of expression and enzymatic activity of cholesterol biosynthetic enzyme DHCR24 orthologs in the phytophagous insect. Biosci Biotechnol Biochem 2019; 84:126-133. [PMID: 31538545 DOI: 10.1080/09168451.2019.1667221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Insects must intake sterol compounds because of their inability to synthesize cholesterol de novo. In phytophagous insects, enzymatic conversion of phytosterols to cholesterol involving 24-dehydrocholesterol reductase (DHCR24) exerts to acquire cholesterol. Here, we reported the presence of two DHCR24 homologs in the silkworm Bombyx mori, BmDHCR24-1 and -2, with several transcript variants. Consistent with the data of spatial expression analyses by RT-PCR, predominant enzymatic activity of DHCR24 was observed in B. mori larval midgut whereas weak activity was observed in the other tissues examined. In addition, BmDHCR24-1 expression in HEK293 cells showed an enzymatic activity, but BmDHCR24-2 did not, although both BmDHCR24s were localized in the endoplasmic reticulum, where the mammalian DHCR24s are located to exert their enzymatic activities. The present data indicated that BmDHCR24-1 but not BmDHCR24-2 contributes to conversion of phytosterols to cholesterol mainly in the midgut of the phytophagous lepidopteran larvae.
Collapse
Affiliation(s)
- Haruna Fujimori
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan
| | - Yi Jun Zhou
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan.,Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, Japan
| | - Keisuke Fukumura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan.,Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, Japan
| | - Sumihiro Matsumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan
| | - Yusuke Tukamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan.,Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, Japan
| | - Shinji Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan
| |
Collapse
|